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ON THE DISTRIBUTION OF SQUARE-FREE NUMBERS
C. HOOLEY

1. Introduction. Erdost [1] has shown that, if the square-free numbers in

ascending order be denoted by si, s2, ..., 8, ..., thenfor0 =y <2
Z (Snt1 — S2)" ~ B(y)x
Sn+1=T

as x > 0. In this paper we shall extend this result by proving that the
asymptotic formula in fact holds for the wider range 0 = v < 3.

Similar results have been obtained previously by the author in respect of
both the sequence of numbers expressible as the sum of two squares and also
sequences of numbers relatively prime to given large integers, although the
method used here differs from that of the earlier papers [2; 3]. Our result may
also be compared with the inequality

Pn+152 P?’L

that has been obtained by Selberg on the Riemann hypothesis [6].

The method here admits of an immediate generalization for the treatment
of k-free numbers, the corresponding asymptotic formula being stated without
proof in Theorem 2 at the end of the paper. When £ = 3, however, it is possible
to extend the analysis a little further in order to widen again the allowable
range of v in terms of k. Since it would not be appropriate to give the details
here, an account of this development will be reserved for a future occasion.

2. Notation. The letters d, /, m, n, and v are positive integers; 7, j, and
u are non-negative integers; p is a (positive) prime number.

The letter x denotes a variable that is to be regarded as tending to infinity,
all appropriate inequalities that are true for sufficiently large x being assumed
to hold.

The letter ¢ with subscript is a positive absolute constant; the constants
implied by the O-notation are absolute, being, in particular, independent of 7
in section 5; on the other hand, the passage to the limit as ¥ — o0 implied
by the o-notation is not necessarily uniform with respect to any other para-
meters involved.

Received June 22, 1972,
tAlthough Erds only considers the case v = 2, his method is immediately applicable to the
case ) =y £ 2.
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3. The initial inequality. Let N, = N,(x) be the number of intervals
Spt1 — S, of length [ for which s,41 = x, and define the function f(m) by

falm)y =3 1,

p2|m,p>c1TlogT

wherec; = 1/100 and T° < x is any integer exceeding a sufficiently large positive
absolute constant c.. Then in this section we show that an inequality for a
sum involving N; can be expressed in terms of fr(m).

At the very beginning we follow Erdos (1] by considering, for any integer
!l = T, the integers in any interval of the form M < m < M + [ that are
divisible by the square of at least one prime p such that p < ¢,7 log T. These
integers do not in number exceed

2 (iz + 1) > Lt r@llog T)
p=c1TlogT P P

p<c1TlogT

( + Z ot 1)) + w(c:T log T)

r=2

-1

IIA
PR

We deduce that, if s,41 — s, = [, then there are at least /8 integers between
s, and s,,; that have the property that they are divisible by the square of a
prime p with p > ¢;T log T, since all numbers between consecutive square-free
numbers are divisible by the square of some prime.

Next we consider the  — T intervals of the form M < m < M + T which
consist entirely of integers lying between given consecutive square-free
numbers differing by .. Then, for [ = 32T, at least (I — T")/32 of these intervals
contain at least 7/32 integers divisible by the square of a prime exceeding
T log T'. For, were this not so, then at least 31(! — 7°)/32 intervals would
contain fewer than 7°/32 such integers, and it would follow that

?’—;(z T) 5 T+—(l—T)T_ (éz—n)r

as each of at least /8 — 27T of these integers is included in 7" different intervals

of length 7". But
1

1
sl—2rz3 (-1

for I = 327, and the falsity of our assertion would therefore imply the impos-
sible inequality 63/32% > 1/16.
To relate this to the function fz(m) we define Fr(n) by

FT(”) = Z fT(m)r

n=m<nt+T
and consider the sum

(1) 2 Fi().
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Plainly, for I = 327 we have Frp(n) = 7/32 for at least (I — 7))/32 > 1/64
integers n such that both 7 and # 4+ T — 1 lie between two consecutive square-
free integers distance / apart. The sum (1) therefore counts at least ¢3/7? for
each interval s,.; — s, of length [/, and we deduce that

(2) csT* Mor(x) < Z Fr'(n),

n_z—

where M,(x) is defined for any integer v by

M,(x) = >, N,

(24

In the next section we pass on to the problem of obtaining an upper bound
for the sum on the right-hand side of this inequality.

