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1. Introduction. The aim of the present paper is to describe connected Kähler
surfaces (M, g, J) admitting a global, two-dimensional, J-invariant distribution D
having the following property: The holomorphic curvature

K(π ) = R(X, JX, JX, X),

of any J-invariant 2-plane π ⊂ TxM, where X ∈ π and g(X, X) = 1, depends only on
the point x and the number |XD| = √

g(XD, XD), where XD is an orthogonal projection
of X on D. In this case we have

R(X, JX, JX, X) = φ(x, |XD|),

where φ(x, t) = a(x) + b(x)t2 + c(x)t4 and a, b, c are smooth functions on M. Also
R = a� + b� + c� for certain curvature tensors �,�,� ∈ ⊗4

X∗(M) of Kähler
type. The investigation of such manifolds, called QCH Kähler manifolds, was started
by Ganchev and Mihova in [9, 10]. In our paper [12] we used their local results
to obtain a global classification of such manifolds under the assumption that
dim M = 2n ≥ 6. By E we shall denote the two-dimensional distribution which is
the orthogonal complement of D in TM. In the present paper, we show that a
Kähler surface (M, g, J) is a QCH manifold with respect to a distribution D if
and only if is a QCH manifold with respect to the distribution E . We also prove
that (M, g, J) is a QCH Kähler surface if and only if the anti-selfdual Weyl tensor
W− is degenerate and there exist a negative almost complex structure J which
preserves the Ricci tensor Ric of (M, g, J) i.e. Ric(J., J.) = Ric(., .) and such that
ω = g(J., .) is an eigenvector of W− corresponding to simple eigenvalue of W−.
Equivalently (M, g, J) is a QCH Kähler surface iff it admits a negative almost complex
structure J satisfying the Gray second condition R(X, Y, Z, W ) − R(JX, JY, Z, W ) =
R(JX, Y, JZ, W ) + R(JX, Y, Z, JW ). In [3] Apostolov, Calderbank and Gauduchon
have classified weakly selfdual Kähler surfaces, extending the result of Bryant who
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classified selfdual Kähler surfaces [1]. Weakly selfdual Kähler surfaces turned out to
be of Calabi type and of orthotoric type or surfaces with parallel Ricci tensor.

We show that any Calabi type Kähler surface and every orthotoric Kähler surface
is a QCH manifold. In both cases the opposite complex structure J is conformally
Kähler. We also classify locally homogeneous QCH Kähler surfaces.

2. Almost complex structure J. Let (M, g, J) be a four-dimensional Kähler
manifold with a two-dimensional J-invariant distribution D. Let X(M) denote the
algebra of all differentiable vector fields on M and �(D) denote the set of local
sections of the distribution D. By ω we shall denote the Kähler form of (M, g, J)
i.e. ω(X, Y ) = g(JX, Y ). Let (M, g, J) be a QCH Kähler surface with respect to
J − invariant two-dimensional distribution D. Let us denote by E the distribution
D⊥, which is a two-dimensional, J-invariant distribution. By h, m respectively we
shall denote the tensors h = g ◦ (pD × pD), m = g ◦ (pE × pE ), where pD, pE are the
orthogonal projections on D, E respectively. It follows that g = h + m. Let us define
almost complex structure J by J |E = −J|E and J |D = J|D. For every almost Hermitian
manifold (M, g, J) the selfdual Weyl tensor W+ decomposes under the action of the
unitary group U(2). We have

∧∗ M = � ⊕ LM where LM = [[
∧(0,2) M]] and we can

write W+ as a matrix with respect to this block decomposition

W+ =
(

κ
6 W+

2
(W+

2 )∗ W+
3 − κ

12 Id|LM

)
,

where κ is the conformal scalar curvature of (M, g, J) (see [2]). The selfdual Weyl tensor
W+ of (M, g, J) is called degenerate if W2 = 0, W3 = 0. It means that the selfdual
Weyl tensor of four-manifold (M, g) has at most two eigenvalues as an endomorphism
W+ :

∧+ M → ∧+ M. We say that an almost Hermitian structure J satisfies the
second Gray curvature condition if

R(X, Y, Z, W ) − R(JX, JY, Z, W ) = R(JX, Y, JZ, W )

+R(JX, Y, Z, JW ),

which is equivalent to Ric(J, J) = Ric and W+
2 = W+

3 = 0. Hence (M, g, J) satisfies
the second Gray condition if J preserves the Ricci tensor and W+ is degenerate. We
shall denote by Ric0 and ρ0 the trace free part of the Ricci tensor Ric and the Ricci
form ρ respectively. An ambiKähler structure on a real four-manifold consists of a pair
of Kähler metrics (g+, J+, ω+) and (g−, J−, ω−) such that g+ and g− are conformal
metrics and J+ gives an opposite orientation to that given by J− (i.e the volume elements
1
2ω+ ∧ ω+ and 1

2ω− ∧ ω− have opposite signs).

