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Abstract

Background. Psychiatric disorders are highly heterogeneous. It is clinically valuable to distin-
guish psychiatric disorders by the presence or absence of a specific comorbid condition.
Methods. We employed a novel algorithm (CombGWAS) to decipher the genetic basis of
psychiatric disorder combinations using genome-wide association studies summary statistics.
We focused on comorbidities and combinations of diseases, such as schizophrenia (SCZ) with
and without depression, which can be considered as two ‘subtypes’ of SCZ. We also studied
psychiatric disorders comorbid with obesity as disease subtypes.
Results. We compared the genetic architectures of psychiatric disorders with and without
specific comorbidities, identifying both shared and unique susceptibility genes/variants across
8 subtype pairs (16 entities). Despite high genetic correlations between subtypes, most subtype
pairs exhibited distinct genetic correlations with the same cardiovascular disease (CVD). Some
pairs even displayed opposite genetic correlations, especially those involving obesity. For
instance, the genetic correlation (rg) between SCZ with obesity and type 2 diabetes (T2DM)
was 0.248 (p = 4.42E�28), while the rg between SCZ without obesity and T2DM was �0.154
(p = 6.79E�12). Mendelian randomization analyses revealed that comorbid psychiatric dis-
orders often have stronger causal effects on cardiovascular risks compared to single disorders,
but the effects vary across psychiatric subtypes. Notably, obese and nonobese major depressive
disorder/SCZ showed opposite causal effects on the risks of T2DM.
Conclusions. Our study provides novel insights into the genetic basis of psychiatric disorder
heterogeneity, revealing unique genetic signatures across various disorder combinations. Not-
ably, comorbid psychiatric disorders often showed different causal relationships with CVD
compared to single disorders.

Introduction

Psychiatric disorders constitute significant health and societal burdens on a global scale, consistently
ranked among the most debilitating medical conditions across diverse age groups (GBD 2019
Diseases and Injuries Collaborators. (2020)).While diagnostic classification systems define disorders
based on symptomatology, psychiatric comorbidity is common, with patients frequently presenting
with multiple concurrent conditions. For example, a considerable proportion of patients with
schizophrenia (SCZ) have comorbid depression, obsessive-compulsive disorder (OCD), and other
psychiatric disorders (Gorman, 1996). Similarly, around 75% of patients with depression have
comorbid anxiety disorders.

This comorbidity highlights the vast heterogeneity in psychiatry, as subtypes of a primary
disorder with different psychiatric comorbidities may have distinct neurobiological underpin-
nings. Clarifying the genetic basis for these different psychiatric comorbidities can unveil
biological mechanisms and promote individualized care.

Genome-wide association studies (GWASs) have achieved success in revealing the genetic basis
of complex disorders (Schizophrenia Working Group of the Psychiatric Genomics Consortium,
2014; Trubetskoy et al., 2022;Uffelmann et al., 2021), including psychiatric disorders.However, prior
research on GWASsmainly focused on exploring the genetic basis of a single psychiatric entity, and
largely ignored psychiatric comorbidity, with notable exceptions, such as the seminal cross-disorder
GWASs by the Cross-Disorder Group of the Psychiatric Genomics Consortium (2013).

Our team has recently developed an innovative statistical framework, CombGWAS (Yin et al.,
2021), to uncover the genetic architecture of disease combinations. In this study, we applied
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CombGWAS to decipher the genetic signatures distinguishing
16 psychiatric disorder combinations, such as SCZ and major
depressive disorder (MDD) with and without various comorbid-
ities. We also considered psychiatric disorders with/without
comorbid obesity as disease subtypes, highlighting the intricate
relationships between these conditions and their implications for
cardiovascular health. Emerging evidence suggests bidirectional
relationships between metabolic dysregulation (such as obesity)
and psychiatric disorders (Gao et al., 2024; Goldfarb et al., 2022;
Hiles, Révész, Lamers, Giltay, & Penninx, 2016; Pan et al., 2012).

Unlike other conventional methods, such as polygenic risk scores
(Choi, Mak, & O’Reilly, 2020) or linkage disequilibrium (LD) score
regression (LDSR) (Bulik-Sullivan, Loh, Finucane, Ripke, & Yang,
2015) that only reveal overall genetic overlap, our approach can
identify specific susceptibility variants responsible for the presence or
absence of a particular comorbidity. This provides deeper insights into
the complex genetic underpinnings of psychiatric disorder heterogen-
eity. Ourmethod can also estimate the effect size (e.g. odds ratio [OR])
of the variants contributing to the comorbidities, which cannot be
achieved by other existing approaches. Furthermore, we employed
additional analyses, including genetic correlation,Mendelian random-
ization (MR), and functional enrichment, to comprehensively charac-
terize the shared and unique genetic architectures across psychiatric
subtypes and their relationships with cardiovascular diseases (CVDs).

We summarize the key contributions and novelties of this study
below:

1. We applied a novel statistical framework, CombGWAS, to
decipher the genetic signatures that distinguish 16 psychiatric
disorder combinations, including subtypes with and without
specific comorbidities. We identified numerous susceptibility
genes/variants across different psychiatric disease subtypes,
providing insights into the genetic heterogeneity underlying
these conditions.

2. We investigated MDD and SCZ with/without obesity as dis-
ease subtypes and revealed their genetic underpinnings. To our
knowledge, this is the first GWAS-based study to uncover
genetic variants underlying these comorbid conditions.

3. We revealed distinct genetic correlations between psychiatric
disorder subtypes and CVDs, shedding light on the complex
links between psychiatric and cardiometabolic traits. For
example, we uncovered that MDD and SCZ with or without
obesity exhibit very different, and often opposite, genetic
correlations with cardiometabolic disorders.

4. OurMR analyses revealed that comorbid psychiatric disorders
often have more profound causal effects on cardiovascular
risks compared to single psychiatric disorders, but the causal
effect estimates also vary across different psychiatric subtypes.
Notably, obese and nonobese MDD/SCZ showed opposite
causal effects on the risks of T2DM.

