REMARKS ON AN ARITHMETIC DERIVATIVE
E.J. Barbeau
(received March 21,1961)

1. Introduction. Let D(n) denote a function of an integral
variable n > 0 such that!

(1) D(1) = D(0) = 0
(2) D(p) = 1 for every prime p

(3) D(ninz) = niD(nz) + n D(ni) for every pair of non-negative

2
inte ,n._-

integers n,,n,

The property (3) is analagous to the product rule for derivatives,
and its extension to k terms

k

. n,-1 Din) for n =n n . n
1:1 i i

(4) D@ = a3 L Ty Oy

is.immediate. - The above properties are consistent and deter-

mine D(n) uniquely for all non-negative integers n. In fact,_ if
:1 pgz e p:r, we have, on using (4),

r
= nX
(5) D(n) n =1 ai pi

n .2

so that, once the prime factor decomposition of n is known, the
first derivative D(n) is given explicitly. ‘However, the "higher"
derivatives, defined successively by

p%(n) =n, D'(n) = D(n), D%(n) = D[D(n)], ... , DX(n) = D[D" " *(a)]

11 have not been able to trace explicit references to previous

work on D(n). However, it appeared in a question on the Putnam
Prize competition (1950); see American Mathematical Monthly

57 (1950), p. 469. I am indebted to Dr. J.H. H. Chalk for suggest-
ing a note on this topic and for assistance during its preparation.
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k
present an unsolved problem. For fixed n, the function D (n)
of k exhibits irregular behaviour as k increases. For example,
using (3) with n = ppni, where p is a prime, we obtain

(6) D(n) = p’ln, + D(n,)] > n

equality holding if and only if ny =1. Hence, for mtegers n
possessing a proper divisor of the form pP, lim DX {n) =, and
if n=pP, D (n) =n for all k. On the other hand, Dk(p) =0 for
all k> 1 and all primes p. Numerical considerations suggest
the following.

CONJECTURE. For each n > 41, there exists a constant
k =k (n)> 1 such that, for all k> k ,
o o - - o
either
k
1) D(n) = 0
or
k
2) D(n) # O,
k
and there exists a prime p such that D (n) £ 0 (mod p).
2. Some remarks about D(n}). Although the function D{(n)
behaves erratically, it is easy to obtain exact upper and lower
bounds, depending on n, for its values. We suppose that

n=gq4 q --- q, has prime factors gq; which are not necessarily
distinct.

1
(a) D(n) < g—lig—z for all n, equality occurring if and
k
only if n is a power of 2. In fact, n satisfies 20 < n < 2k+1

for some k. Clearly, v < k and

v 1 v nk nlogn
Din) = nZ, ', — < nZ ' 1< = < 282
) =nZ o EnE TS 2 T g2
k k-1 Zkl Zk k
If n=2", D(n) =k2 L £ 08 If n# 2, then some q, # 2
2 log 2 i
and strict inequality holds in the above.
i

{ - =

(b) D(n) > vn V, equality holding if, and only if, all the
factors q; are equal. For, by (5) and the inequality of the
arithmetic and geometric means,
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1

1 1-5
D(n) = nZ, L5 7 = va V.
qi_ 'V

i=1
v
(a9, --- )

Hence, if n is not a prime or unity, D(n) > 24n, with equality
if and only if n =p® where p is a prime.

In addition, we can relate the value of D(n) to n in the
following ways.
(c) Let n:pai par, where p,, ... , p_ are distinct
1 r 1 r

primes. Then D(n) =0 (mod n) if, and only if,
a = 0 (mod pi), cee,a =0(mod pr). In particular, D(n) =n if
T

and only if, n= pp. The sufficiency of the conditions is obvious.

Their necessity is seen by noting that, if n = pan', where (p,n') =1,
-1 _

then D(n) = n'apa + pa D(n') =0(mod n) implies

n'apa -1 = 0(mod pa) and, hence, o = 0(mod p), since (n',p) =1.

(d) If D(n)>n, then D(kn)=kD(n) + nD(k) > kn for all
k> 1.

3. The average order of D(n). Let

Sn) == " D(r), Tln) == " K(r)
r=1 r=1

where K(n) =n-1D(n). Since K(n) is totally additive, i.e.