3. Curvature tensor of a QCH Kähler surface. We shall recall some results from
[9]. Let

R(X, Y )Z = ([∇X ,∇Y ] − ∇[X,Y ])Z, (1)

and let us write

R(X, Y, Z, W ) = g(R(X, Y )Z, W ).
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If R is the curvature tensor of a QCH Kähler manifold (M, g, J), then there exist
functions a, b, c ∈ C∞(M) such that

R = a� + b� + c�, (2)

where � is the standard Kähler tensor of constant holomorphic curvature i.e.

�(X, Y, Z, U) = 1
4

(g(Y, Z)g(X, U) − g(X, Z)g(Y, U) (3)

+g(JY, Z)g(JX, U) − g(JX, Z)g(JY, U) − 2g(JX, Y )g(JZ, U)),

the tensor � is defined by the following relation

�(X, Y, Z, U) = 1
8

(g(Y, Z)h(X, U) − g(X, Z)h(Y, U) (4)

+g(X, U)h(Y, Z) − g(Y, U)h(X, Z) + g(JY, Z)h(JX, U)

−g(JX, Z)h(JY, U) + g(JX, U)h(JY, Z) − g(JY, U)h(JX, Z)

−2g(JX, Y )h(JZ, U) − 2g(JZ, U)h(JX, Y )),

and finally

�(X, Y, Z, U) = −h(JX, Y )h(JZ, U) = −(hJ ⊗ hJ )(X, Y, Z, U). (5)

where hJ (X, Y ) = h(JX, Y ). Let V = (V, g, J) be a real 2n dimensional vector space
with complex structure J which is skew-symmetric with respect to the scalar product g
on V . Let assume further that V = D ⊕ E where D is a two-dimensional, J-invariant
subspace of V , E denotes its orthogonal complement in V . Note that the tensors
�,�,� given above are of Kähler type. It is easy to check that for a unit vector X ∈
V �(X, JX, JX, X) = 1,�(X, JX, JX, X) = |XD|2, �(X, JX, JX, X) = |XD|4, where
XD means an orthogonal projection of a vector X on the subspace D and |XD| =√

g(XD, XD). It follows that for a tensor (2) defined on V we have

R(X, JX, JX, X) = φ(|XD|),
where φ(t) = a + bt2 + ct4.

Let J, J be Hermitian, opposite orthogonal structures on a Riemannian four-
manifold (M, g) such that J is a positive almost complex structure. Let E = ker(JJ −
Id),D = ker(JJ + Id) and let the tensors �,�,� be defined as above where h =
g(pD, pD). Let us define a tensor K = 1

6� − � + �. Then K is a curvature tensor,
b(K) = 0, c(K) = 0 where b is Bianchi operator and c is the Ricci contraction. Define
the endomorphism K :

∧2 M → ∧2 M by the formula g(Kφ,ψ) = −K(φ,ψ) (see (1)
and note that we use convention R(X, Y, Z, W ) = g(R(X, Y )Z, W )). Then we have

LEMMA 3.1. The tensor K satisfies K(
∧+ M) = 0. Let φ,ψ ∈ ∧− M be the local

forms orthogonal to ω such that g(φ,ψ) = g(ψ,ψ) = 2 and g(φ,ψ) = 0. Then K(ω) =
1
3ω, K(φ) = − 1

6φ, K(ψ) = − 1
6ψ .
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Proof. A straightforward computation. �
In the special case of a Kähler surface (M, g, J) we get for a QCH manifold

(M, g, J)

PROPOSITION 3.1. Let (M, g, J) be a Kähler surface which is a QCH manifold with
respect to the distribution D. Then (M, g, J) is also QCH manifold with respect to the
distribution E = D⊥ and if �′, � ′ are the above tensors with respect to E then

R = (a + b + c)� − (b + 2c)�′ + c� ′. (6)

Proof. Let us assume that

X ∈ TM, |X | = 1.