5. We provided comprehensive genetic and biological insights
(through pathway, cell type, and drug enrichment analyses)
thatmay inform the development of personalized treatment and
prevention strategies for psychiatric disorder combinations.

Overall, our work represents a significant advancement in under-
standing the complex genetic underpinnings of psychiatric disorder
heterogeneity and comorbidities, which is crucial for improving
clinical management and patient outcomes in the long term.

Methods

In this study, we employed CombGWAS (Yin et al., 2021) to
estimate the genetic architecture of the combinations of psychiatric

disorders. CombGWAS is a statistical framework specially designed
to mimic case–control GWASs of combinations of diseases
(or comorbid conditions) by using summary statistics taken from
case–control GWASs of the corresponding diseases only. The
mathematical formulation is as follows.

Consider S� bin n= 2,qð Þ as a random biallelic single-
nucleotide polymorphism (SNP) with q denoting the effect allele
frequency. We considered two binary psychiatric-related traits P1

and P2, and generated a multivariate linear model on N subjects as
follows:
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The left-hand side P is an N × 2 phenotype matrix, and the
matrices on the right-hand side are, respectively, an N × 2 SNP
matrix, 2 × 2 association estimates, and an N × 2 error matrix. The
error matrix ( ϵ�Ν 0,

Pð Þ ) is assumed to follow a multivariate
normal distribution. β11 and β12 represent the regression coefficients
for traits P1 and P2 for SNP S, which are directly obtained from the
summary statistics of traits P1 and P2. β01 and β02 are the intercept
terms estimated from the same summary statistics using the follow-
ing equations: β01 = P1�β11∗S= k1�β11∗2∗eaf P1

and β02 = P2�
β12∗S= k2�β12∗2∗eaf P2

, where k1 and k2 denote the population
prevalence of traits P1 and P2, and eaf P1

and eaf P2
denote the

effect allele frequencies for the SNP in each trait’s GWAS.
The psychiatric comorbidity of two disorders (P1 and P2) can be

defined as a function of these two traits:

Comor = f P1,P2ð Þ=P1 ×P2 (2)

Similarly, the ‘single’ psychiatric disorder (with the particular
comorbid disorder excluded) can be defined as follows:

Single= f P1,P2ð Þ= P1 × 1�P2ð Þ (3)

Our goal here is to infer the association estimates for genome-
wide SNPs for the target traits (i.e. the comorbid psychiatric dis-
orders or the single psychiatric disorder without the specific comor-
bid disorder).

f P1,P2ð Þ≕T = γ0 + γ1S+ e (4)

Here, e is assumed to follow a normal distribution with zero
mean. γ0 and γ1 are the intercept and regression coefficient,
respectively, for the target phenotype (comorbidity or a disorder
without a comorbidity). For downstream analysis, γ1 serves as the
primary effect size measure (equivalent to β in standard GWASs),
representing the association strength with the target phenotype.
According to Yin et al. (2021), the association estimates for the
combined psychiatric disorders can be estimated as follows:

Comor bγ0ð Þ= cβ01 × cβ02 +Cov P1,P2ð Þ (5)

Comor bγ1ð Þ= 2q 1�qð Þ
2q 1�qð Þ+ q2

cβ01 + cβ11� �
× cβ02 + cβ12� �

� cβ01�h
× cβ02Þ�+ q2

2q 1�qð Þ+ q2cβ01 + 2cβ11� �
× cβ02 + 2cβ12� �

�cβ01 × cβ02� �h i
2

(6)
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Here, Cov P1,P2ð Þ denotes the covariance between the two
binary traits. Along the same line, the association estimates for
the single psychiatric disorder without the particular comorbid
disorder can be computed as follows:

Single bγ0ð Þ = cβ01 × 1�cβ02� �
�Cov P1,P2ð Þ (7)

Single bγ1ð Þ= 2q 1�qð Þ
2q 1�qð Þ+ q2

cβ01 + cβ11� �
× 1� cβ02�cβ12� ��h

� cβ01 × 1�cβ02� �
Þ� + q2

2q 1�qð Þ+ q2cβ01 + 2cβ11� �
× 1� cβ02�2cβ12� �

�cβ01 × 1�cβ02� �� �h i
2

(8)

The estimates used in the above equations are presumably
derived from a linear regression model. However, for binary traits,
the association estimates are usually calculated from logistic regres-
sion models. Therefore, we need to transform the estimates (ORs)
derived from logistic regression to those of linear regression, using
the following equation:

αk�kð Þ 1�kð Þ = β21 p 1�pð Þ+ αp 1�pð Þ½ �+ β1 αk 1�pð Þ+ αp½
� αpk+ kp+ 1�pð Þ 1�kð Þ�

(9)

where p indicates the effect allele frequency of the SNP under
study S, k represents the proportion of cases, β1 represents the
coefficient under a linear model, and α defines the OR of SNP S
regressed on the same binary trait. We solve the above equation
for β1. We choose the solution whose absolute value is smaller
than the coefficient under a logistic model, i.e., abs(β1)<abs
(log(α)). Then we convert the coefficients back to ORs. The
variances for bγ0 and bγ1 for the target disease combination can
be estimated by the delta method, which employs a first-order
Taylor expansion to estimate the variance of a function. Also, it is
noteworthy that our proposed analytic framework assumes the
absence of significant interactions between the comorbid trait
(s) and the genetic variants under study, as explained elsewhere
(Yin et al., 2021). In our previous study, we verified the validity of
CombGWAS using both extensive simulations and applications
to UK-Biobank data. Briefly, we reperformed a GWAS in the UK
Biobank (UKBB) using the actual phenotype data of disease
combinations as the outcome, and the results were highly similar
to those computed from CombGWAS.