4. The sum 3 ,<, rF;?(n). To estimate thissum we introduce the additional
functions

gx(m) = Z 1

p?lm X<p<2X

and

Grx(n) = E gx(m),

nE=m<n+T
where throughout it will be assumed that n < x — 7" and
(3) T < xi=b

for some 6 > 0.
To find an inequality for Fr(n) we write

1 1 1
FT(n) = Z 1 1 i X s (n),
xi<at,iz0 X ¢ log* X,

where X; = ¢,2'7T log T, and then infer from the Cauchy-Schwarz inequality

that
- 1 1 1
pro 5 ol 3 gty 7) (L T, % on XG0
= T% log T X;;é‘ig()Xl log X‘LGT.Xz (n)’
Therefore
“) n;z:_ Fr'(n) < _f%_l:)?f;(%:poX log in;_ Gr.x; (n).

We suppress temporarily the subscript from X; in order to facilitate the
consideration of the inner sum, although it will still be assumed that
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al log T < X < x*. We have

2
Z GT,X2(n) = 2 ( Z gx(m))
n=a—T n<z—T ‘\n=m<n+T
=T Z< gx (m) + 2 ;T (T —7r) Z_: gx(m)gx(m + r)
STE e'm+20 5 5 gelmexln+ 1)
) = T(R(x,X) + 2S(, X, T)), say.
An estimate for R(x, X) is easily derived. We have from the definition of
gx(m) that A
R(x,X) £ X ( D) 1)
m=z mﬂl:rf?,’z;:;%n,
x x
B z;( |:P2:| + p;m I:PIZP22]
P1,p2>X
©) <x X —1-+x( )y i)2=0(——x——)
S SR Xlog X/’

An estimate for S(x, X, T°) could be obtained by following a similar method.
Since this would not yield sufficiently precise bounds, we adopt instead a
method that utilises an elementary principle in the theory of diophantine
approximation. The sum S(x, X, T°) does not exceed the number of solutions
in primes p1, P2 and integers [y, l; of the inequality

0 < po¥ls — p 2l < T
for which ps?ls < x and X < py, p2 £ 2X. Since these conditions imply that
I, ls < x/X? and (I, L) < T, we may write 4 = dl/,l, = dly, where
(/,1Y) =1 and d < My, = min(x/X? T"). Therefore, substituting for
l1, 2 and then suppressing superscripts, we have

(7) S, X, 7)< Y, VixX,T;d),

<My

where V(x, X, T'; d) is the number of solutions in /1, s, p1, p2 simultaneously
satisfying the conditions

8) 0 < po2ly — pi2ly < T/d; poily < x/d,
(9) (lly l2) = 1;
(10) X < p1, p2 £ 2X.

We shall find two estimates for V(x, X, T; d), the estimate to be chosen
for substitution in (7) depending on the value of d relative to x, X, and T.
Firstly we have
(11) V(.’)C,X, T’d) = Z Vll,lz(l),

u, l2<z/dx?
(1, 102)=1
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where V7,0 =V, ,®(x, X, T;d) is, for given I, l,, the number of
solutions of (8) and (10) in primes p;, p2. For any such solution we have

and therefore

12) b1 T T

oot et r
<\ T p S dipipy < ALX

Hence, for given [y, [5, all ratios p1/ps lie in a fixed interval of length not exceed-
ing T'/dl,X?. Also, because X > T'/d implies that p; # p,, different solutions
in py, p2 always correspond to different ratios p1/ps. Since two different values
of p1/pe. are at least 1/4X? apart, we deduce that

Vau® = 2L 4 oq),

= dl
and then from this and (11) that

Vi, X, T;d) = 0 (T )> 1)+0( )> 1)
d un,53uxt h i, 12<z/dX?

(12) - o(ﬁﬁg—x) + 0( - )
- d2X2 2X'4
However, we also have that
(13) Ve, X, T;d) = 2 Vo',
X<p1,p252X

where V,, 5P = V0P (%, T; d) is, for given py, ps, the number of solutions
in I3, I of (8) and (9). Next, writing A; = 27, we consider, for each j such that
A; < x/dX?, only those solutions for which

A S5 < 24,
Any such solution satisfies

b_p’_ T _ T
Iy~ p T dlhp® T dAXY?

and two different solutions give rise to two different ratios lo/l; at least 1/4A ;2
apart. Hence the number of these solutions is at most