Then if α = |XD|, β = |XE | then 1 = α2 + β2. Hence R(X, JX, JX, X) = a + bα2 +
cα4 = a + b(1 − β2) + c(1 − β2)2 = a + b + c − (b + 2c)β2 + cβ4. �

If (M, g, J) is a QCH Kähler surface then one can show that the Ricci tensor Ric
of (M, g, J) satisfies the equation

Ric(X, Y ) = λm(X, Y ) + μh(X, Y ), (7)

where λ = 3
2 a + b

4 , μ = 3
2 a + 5

4 b + c are eigenvalues of ρ (see [9], Corollary 2.1 and
Remark 2.1.) In particular the distributions E,D are eigendistributions of the tensor
ρ corresponding to the eigenvalues λ,μ of ρ. The Kulkarni–Nomizu product of two
symmetric (2, 0)-tensors h, k ∈ ⊗2 TM∗ we call a tensor h � k defined as follows:

h � k(X, Y, Z, T) = h(X, Z)k(Y, T) + h(Y, T)k(X, Z)

−h(X, T)k(Y, Z) − h(Y, Z)k(X, T).

Similarly, we define the Kulkarni–Nomizu product of two 2-forms ω, η

ω � η(X, Y, Z, T) = ω(X, Z)η(Y, T) + ω(Y, T)η(X, Z)

−ω(X, T)η(Y, Z) − ω(Y, Z)η(X, T).

Then b(ω � η) = − 2
3ω ∧ η where b is the Bianchi operator. Note that

� = −1
4

(
1
2

(g � g + ω � ω) + 2ω ⊗ ω)
)

, (8)

� = −1
8

(h � g + hJ � ω + 2ω ⊗ hJ + 2hJ ⊗ ω), (9)

� = −hJ ⊗ hJ , (10)

where ω = g(J., .) is the Kähler form. Note that b(�) = 1
3 hJ ∧ hJ = 0 since hJ = e1 ∧ e2

is primitive, where e1, e2 is an orthonormal basis in D.
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THEOREM 3.1. Let (M, g, J) be a Kähler surface. If (M, g, J) is a QCH manifold then
W− = c( 1

6� − � + �) and W− is degenerate. The 2-form ω is an eigenvector of W−

corresponding to a simple eigenvalue of W− and J preserves the Ricci tensor. On the other
hand, let us assume that (M, g, J) admits a negative almost complex structure J such that
Ric(J, J) = Ric. Let E = ker(JJ − Id),D = ker(JJ + Id). If W− = κ

2 ( 1
6� − � + �)

or equivalently if the half-Weyl tensor W− is degenerate and ω is an eigenvector of W−

corresponding to a simple eigenvalue of W− then (M, g, J) is a QCH manifold.

Proof. Note that for a Kähler surface (M, g, J) the Bochner tensor coincides with
W− and we have

R = − τ

12

(
1
4

(g � g + ω � ω) + ω ⊗ ω

)

−1
4

(
1
2

(Ric0 � g + ρ0 � ω) + ρ0 ⊗ ω + ω ⊗ ρ0

)
+ W−.

If (M, g, J) is a QCH Kähler surface then Ric = λm + μh where λ = 3
2 a + b

4 , μ =
3
2 a + 5

4 b + c. Consequently Ric0 = − b+c
2 m + b+c

2 h = δh − δm where δ = b+c
2 . Hence

Ric0 = 2δh − δg. Hence we have

R = − τ

12

(
1
4

(g � g + ω � ω) + ω ⊗ ω

)

−1
4

(
1
2

((2δh − δg) � g + (2δhJ − δω) � ω) + (2δhJ − δω) ⊗ ω+

ω ⊗ (2δhJ − δω)) + W−.

Consequently

R = τ

6
� + 2δ� − δ� + W− =

(
a − c

6

)
� + (b + c)� + W−,

and a� + b� + c� = (a − c
6 )� + (b + c)� + W− hence W− = c( 1

6� − � + �). It
follows that W− is degenerate and ω is an eigenvalue of W− corresponding to the
simple eigenvalue of W−. It is also clear that Ric(J, J) = Ric.