Enrichment analyses

We utilized several methods to clarify the putative functional and
biological mechanisms of the identified susceptibility variants for
the ‘psychiatric phenotypes/subtypes’ of interest (i.e. the comorbid
psychiatric disorders, and the ‘single’ psychiatric disorders without
the particular comorbid disorder). First, the MAGMA tool within
FUMA (Watanabe, Taskesen, Van Bochoven, & Posthuma, 2017;
Watanabe, Umićević Mirkov, de Leeuw, van den Heuvel, & Post-
huma, 2019) was used tomap the identified genetic variants to their
corresponding genes. This established the gene-level associations

with the psychiatric phenotypes/subtypes. The definitions for inde-
pendent significant SNPs and genomic risk loci in our study were
also based on the criteria established by FUMA (https://fuma.ct
glab.nl/tutorial#riskloci).

Second, we performed tissue specificity analysis to examine if
the susceptibility genes were enriched in specific tissues. Further-
more, we carried out a cell type enrichment analysis to uncover
specific cell types or cell populations that may play crucial roles in
the etiology of the subtypes. We also conducted pathway analysis
using the program ‘ConsensusPathDB’ (Herwig, Hardt, Lienhard,
& Kamburov, 2016; Kamburov, Stelzl, Lehrach, & Herwig, 2013).
Moreover, we performed drug enrichment analyses on the identi-
fied susceptibility gene sets using ‘enrichr’ (Kuleshov et al., 2016;
Xie et al., 2021). This analysis identified potential therapeutic agents
or drug targets that may be relevant to the treatment of the
investigated psychiatric conditions. Notably, we also conducted
tissue, pathway, cell type, and drug enrichment analyses based on
subtype-specific genes.

Genetic correlation among psychiatric disease subtypes and
CVDs

We employed LDSR (Bulik-Sullivan et al., 2015) to calculate the
genetic correlation (rg) between different psychiatric entities to see
if they represent genetically distinct disease subtypes with unique
genetic architectures. We tested if rg ≠ 0 (assessing genetic over-
lap) and rg ≠ 1 (assessing subtype distinctiveness) to comprehen-
sively characterize genetic relationships. Furthermore, we
explored the genetic correlations between different psychiatric
disorder subtypes and CVDs, including coronary artery disease
(CAD), type 2 diabetes (T2DM), and stroke, highlighting possible
links between these conditions.

MR analysis

MR is a method that leverages genetic variants as ‘instruments’ to
represent the exposure for inferring causal relationships between
risk factors and outcomes.We performedMR to estimate the causal
effects of the studied psychiatric entities on various CVDs, testing
the hypothesis that comorbidity amplifies cardiovascular risk. This
analysis was included to provide clinical and translational insights
into the comorbidities. A two-sample MR design was employed,
using both inverse-variance weighted (MR-IVW) (Bowden, Davey
Smith, Haycock, & Burgess, 2016) and Egger regression (MR-Egger)
(Burgess & Thompson, 2017) approaches. The number of genetic
variants included in the MR analysis may influence the causal
estimates. To ensure the robustness of our findings, we performed
MR at multiple r2 thresholds ( 0:001,0:01,0:05,and0:1), taking SNP
correlations into account.

Psychiatric disorders studied

We applied CombGWAS to examine seven different psychiatric
disorders and obesity, namely: Alzheimer’s disease (AD), attention-
deficit hyperactivity disorder (ADHD), autism spectrum disorder
(ASD), anxiety disorders, insomnia, MDD, obesity, and SCZ. The
datasets used are shown in Supplementary Table S1. Using
CombGWAS, we estimated the effect sizes (ORs), standard errors
(SEs), and corresponding p-values for each disease combination for
genome-wide SNPs.
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Our selection of disorders was guided by a deliberate strategy
focusing on three key criteria, chosen to maximize the clinical and
scientific relevance of our findings (as shown below).

We analyzed the genetic basis for 16 (or 8 pairs) psychiatric
entities, with a primary focus on MDD and SCZ. The psychiatric
entities include ADHD with and without comorbid ASD, MDD
with and without AD, MDD with and without anxiety disorders,
MDD with and without ASD, MDD with and without insomnia,
MDD with and without obesity, MDD with and without SCZ, and
SCZ with and without obesity.

Results

Overview

Table 1 demonstrates the independent significant SNPs (p <5e�08,
r2 < 0.6) and genomic risk loci for the eight comorbid psychiatric

disorders and eight single psychiatric entities (single psychiatric
disorder without a particular comorbid disorder). Our analysis
revealed a total of 954 independent significant SNPs, mapped to
325 genomic risk loci, for the 8 comorbid psychiatric disorders
(Figures 1 and 2, Table 1, and Supplementary Table S2). In
addition, we identified 934 independent significant SNPs mapped
to 328 genomic risk loci for the 8 single psychiatric entities without
a comorbidity.

The identified susceptibility genetic variants were mapped to
genes byMAGMA.We identified both subtype-specific and shared
susceptibility genes, loci, and pathways across psychiatric disorder
subtypes. Supplementary Table S3 provides additional details of the
shared and nonshared genes associated with the psychiatric entities
studied.

Tissue enrichment analysis
We conducted a tissue enrichment analysis using the FUMA
tool, leveraging a precomputed list of differentially expressed
genes (DEGs) across various tissues obtained from GTEx. The
input consisted of significant genes identified in GWASs (via
MAGMA), which were then tested for enrichment among these
DEGs. We view this analysis as hypothesis-generating, as dif-
ferential expression does not necessarily imply a causal role for
the tissue.

Supplementary Figures S1 and S2 show the tissue enrichment
analysis results for all 16 psychiatric entities studied. We
observed that all the entities showed enrichment predominantly
in the brain tissues. Interestingly, the basal ganglia emerged as
the top-enriched tissue for all psychiatric entities involving
ADHD or ASD. Abundant evidence supports its critical role in
maintaining normal motor actions and cognitive functions
(Damasio & Maurer, 1978; Graybiel, 2008; Jin & Costa, 2015).
In a study by Curtin et al. (2018), ADHD was associated with a
2.4-fold increased risk of basal ganglia diseases. Notably, subtype-
specific tissue enrichment was observed across different subtype
pairs. For instance, significant enrichment of brain amygdala was
only observed in ADHD with ASD (Supplementary Figures S1
and S2).