K(ninz) = K(ni) + K(nz) for all integer pairs ni’nZ’ it is easier

to estimate T(n) first, and then use partial summation to deduce
the average order of D(n). Let

. o n logn
= Z —1, = ;
tap) = 27 51 eta) = [{2E2]
then j(n,p) denotes [1; p.342] the exponent of the highest power
of p dividing n! and a(n) denotes the exponent of the highest
power of 2 < n. Observe that

1.
T(n) = K(n!) = zpf_n > j(n, p)
1 © _n
=2 a3 Bl
1419
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= Fp<n ARED)

= ngn i {E:f;) ﬁt- + O(log n)}

- szn{zt‘zz ft- - za(:)"’” %} +Ol(log n) = _ %}

= nngn —-——-———P(pi_ O - ZPS N pa(n) +11(P- " + O{(log n)Zps - i}

0 1 = n = n
= 1n - —
=2 -1 > -1 <n aon)+1i
p=2 plp-1) p>nplp-1) p<n (@i,
‘ 1
+ O{(log n) = =}

p<np

Ton + O{(log n)(log log n)}

0 1
here T =2 — = (.749...
w o p=2 p(p-1)

since

n ; 1
= —_— < = _— < R
p>n p(p - 1) nk>nk(k-1)-—1

logn logn
at+1 S plogZ s 2logZ S

P > > n,
1 1
= —_— =
p<n {p -1 p} <t
= 1. O(log 1 ) [1; p- 351
p<nop = og log n). ; p- ]
For S(n), we have
Sn) = £ 2 rK(x) = T(a) + z’r‘:: (T(a) - T(z}
= nT(n) - ==~ 1 7(n)
r=1
] n-1 146
= - =
n{Ton + O(n")} To roq T F O(n )
=T af . BEod) ottY
o [} 2
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2 +
=$Tn + ofnttd

where? %To =0.374... , for each fixed &> O.

4. The congruence D(n) =0 (mod 4). A key problem is
to find a characterization of those numbers for which
limy _, o Dk(n) = . This limit is known for numbers n of the
form p, pP, kpP where p is any prime. Further investigation
is hampered by the absence of explicit formulae for the higher
derivatives. If there were some way of dealing with D(m + n)
for any integers m and n, then Dz(n) could be determined

i=171

However, it is known 6n1y that, if D(m + n) = D{m) + D{(n), then
D(km + kn) = D(km) + D(kn) for every integer k; in particular,
D(h) + D(2h) = D(3h).

k k .
from D(n)=Z, -1 Fi, where n=1] Fi = n/fi, fi prime.

Another approach to the problem is to find a characteriza-
tion of those numbers, excluding p, pP, kpP for which pPIDk(n)
for some positive integer k and some prime p. According to
our conjecture, this would be sufficient to characterize those
numbers for which Dk(n) — o as k — o, provided Dk(n) #0 for
all k. We deal with the special case p =2, k=1.

.~ Let n=2%pypy ... prayqz --- 9g where p; =1 (mod 4),
qj E -1 (mod 4) are primes, not necessarily distinct. We have
the following results:

it

(-1)%(r - s){mod 2°)
-0)°[1 + 2(z - 8)]
0(mod 2°).

(i) if =0, then D(n)
(-1)r- 1 {mod 22)

(ii) if e =1, then D(n)

(iii) if o> 1, then D(n)
In order to prove (i), let P = P, p2 - P = {+1)(mod 4)

Q=q,q,.- q, z(-1)° (mod 4)

- -1
=Q,= (-1) (mod 4).
1 qi
% The approximation 0.374 ... n2 for S(n) is good, even for small

values of n. For example, S(10) = 38 =(0. 374 ...){(100).
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Then

D(n) !

[}

DIPQ) = . P.Q+Z.° PQ. = r(-1)° + s(-1)°"
d i i=171 i=1 i

(~v1)s(r - s) (mod 4).

In case (ii),

D(2PQ)

PQD(2) + 2D(PQ):

(-1)° + 2(-1)°(r - 9)

L}

(-1)°[1 + 2(r - s)] (mod 4).

Result (iii) follows from the fact that 4]n. We conclude that
D(n) =0 (mod 4) if and only if

(a) a=0, r=s (mod 4)

(b) a> 1.

The numbers in (a) have a density of—é— in the integers; those in
(b) have a density of%. Hence, those integers n satisfying -
lirnk - D (n) = (which include the numbers of (2) and (b))

3 .
have a density exceeding rh What this density is remains an

open question.
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