On the other hand, let us assume that a Kähler surface (M, g, J)
admits a negative almost complex structure J preserving the Ricci tenor
Ric and such that W− is degenerate with eigenvector ω corresponding to
the simple eigenvalue of W−. Equivalently it means that J satisfies the
second Gray condition of the curvature i.e. R(X, Y, Z, W ) − R(JX, JY, Z, W ) =
R(JX, Y, JZ, W ) + R(JX, Y, Z, JW ). Then W− = κ

2 (( 1
6� − � + �). If Ric0 = δ(h −

m) then as above R = τ
6 � + 2δ� − δ� + W−. Consequently R = ( τ

6 − δ)� + 2δ� +
κ
2 ( 1

6� − � + �) and

R =
(τ

6
− δ + κ

12

)
� +

(
2δ − κ

2

)
� + κ

2
�. (11)

�
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REMARK 3.1. Note that κ is the conformal scalar curvature of (M, g, J). The
Bochner tensor of QCH manifold was first identified in [10].

COROLLARY 3.1. A Kähler surface (M, g, J) is a QCH manifold iff it admits a
negative almost complex structure J satisfying the second Gray condition of the curvature
i.e.

R(X, Y, Z, W ) − R(JX, JY, Z, W ) =

R(JX, Y, JZ, W ) + R(JX, Y, Z, JW ).

The J-invariant distribution D with respect to which (M, g, J) is a QCH manifold is given
by D = ker(JJ − Id) or by D = ker(JJ + Id).

THEOREM 3.2. Let us assume that (M, g, J) is a Kähler surface admitting a negative
Hermitian structure J such that Ric(J, J) = Ric. Then (M, g, J) is a QCH manifold.

Proof. If a Hermitian manifold (M, g, J) has a J-invariant Ricci tensor Ric then
the tensor W+ is degenerate (see [5]). �

REMARK 3.2. If a Kähler surface (M, g, J) is compact and admits a negative
Hermitian structure J as above then (M, g, J) is locally conformally Kähler and hence
globally conformally Kähler if b1(M) is even. Thus (M, g, J) is ambiKähler since b1(M)
is even.

Now we give examples of QCH Kähler surfaces. First we give (see [3])

DEFINITION 3.1. A Kähler surface (M, g, J) is said to be of Calabi type if it admits
a non-vanishing Hamiltonian Killing vector field ξ such that the almost Hermitian
pair (g, I) – with I equal to J on the distribution spanned by ξ and Jξ and −J on the
orthogonal distribution – is conformally Kähler.

It is known that for a Kähler surface of Calabi type we have ρ0 = δωI where ωI is
the Kähler form of (M, g, I) (see [3]) and consequently Ric(I, I) = Ric. Hence we have

THEOREM 3.3. Every Kähler surface of Calabi type is a QCH Kähler surface.

DEFINITION 3.2. A Kähler surface (M, g, J) is orthotoric if it admits two
independent Hamiltonian Killing vector fields with Poisson commuting momentum
maps ξη and ξ + η such that dξ and dη are orthogonal.

An explicit classification of orthotoric Kähler metrics is given in [A-C-G]. Every
orthotoric surface admits a negative Hermitian structure I which is conformally
Kähler. We also have ρ0 = δωI where ωI is the Kähler form of (M, g, I)(see [3]).

In particular the Hermitian structure I preserves Ricci tensor Ric. Hence we get

THEOREM 3.4. Every orthotoric Kähler surface is a QCH Kähler surface.

Note that both Calabi type and orthotoric Kähler surfaces are ambiKähler. On
the other hand we have

THEOREM 3.5. Let (M, g, J) be ambiKähler surface which is a QCH manifold. Then
locally (M, g, J) is orthotoric or of Calabi type or a product of two Riemannian surfaces
or is an anti-selfdual Einstein–Kähler surface.
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Proof. (We follow [4]). Let us denote by g− the second Kähler metric. Let us
assume that g− �= g. Then g = φ−2g− and the field X = gradω−φ is a Killing vector
field LX g = LX g− = 0 and is holomorphic with respect to J. We shall show that X is
also holomorphic with respect to J. In fact Ric0 = δg(JJ, .) and LX Ric = 0, LXδ = 0.
Hence 0 = δg((LX J)J, .) and consequently LX J = 0 in U = {x : Ric0(x) �= 0}. If (M, g)
is Einstein then W+ �= 0 everywhere or (M, g, J) is anti-selfdual. In the first case X
preserves the simple eigenspace of W+ and hence ω, consequently LX J = 0. Note that
X = Jgradgψ where ψ = − 1

φ
. Since LXω = 0 we have dX�ω = 0 and consequently the

1-form JJdψ is closed and locally equals 1
2 dσ . Thus the two form � = 3

2σω + ψ3ω−,
where ω− is the Kähler form of (M, g−, J), is a Hamiltonian form in the sense of [3]
and the result follows from the classification in [3]. This form is defined globally if
H1(M) = 0. �

REMARK 3.3. Note that in the compact case every Killing vector field on a Kähler
surface is holomorphic. If (M, g, J) is an Einstein Kähler anti-selfdual then in the case
where it is not conformally flat the manifold (M, g, J) is a selfdual Einstein Hermitian
conformal to selfdual Kähler metric. Such a metric must be either orthotoric or of
Calabi type. Thus (M, g, J) is of Calabi type if (M, g, J) is of Calabi type, however
(M, g, J) cannot be orthotoric if (M, g, J) is orthotoric.