Another intriguing finding is that the cerebellum was the top-
enriched tissue for all disease combinations involving MDD. A
growing body of research has demonstrated its involvement in
impaired cognitive function and emotion dysregulation (Depping,
Schmitgen,Kubera,&Wolf, 2018;Depping et al., 2020;Hoche,Guell,
Vangel, Sherman, & Schmahmann, 2018). Compared to other psy-
chiatric entities involving MDD, the two entities involving obesity

Table 1. Number of identified independent significant SNPs and genomic risk loci for different combinations of psychiatric disorders

First trait
No. of ind.
sig. SNPs Second trait

No. of ind.
sig. SNPs

Loci (first trait only |
second trait only |
shared

Gene (first trait only |
second trait only |
shared

Pathways (first trait only |
second trait only|
shared

ADHD with ASD 20 ADHD without ASD 23 18|11|1 22|49|20 1|9|0

MDD with AD 148 MDD without AD 153 31|47|6 189|411|307 26|3|98

MDD with anxiety 209 MDD without anxiety 139 48|27|25 346|63|643 6|9|97

MDD with ASD 3 MDD without ASD 149 3|54|0 25|74|19 0|104|0

MDD with insomnia 111 MDD without insomnia 111 46|37|2 517/307/263 25|22|81

MDD with obesity 50 MDD without obesity 44 21|21|0 126|271|23 6|87|0

MDD with SCZ 330 MDD without SCZ 146 95|52|0 2054|337|423 48|13|39

SCZ with obesity 83 SCZ without obesity 169 29|48|0 320|1239|517 9|21|100

Disorder selection criteria:

1. High rates of clinical co-occurrence. We prioritized disorders that
frequently co-occur in clinical practice (Bard et al., 2023; Hirschfeld, 2001;
Hours, Recasens, & Baleyte, 2022; Staner, 2010). TheNational Comorbidity
Survey Replication (NCS-R) has consistently demonstrated that a
substantial proportion of individuals with one psychiatric disorder will
meet the criteria for at least one other disorder in their lifetime (Kessler &
Merikangas, 2004). For example, MDD and anxiety disorders were selected
for exceptionally high comorbidity rates (Hirschfeld, 2001; Kessler &
Merikangas, 2004).

2. Significant impact on patient outcomes and treatment. We chose
pairings where the comorbidity is known to exacerbate illness severity
and complicate clinical management (e.g. see Kraus et al., 2023;
McWhinney et al., 2022). The presence of comorbidity between the
selected disorders may be associated with poorer clinical outcomes,
increased functional impairment, and greater healthcare utilization (GBD
2019; Mental Disorders Collaborators, 2022). For example, examining
MDD/SCZ with and without obesity is crucial for understanding factors
that can lengthen psychiatric hospitalizations and worsen long-term
physical outcomes (Kraus et al., 2023; McWhinney et al., 2022).

3. Representation of distinct but overlapping domains of
psychopathology. The selected pairs serve as critical case studies for
understanding the interplay between different, yet often intersecting,
biological and psychological domains (Doherty & Owen, 2014; dos Santos
Durães, Yokomizo, Saffi, & de Almeida Rocca, 2022; Fisher, Dunn, & Dong,
2024). For instance, studying comorbidMDD and SCZ provides amodel for
exploring the shared genetics and neural circuits underlying both
affective and psychotic disorders.
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(i.e. MDDwith obesity andMDDwithout obesity) exhibited a lower
number of enriched brain tissues, with the cerebellar hemisphere
ranked as the top-enriched tissue.

Pathway enrichment analysis
We conducted pathway enrichment analysis using the web tool
ConsensusPathDB (Supplementary Table S4). We observed a

Figure 1. Manhattan plots of GWAS results for 16 psychiatric entities.
Note: ADHD, attention-deficit hyperactivity disorder; ASD, autism spectrum disorder; MDD, major depressive disorder; SCZ, schizophrenia.

Psychological Medicine 5

https://doi.org/10.1017/S0033291725101396 Published online by Cambridge University Press

http://doi.org/10.1017/S0033291725101396
https://doi.org/10.1017/S0033291725101396


Figure 2. Number of shared genomic risk loci, genes, and pathways across eight pairs of subtypes.
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mixture of shared and condition-specific enriched pathways across
different psychiatric entities. For instance, ‘Signaling by Nuclear
Receptors’ was one of the top-enriched pathways shared between
MDD with AD and MDD without AD. In a previous study, Fries,
Saldana, Finnstein, and Rein (2023) have highlighted the critical
role of this pathway in coordinating an organism’s response to
stress, a major risk factor for MDD. Additionally, Mandrekar-
Colucci and Landreth (2011) identified nuclear receptors as a
promising therapeutic target for AD, as they could regulate micro-
glial activation and mitigate the brain’s inflammatory responses.

The cardiolipin biosynthesis pathway was specifically enriched
inMDDwith AD. Alterations in cardiolipin content, structure, and
localization have been reported to be associated with impaired
neurogenesis and neuronal dysfunction (Falabella, Vernon, Hanna,
Claypool, & Pitceathly, 2021), contributing to neurodegenerative
diseases.

Notably, we did not find any common pathways between
ADHD with and without ASD, as well as between MDD with
and without ASD.

We also conducted enrichment analyses based on subtype-
specific genes to elucidate subtype-specific biology (Supplementary
Table S5). For example, neuronal system, nervous system develop-
ment, dopaminergic synapse, and brain-derived neurotrophic fac-
tor signaling pathway are the top-enriched pathways specific to
MDD with SCZ. This finding aligns well with established know-
ledge that both disorders are linked to disruptions in neuroplasti-
city (Angelucci, Brene, & Mathe, 2005; Delva & Stanwood, 2021).