4T A,
X2

and therefore, summing over j, we have

‘4 0(1),

Vm,m@) = 0( 2X4) + O(log x)
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for pi1, p2 > X. Finally from this and (13) we have

Ve, X, T;d) = 0{(%—% + log x) > 1}

X<p1,p252X

Tx X?log x)
(14) - O(dez log X) T O( log °X )’
which furnishes us with the second estimate for V(x, X, T'; d) that we require.
To decide which estimate for V(x, X, T; d) should be used for each value
of d in (7) we observe that it suffices to compare the second terms in the right-
hand sides of (12) and (14), since the first terms in these are nearly the same.
As these second terms are almost equal for d = x/X?3, the method of choosing
between (12) and (14) and the consequent estimates for S(x, X, I") are as
follows.

(i) If X = %, then we take (12) for all d in the summation. This gives
Txlogx & — 1
St X, 1) = O(—ng =3 ) + 0(X4 2 d2)

5
2
03 - o) 4 ()

since T < «i-3,
(i) If (x/T)% £ X < &%, then we take (14) for d < x/X3 and (12) for
x/X3<d < T,since T' < X < x/X?. Therefore

Tx 1 - 1 1
s -0 5 3) ol 5,1+l 5, 3)

azixs STIX
. A Txlog x) (ﬁ)

since X /T = x*%/3.
(i) e Tlog T £ X < (x/T)}, then we take (14) for d < T. In this case

T > X%l
St X, T) = (Xﬁoz % X dz) +0( og X 1)

a<T
_ Tx X’ log x)
an = O(X2 fog 2X) + 0( Tog X

by a simple comparison of orders of magnitude.
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Next by (6) we see that the estimates provided by (15), (16), and (17) hold
in respect of not only S(x, X, 7°) but also the coefficient of 7" in the right-hand
side of (5). Therefore, by this and (4), we have

B e o {3 b+ 5,

x.ZomtXilog ' X, x2Gnt X4

n=x—T
X 2 _1_) (T§x%]ogx - i—!—l)
(18) N O(log T ;] 2, +0 log T ?:“o 2%
x
= 0(1';;7)

which is the estimate required for the application of (2) in the coming section.

5. The theorem and its generalisation. To complete the proof of the

theorem we require the following two lemmata, due, respectively, to Richert [5]
and Mirsky [4].

LEMMA 1. We have, for s;+1 < x, that
Srp1 — S, = O(x?° log x).
LeMMA 2. For any given | we have
Ni(x) = A()x + o(x).

Let v be a real constant such that 0 < y < 3. Then, by Lemma 1, we have
(19) El: NI = ; NI+ <Z< NI = D1+ Do say,
=1 N u

where 7 is a given integer exceeding 32¢, and where u = ¢ex?? log x for some
sufficiently large constant ce. In this case

(20) di=x Z; AWM + o(x)

by Lemma 2. Next we infer from (2) and (18) that

M,,(x)=0( o )

v’ log v

for » < v < u on account of the inequalities satisfied by 7 and #. Thereforef

2= 0( 2 OMz"n(x)@“n)*_’)

2t n<lu,uz
= 1
21 = O( M — 970 )
0 * 20 T og )

x
- O(log 77)'

tOnly the terms corresponding to u = 0 need be used for the case 0 = v £ 1.
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We conclude from (19), (20), and (21) that

1 v ; 1
> Zl NJ = l; A + 0(1) +o(logn).

The final result is now almost immediate. We have

lim % > le’l !
e T =3 4+ o(————)
1 Z Nll7§ i=n IOg"/

lim2

T X i

from which firstly follows the convergence of Y 51 4 (I)I*. Denoting the sum
of the latter series by B(y), we then let 5 — 0 and obtain

lim S N = B(y).

ZT5;m X l

We have thus proved the following theorem.

THEOREM 1. Let the square-free numbers in ascending order be denoted by

S1yS2 <« ySuy ... - Lhen, for 0 = v < 3, we have
> (Sws1— 8)" ~ B(y)x
Sn+1=7
as x — oo,

As stated in the introduction this theorem is a special case of the next
theorem, which can be established by means of a routine generalisation of the
above proof.

THEOREM 2. Let the k-free numbers (k > 1) in ascending order be denoted by

s1®, 5:® L s, B oL Then, for 0 £ v = k + 1, we have
) &) Y
2 Gant® = 5P ~ By(y)x
sna1 ()<
as x — 00,
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