Now we shall investigate Einstein QCH Kähler surfaces.

THEOREM 3.6. Let (M, g, J) be a Kähler–Einstein surface. Then (M, g, J) is a QCH
Kähler surface if and only if it admits a negative Hermitian structure J or it has constant
holomorphic curvature and admits any negative almost complex structure. If (M, g, J) is
QCH and the second case does not hold then J is conformally Kähler hence (M, g, J) is
ambiKähler.

Proof. If an Einstein four-manifold (M, g) admits a degenerate tensor W− then
W− = 0 or W− �= 0 on the whole of M. In the second case by the result of Derdzinski
it admits a Hermitian structure J which is conformally Kähler and the metric
(g(W−, W−))

1
3 g is a Kähler metric with respect to J. �

REMARK 3.4 Compare [4]. If (M, g, J) is a QCH Kähler Einstein surface which
is not anti-selfdual then in the case H1(M) = 0 on (M, g, J) there is defined global
Hamiltonian two form and on the open and dense subset U of M the metric g is:

(a) A Kähler product metric of two Riemannian surfaces of the same Gauss
curvature.

(b) Kähler Einstein metric of Calabi type over a Riemannian surface (�, g�)
of constant Gauss curvature k of the form g = zg� + z

V (z) dz2 + V (z)
z (dt + α)2

where V (z) = a1z3 + kz2 + a2.
(c) Kähler Einstein ambitoric metric of parabolic type (see [4], section 5.4.).

THEOREM 3.7. Let (M, g, J) be a selfdual Kähler surface with Ric0 �= 0 everywhere
on M. Then (M, g, J) is a QCH Kähler surface with Hermitian complex structure J.

Proof. We show as in Theorem 1 that R = τ
6 � + 2δ� − δ� where ρ0 = δω. Note

that in U = {x : Ric0 �= 0} the negative structure J is uniquely determined and is
Hermitian in U (see Proposition 4 in [5]). �

REMARK 3.5. Note that a selfdual Kähler surface (M, g, J) is QCH if admits any
negative almost complex structure J preserving the Ricci tensor Ric. For example ��2
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with standard Fubini–Studi metric is selfdual however is not QCH since it does not
admit any negative almost complex structure. However the manifold M = ��2 − {p0}
for any point p0 ∈ ��2 is QCH and admits a negative Hermitian complex structure
(see [13]). In [8] there are constructed many examples of selfdual Kähler surfaces with
Ric0 �= 0 hence QCH Kähler selfdual surfaces. Every selfdual Kähler metric is weakly
selfdual. Selfdual metrics were classified by Bryant in [1]. From [3] it follows that
selfdual Kähler metrics with non-parallel Ricci tensor are orthotoric or of Calabi type
and in fact are ambiKähler.

LEMMA 3.2. Let M be a connected QCH Kähler surface which is not Einstein. Then
the following conditions are equivalent:

(a) The scalar curvature τ of (M, g, J) is constant and J is almost Kähler
(b) The eigenvalues λ,μ of Ric are constant.

Proof. (a)⇒(b) Note that ρ = λω1 + μω2 where λ,μ are eigenvalues of Ric and
ω2 = hJ , ω1 = mJ . Note that dω1 + dω2 = 0 and

(μ − λ)dω1 = dλ ∧ ω1 + dμ ∧ ω2. (12)

Note that J is almost Kähler if and only if dω1 = 0. Hence from (12) we get pD(∇λ) =
0, pE (∇μ) = 0. Since τ is constant we get ∇λ = −∇μ in an open set U = {x : λ(x) �=
μ(x)}. Thus ∇λ = ∇μ = 0 in U and consequently U = M and λ,μ are constant.

(b) ⇒ (a) This implication is trivial. �
Now we give a classification of locally homogeneous QCH Kähler surfaces.