Cell type enrichment analysis
Cell type enrichment analyses were also performed to uncover the
involved cell types for each studied disease combination (Figure 3).
However, since not all cell types were available for analysis in
FUMA, our results should be considered exploratory. We found
that GABAergic neurons were the most enriched cell type most
psychiatric entities. Fogaça and Duman (2019) reported decreased
expression of GABAergic interneuronmarkers in the frontal cortex
could result in depressive-like behaviors. Moreover, impaired
GABAergic neurotransmission has been implicated in patients with
depression, prompting the development of therapeutic strategies
targeting this deficit (Duman, Sanacora, & Krystal, 2019). Notably,
the top-enriched cell types identified for the psychiatric disease
combinations were located in brain tissues. Psychiatric disorder
combinations showed significant immune cell type enrichments
(Supplementary Table S6), consistent with established immune
dysregulation in these disorders (Gibney & Drexhage, 2013;
Iakunchykova, Leonardsen, & Wang, 2024).

Drug enrichment analysis
To further explore the homogeneity and heterogeneity underlying
the studied psychiatric entities, we performed drug enrichment
analysis on the susceptibility gene sets identified for each disease
combination (Supplementary Tables S7 and S8). This analysis is
considered exploratory or hypothesis-generating, as further experi-
mental validations are required. Some enriched drugs were unique to
particular psychiatric entities, while others were shared across dif-
ferent psychiatric entities. For example, chlorprothixene (a typical
antipsychotic) was one of the top-enriched drugs specific to ADHD
andASD. Antipsychotics are often prescribed in ASD (Posey, Stigler,
Erickson,&McDougle, 2008) for irritability and associated behaviors
including aggression and self-injury. Antipsychotics are also some-
times prescribed in ADHD due to other comorbid conditions, espe-
cially behavior problems (Lee, Zhang, & Rose, 2022). Romidepsin

was another top-enriched drug specific toADHDwithASDbased on
subtype-specific genes. Qin et al. (2018) showed its potential in
alleviating social deficits in mouse models. Among all disease com-
binations involving MDD, except for MDDwith ASD, fendiline was
among the top-enriched drugs. Interestingly, a previous study (So,
Chau, Lau, Wong, & Zhao, 2019) suggested fendiline as a promising
repurposing drug for patients with MDD.

Genetic correlation among psychiatric disorder subtypes and
CVDs

We calculated genetic correlations between pairs of psychiatric entities
with andwithout particular comorbid conditions (Table 2). The results
(rg ranging from 0.1664 to 1.0271) revealed moderate- tohigh genetic
correlations in most pairs, suggesting shared genetic architecture. For
instance, MDD with anxiety disorder exhibited a high genetic correl-
ation with MDD without anxiety disorder (rg = 0.9964). Similarly, a
high genetic correlation was also observed between SCZ with and
without obesity (rg = 0.9016). Interestingly, MDD with obesity
only displayed a weak genetic correlation with MDD without
obesity, implying that they may represent distinct biological sub-
types of MDD (rg = 0.1663).

To further investigate the genetic overlap between psychi-
atric entities and CVDs, we analyzed their genetic correlations
by LDSR (Table 3 and Supplementary Table S9). We prioritize
subtype pairs with distinct genetic architectures. As shown in
Table 3, most ‘pairs’ of psychiatric subtypes (i.e. a disorder with
and without a comorbidity) exhibited significantly different
genetic correlations with CVDs, indicating distinct genetic rela-
tionships.

Interestingly, some psychiatric subtypes displayed opposite
genetic correlations with the same CVD. For example, while SCZ
with obesity exhibited a positive genetic correlation with T2DM
(rg = 0.2481), SCZ without obesity demonstrated a negative genetic
correlation with T2DM (rg = �0.1539). Similarly, SCZ with and
without obesity displayed opposing genetic correlations with CAD.
Notably, the genetic correlations between ‘unsubtyped’ (originally
defined) psychiatric disorders and CVDs generally lie between
those for ‘subtyped’ (comorbid or only single) disorders. These
findings highlight the complex interactions between genetic factors
associated with psychiatric entities and CVDs, indicating potential
distinct genetic signatures for different psychiatric subtypes.

Results of MR analysis

MR analysis was conducted to investigate whether a certain psychi-
atric disease combination is causally linked to a significantly higher
or lower risk of cardiovascular outcomes. Most results were consist-
ent across different r2 cutoffs. For simplicity, we primarily report
analysis results at r2 = 0:001,p = 5E�08, which are standard settings
in TwoSampleMR. Table 4 summarizes the results (Supplementary
Table S10 for full results). It is noteworthy that with a binary
exposure, the causal estimate (OR) reflects the average effect on the
outcome associated with a 2.72-fold increase in the prevalence of the
exposure (e.g. an increase in exposure prevalence from 1 to 2.72%)
(Burgess & Labrecque, 2018).

Many studied psychiatric disorder combinations exhibited a
significant causal relationship with increased risks of CVDs.
Importantly, the magnitude of effect sizes varies across different
psychiatric disorder subtypes. For example, both MDD with and
without anxiety were found to be causally linked to significantly
increased CAD risks. The OR of MDD with anxiety on CAD is
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Figure 3. Cell type enrichment analysis results for each studied psychiatric disease combination.
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2:106 MR� IVW,p= 2:35E�05ð Þ , while that of MDD without
anxiety on CAD is 1:108 MR�Egger,p= 3:78E�05ð Þ.

Additionally, we found that comorbid psychiatric disorders
often had stronger causal effects on cardiovascular outcomes than
single disorders. For example, MDD with insomnia was causally
linked to a significantly increased risk of CAD with an OR of
3:721 MR� IVW,p= 1:72E�06ð Þ, while MDD without insomnia
had a much lower OR of 1:054 MR� IVW,p= 2:71E�03ð Þ.

Both obese MDD and obese SCZ, but not nonobese MDD
or SCZ, were found to be causally linked to increased T2DM
risk, highlighting obesity’s role in amplifying CVD liability. Specif-
ically, obese MDD and obese SCZ were linked to T2DM risk with
ORs of 5:418 MR� IVW,p= 3:58E�06ð Þand 1:364 MR�Egger,ð
p= 2:81E�03Þ, respectively. In contrast, nonobese MDD (MR�
Egger,OR = 0:292,p= 9:87E�04 ) and nonobese SCZ (MR�
Egger,OR = 0:948,p= 2:58E�02 ) were associated with signifi-
cantly decreased T2DM risk.

The above results underscore the complex causal relationships
between specific psychiatric disease combinations and various
cardiovascular outcomes.

Discussion

Overview

This study represents a conceptual and methodological advance in
psychiatric genetics, moving beyond the identification of genetic
risk factors of individual disorders to the direct delineation of
clinical heterogeneity. While prior research established that psy-
chiatric disorders share a polygenic architecture, the exact genetic
basis of comorbid disorders has not been investigated systematic-
ally. Our work demonstrates that a specific comorbidity can fun-
damentally alter a disorder’s genetic signature and its relationship
with other health outcomes.

A key innovation of this approach is its ability to reveal clinically
vital genetic relationships that are undetectable with standard
methods. For instance, our analysis shows that the genetic risk
for T2DM is positively correlated with SCZ with comorbid obesity,
yet negatively correlated with SCZ without obesity. This novel
finding provides proof of concept for a genetically informed nos-
ology, suggesting that ‘metabolically normal’ and ‘metabolically
abnormal’ SCZ may be distinct biological subtypes. The same also
applies to MDD. This distinction has immediate implications for
patient stratification and the clinicalmanagement of cardiovascular
risk. By demonstrating this principle across multiple disorder pairs,

we also revealed distinct loci, divergent health relationships, and
unique pathway enrichments for various psychiatric disorder com-
binations. These findings are largely unreported in previous studies.
This work provides a roadmap toward precision psychiatry, laying
the foundation for subtype-specific biomarkers and personalized
therapies.

Unique genetic underpinnings of psychiatric disorder subtypes

A key finding of this study is the demonstration of distinct genetic
underpinnings of psychiatric disorder subtypes. The proportion of
subtype-specific loci/SNPs varies across psychiatric entity pairs,
with the smallest proportion exceeding 50%.We observed a slightly
different pattern for subtype-specific genes, with proportions ran-
ging between 8.9 and 97.5%, but most subtypes showed over 50%
unique genes. These genes provide insights into the subtype-
specific biological mechanisms and pathophysiology. For instance,
KDM4A and SEMA6D emerged as top susceptibility genes only in
ADHD without ASD, indicating the unique genetic underpinnings
for ADHD subtypes. In a recent study, Guo et al. (2024) revealed
KDM4A as a negative regulator of engram formation for memory
separation. These subtype-specific susceptibility genes could be
utilized in the differentiation between subtypes and inform targeted
treatment strategies.

Furthermore, we performed a comprehensive analysis of enriched
pathways, cell types, and drugs based on the GWAS results. These
enrichment analyses shed light on the potential biological mechan-
isms and pathways involved in the development andmanifestation of
specific subtypes. We also revealed some interesting patterns. For
example, although we observed high proportions of subtype-specific
genes for MDD with insomnia and MDD without insomnia, the
proportion of subtype-specific pathways was lower. These findings
suggest that a high proportion of subtype-specific genes does not
always translate to a similarly high proportion of unique pathways.
For example, it can possibly be due to different combinations of genes
corresponding to different pathways.

Genetic correlations among disease subtypes and CVDs

The majority of disease subtypes exhibited high (rg ≥ 0.8) or
moderate (0.4 ≤ rg < 0.8) correlation with one another. Among
the eight pairs of subtypes examined, only one pair, that is, MDD
with obesity versus MDD without obesity, demonstrates a weak
correlation. Despite their high genetic correlations, most subtypes
exhibited distinct genetic correlations with the same CVD. Some

Table 2. Genetic correlation between different psychiatric entities

First trait Heritability Second trait Heritability rg p (rg = 0) p (rg = 1)

MDD with AD 0.0813 (0.0047) MDD without AD 0.0959 (0.0038) 1.0255 (0.0265) 0 3.36E�01

MDD with anxiety 0.2273 (0.0092) MDD without anxiety 0.2044 (0.0082) 0.9964 (0.001) 0 3.18E�04

SCZ with obesity 0.1718 (0.0058) SCZ without obesity 0.2693 (0.0088) 0.9016 (0.0133) 0 1.38E�13

ADHD with ASD 0.2230 (0.0154) ADHD without ASD 0.2507 (0.0160) 0.8167 (0.0163) 0 0

MDD with insomnia 0.1216 (0.0044) MDD without insomnia 0.0993 (0.004) 0.7915 (0.0117) 0 0

MDD with ASD 0.1210 (0.0069) MDD without ASD 0.2704 (0.0113) 0.6830 (0.0214) 6.50E�224 0

MDD with SCZ 0.2296 (0.0074) MDD without SCZ 0.058 (0.0041) 0.5713 (0.0172) 9.05E�243 0

MDD with obesity 0.1936 (0.0083) MDD without obesity 0.2183 (0.0091) 0.1663 (0.0309) 7.08E�08 0

Note: rg indicates the calculated genetic correlation between two disease ‘subtypes’. p (rg = 0) refers to the p-value by testing whether the rg differs from zero; p (rg = 1) refers to the p-value by
testing whether the rg differs from 1.
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pairs even displayed entirely opposing genetic correlations, par-
ticularly those subtype pairs that involved obesity. These findings
suggest that the psychiatric disorder combinations we studied may

represent biologically distinct subtypes with both shared and
unique genetic signatures.