PROPOSITION 3.2. Let (M, g, J) be a QCH locally homogeneous manifold. Then the
following cases occur:

(a) (M, g, J) has constant holomorphic curvature (hence is locally symmetric and
selfdual).

(b) (M, g, J) is locally a product of two Riemannian surfaces of constant scalar
curvature.

(c) (M, g, J) is locally isometric to a unique four-dimensional proper three-symmetric
space.

Proof. If (M, g) is Einstein locally homogeneous four-manifold then is locally
symmetric (see [14]). A locally irreducible locally symmetric Kähler surface is
selfdual.(see [7]). If (M, g) is not Einstein then using Lemma we see that (M, g, J) is an
almost Kähler manifold satisfying the Gray condition G2. Hence ||∇J|| is constant on
M and in the case ||∇J|| �= 0 it is strictly almost Kähler manifold satisfying G2. Such
manifolds are classified in [2] and are locally isometric to a proper three-symmetric
space (see [16]). Note that they are Kähler in an opposite orientation. If ||∇J|| = 0
then the case (b) holds. �

PROPOSITION 3.3. Let (M, g, J) be a QCH Kähler surface. If (M, g) is conformally
Einstein then the almost Hermitian structure J is Hermitian or (M, g, J) is selfdual.

Proof. Let us assume that (M, g1) is an Einstein manifold where g1 = f 2g. Then
(M, g1) is an Einstein manifold with degenerate half-Weyl tensor W−. Consequently
W− = 0 or W− �= 0 everywhere. In the second case the metric

(g1(W−, W−))
1
3 g1,
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is a Kähler metric with respect to J. Thus J is Hermitian and conformally
Kähler. �

REMARK 3.6. Every QCH Kähler surface is a holomorphically pseudosymmetric
Kähler manifold. (see [17, 11] ). In fact from [11] it follows that R.R = (a + b

2 )�.R.
Hence in the case of QCH Kähler surfaces we have

R.R = 1
6

(τ − κ)�.R, (13)

where τ is the scalar curvature of (M, g, J) and κ is the conformal scalar curvature
of (M, g, J). Note that (13) is the obstruction for a Kähler surface to have a negative
almost complex J structure satisfying the Gray condition (G2). In an extremal situation
where (M, g, J) is Kähler we have R.R = 0.

Now we classify QCH Kähler surfaces for which a, b, c are all constant. Then
λ,μ are constant and if (M, g) is not Einstein the almost complex structure J is almost
Kähler. Hence (M, g, J) is a G2 almost Kähler manifold. Consequently |∇ω| is constant
and (M, g, J) is a product of two Riemannian surfaces of constant scalar curvature
or is a proper three-symmetric space. If (M, g) is Einstein then κ = 2c is constant
and |W−|2 = 1

24κ2 is constant. Thus κ = 0 and (M, g, J) has constant holomorphic
curvature (is a real space form) or by [7] the manifold (M, g, J) is Kähler hence (M, g, J)
is a product of two Riemannian surfaces of constant scalar curvature. Note that for a
proper 3-symmetric space we have δ = κ

4 for the distribution D perpendicular to the
Kähler nullity of J (see [2]), thus b = 2δ − κ

2 = 0 and a = 1
6 (τ − κ) = − 1

2 |∇ω|2. Since
μ = 0 c = − 3

2 a and τ = −κ where κ = 3
2 |∇ω|2. Hence

R.R = −κ

3
�.R, (14)

where κ = 3
2 |∇ω|2 is constant. Summarizing we have proved

PROPOSITION 3.4. Let us assume that (M, g, J) is a QCH Kähler surface with constant
a, b, c. Then the following cases occur:

(a) (M, g, J) has constant holomorphic curvature (hence is locally symmetric and
selfdual).

(b) (M, g, J) is locally a product of two Riemannian surfaces of constant scalar
curvature.

(c) (M, g, J) is locally isometric to a unique four-dimensional proper three-symmetric
space and a = − 1

3κ, b = 0, c = 1
2κ where κ = 3

2 |∇ω|2 is constant scalar curvature
of (M, g, J), consequently R = − 1

3κ� + 1
2κ�.

REMARK 3.7. We consider above the proper three-symmetric space as a QCH
manifold with respect to the distribution D perpendicular to the Kähler nullity of J.
If we consider it as a QCH manifold with respect to the distribution E = D⊥ then
R = 1

6κ� − κ�′ + 1
2κ� ′ (see Proposition 3.1.).
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