Evidence indicates that normal weight may protect against
CVDs (Powell-Wiley et al., 2021), potentially counteracting the
elevated risks of CVD conferred by psychiatric disorders. This
aligns with the observed opposing or weak genetic correlations
between nonobese psychiatric disorders and CVD.

Varying causal effects of different psychiatric disorder subtypes
on cardiovascular outcomes

While many psychiatric disorder combinations showed increased
CVD risks, comorbid disorders typically demonstrated stronger
causal effects than single disorders. This highlights the importance
of considering the cumulative impact of comorbid disorders on
cardiovascular health.

Of note, obese and nonobeseMDD/SCZ showed opposite causal
effects on T2DM risk. Obesity in MDD or SCZ enhances CVD risk,
informing targeted interventions (e.g. weight management). These
findings underscore the need for more comprehensive and person-
alized screening, prevention, and treatment strategies that address
both psychiatric and cardiovascular conditions in individuals with
comorbidities.

Integrated genetic insights from multiple levels of analysis

In this study, we employed a comprehensive series of complemen-
tary analyses to elucidate both shared and distinct genetic architec-
tures across psychiatric disorder subtypes. Ourmultilevel approach,
encompassing GWAS, gene, pathway, cell type, drug enrichment
analyses, genetic correlation, and MR, provided an in-depth under-
standing by revealing both convergent and divergent biological
mechanisms underlying psychiatric disorder combinations.

For instance, several lines of evidence converged to highlight
specific biological mechanisms for subtypes of ADHD. Both gene-
based analyses (implicatingKDM4A) (Guo et al., 2024) and pathway
analyses (implicating, e.g. synaptic vesicle cycle) (Wang et al., 2025)
independently pointed toward memory-related mechanisms in
ADHD without ASD. This convergence across different analytical
levels strongly suggests thatmemory formation and related processes
may represent a distinct etiological pathway for this subtype.

Notably, our multimethod approach also revealed instructive
divergences between analytical findings, which are equally crucial
for a comprehensive understanding. For example, while genetic cor-
relation analysis indicated a high degree of genetic similarity between
MDD with AD and MDD without AD ( rg = 1:0255,SE = 0:0265),
the MR analysis revealed significantly different causal effects on
diabetes mellitus ( OR = 0:712,p= 2:14E�05 for MDD with AD
versus OR = 1:224,p= 4:23E�03 for MDD without AD). This
example illustrates that conditions sharing substantial underlying
genetic risk factors (high rg)may nonetheless exert differential down-
streamcausal effects on other health outcomes. It should be noted that
even if rg is high, the actual effect sizes (beta) of SNPs for traits 1 and
2 can still differ, for example, when the LD structure and allele
frequencies differ across the two cohorts, or when heritabilities differ
between the two traits.

Furthermore, the contrasting causal effects observed in the
MR analysis for obese versus nonobese MDD/SCZ on T2DM risk
(e.g. obese MDD increasing T2DM risk while nonobese MDD
decreasing it) provide another example of how the same psychi-
atric disorder may have substantially different clinical conse-
quences depending on the comorbidity status, which can be
fully appreciated by integrating genetic correlation and MR
findings.

Table 3. Genetic correlation between psychiatric entities and cardiovascular
diseases

First trait Second trait rg p

SCZ with obesity CAD 0.1014 (0.0247) 3.89E�05

SCZ CAD �0.0239 (0.0229) 2.98E�01

SCZ without obesity CAD �0.0709 (0.0243) 3.50E�03

SCZ with obesity Stroke 0.1189 (0.0369) 1.2E�03

SCZ Stroke 0.0476 (0.0332) 1.52E�01

SCZ without obesity Stroke 0.0549 (0.0382) 1.50E�01

SCZ with obesity T2DM 0.2481 (0.0226) 4.42E�28

SCZ T2DM �0.0471 (0.0177) 7.7E�03

SCZ without obesity T2DM �0.1539 (0.0382) 6.79E�12

MDD with obesity CAD 0.2795 (0.0302) 2.40E�20

MDD CAD 0.1988 (0.025) 1.92E�15

MDD without obesity CAD 0.0323 (0.0253) 2.02E�01

MDD with obesity Stroke 0.1651 (0.0396) 3.03E�05

MDD Stroke 0.0717 (0.0416) 8.46E�02

MDD without obesity Stroke �0.0279 (0.0419) 5.05E�01

MDD with obesity T2DM 0.5041 (0.0273) 4.48E�76

MDD T2DM 0.1395 (0.0212) 4.72E�11

MDD without obesity T2DM �0.1895 (0.0273) 3.47E�12

MDD without insomnia CAD 0.1868 (0.0271) 5.49E�12

MDD CAD 0.1988 (0.025) 1.92E�15

MDD with insomnia CAD 0.2564 (0.0275) 1.13E�20

MDD without SCZ CAD 0.2009 (0.0247) 4.57E�16

MDD CAD 0.1988 (0.025) 1.92E�15

MDD with SCZ CAD 0.0432 (0.0228) 5.84E�02

MDD without ASD CAD 0.2065 (0.0269) 1.49E�14

MDD CAD 0.1988 (0.025) 1.92E�15

MDD with ASD CAD 0.0369 (0.0326) 2.57E�01

MDD without ASD Stroke 0.0766 (0.0429) 7.43E�02

MDD Stroke 0.0717 (0.0416) 8.46E�02

MDD with ASD Stroke �0.0587 (0.0515) 2.54E�01

ADHD without ASD CAD 0.2815 (0.0344) 2.67E�16

ADHD CAD 0.2793 (0.0342) 2.99E�16

ADHD with ASD CAD 0.1508 (0.0355) 2.19E�05

ADHD without ASD Stroke 0.2131 (0.0543) 8.72E�05

ADHD Stroke 0.2098 (0.0543) 1.00E�04

ADHD with ASD Stroke 0.0752 (0.0594) 2.06E�01

ADHD without ASD DM 0.3220 (0.0277) 2.90E�31

ADHD DM 0.3205 (0.0275) 1.86E�31

ADHD with ASD DM 0.2326 (0.0281) 1.11E�16

Note: rg indicates the calculated genetic correlation between two psychiatric disorder
subtypes and cardiovascular diseases. Results for MDD + AD and MDD + ANX are not included
due to space limits. Bold values indicate a p-value of ≤ 0.05, while italic values represent a
p-value between 0.05 and 0.1. We included full results in Supplementary Table S9a.
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Limitations

This study has several limitations. First, the GWAS summary
statistics used were primarily derived from European samples. As
such, some results may be population-specific and may not be
generalizable to non-European groups. This limitation may be
mitigated with the availability of summary statistics from other
ethnic groups. While our analysis provides valuable insights into
the genetic signatures underlying different psychiatric disease sub-
types, further exploration is required to validate these findings.
Replication studies using independent cohorts and individuals with
comorbid conditions, as well as more diverse populations, would
enhance the robustness and generalizability of the observed genetic
associations. Besides, our study only included a limited number of
psychiatric disease combinations. Also, the biological mechanisms
underlying the psychiatric disorder subtypes will require further
experimental studies.

Another limitation is that substantial differences in heritabilities
and sample sizes between the trait pairs may influence the results.
Large disparities between traits could disproportionately bias the
contribution toward traits with higher heritabilities or sample sizes.
For example, given two traits (A and B), if A is muchmore heritable

and the sample size is larger, the genetic architecture of A + B
(comorbidity) may be biased toward that of trait A itself. This
concern may be particularly relevant for highly heritable disorders
with large available sample sizes, such as SCZ.

Conclusions

To conclude, our study successfully identified the genetic basis and
risk genes for eight pairs of psychiatric disease subtypes. Secondary
analyses, including pathway, cell type, and drug enrichment ana-
lyses, provided further biological insights into the pathophysiology
of these disorder subtypes. Genetic correlation and MR analyses
shed light on the links of these subtypes with various CVDs, which
may have important clinical implications. Furthermore, the iden-
tified nonshared susceptibility genes may provide a way to differ-
entiate the different ‘subtypes’.

Future research should incorporate data from diverse ethnic
groups, conduct replication studies, and perform functional inves-
tigations to enhance the robustness and generalizability of the
observed genetic associations. By elucidating the genetic basis of a
wide variety of psychiatric disorder subtypes, our study paves the

Table 4. MR analysis results for cardiovascular outcomes

Exposure Outcome
OR (2.72 times of

exposure prevalence) p Exposure Outcome
OR (2.72 times of

exposure prevalence) p

ADHD with ASD CAD 1.350 2.04E�01 ADHD without ASD CAD 1.047 2.71E�01

ADHD with ASD DM 0.312 8.05E�02a ADHD without ASD DM 1.102 1.58E�05

ADHD with ASD Stroke 1.680 4.84E�02 ADHD without ASD Stroke 1.083 4.76E�02

MDD with AD CAD 1.310 1.97E�10 MDD without AD CAD 0.594 1.1.3E�01a

MDD with AD DM 0.712 2.14E�05a MDD without AD DM 1.224 4.23E�03

MDD with AD Stroke 1.059 3.87E�01 MDD without AD Stroke 1.037 5.36E�01

MDD with anxiety CAD 2.106 2.35E�05 MDD without anxiety CAD 1.108 3.78E�05

MDD with anxiety DM 1.917 3.03E�03 MDD without anxiety DM 1.109 3.76E�04

MDD with anxiety Stroke 1.537 5.79E�02 MDD without anxiety Stroke 1.045 1.56E�01

MDD with ASD CAD 1.088 1.69E�01 MDD without ASD CAD 1.184 3.60E�05

MDD with ASD DM 1.007 9.82E�01 MDD without ASD DM 1.166 1.99E�03

MDD with ASD Stroke 1.062 5.90E�01 MDD without ASD Stroke 1.058 2.70E�01

MDD with insomnia CAD 3.721 1.72E�06 MDD without insomnia CAD 1.054 2.71E�03

MDD with insomnia DM 2.115 1.59E�02 MDD without insomnia DM 1.056 7.31E�03

MDD with insomnia Stroke 1.340 2.67E�01 MDD without insomnia Stroke 1.027 2.46E�01

MDD with obesity CAD 1.365 1.81E�07 MDD without obesity CAD 0.919 1.94E�01

MDD with obesity DM 5.418 3.58E�06a MDD without obesity DM 0.292 9.87E�04a

MDD with obesity Stroke 1.078 2.09E�01 MDD without obesity Stroke 0.943 8.52E�02

MDD with SCZ CAD 1.059 2.28E�01 MDD without SCZ CAD 1.211 4.64E�05

MDD with SCZ DM 0.964 3.63E�01 MDD without SCZ DM 1.182 3.52E�03

MDD with SCZ Stroke 1.031 4.92E�01 MDD without SCZ Stroke 1.061 3.28E�01

SCZ with obesity CAD 1.117 1.83E�02 SCZ without obesity CAD 1.156 2.91E�02a

SCZ with obesity DM 1.364 2.81E�03 SCZ without obesity DM 0.948 2.58E�02

SCZ with obesity Stroke 1.106 6.94E�02 SCZ without obesity Stroke 1.009 5.43E�01

Note: MR analysis results were primarily based on MR-IVW.
aThe causal analysis results were derived from MR-Egger instead of MR-IVW due to the presence of imbalanced horizontal pleiotropy, as indicated by a significant Egger intercept. Since the
exposure is binary, the OR represents the average effect to the outcome if the exposure prevalence (prevalence) is increased by 2.72 times. Bold values indicate a p-value of ≤ 0.05, while italic
values represent a p-value between 0.05 and 0.1.
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way for the development of personalized treatment and preventive
strategies for individuals affected by these complex disorders.

Supplementary material. The supplementary material for this article can be
found at http://doi.org/10.1017/S0033291725101396.
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