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Abstract

For ne€Z and ACZ, let ra(n) =#(a1,a2) €A% :n=a; + ar,a; <a»} and d4(n) =#{(a1, ) €A% :n=
a; —az}. We call A a unique representation bi-basis if r4(n) =1 for all n€Z and §4(n) =1 for all
n € Z \ {0}. In this paper, we construct a unique representation bi-basis of Z whose growth is logarithmic.
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1. Introduction

For sets A, B of integers and any integer ¢, we define the sets
A+B={a+b:acA,beB}, A-B={a—b:acA,be B}
and the translations
ct+A={c+a:acA}, c—-A={c—a:acA}
ForneZand A CZ, let

ra(n) =#{(ar, ax) € A* :n=a + ay, a; < as},
oa(n) =#{(ar, a2) €A* :n=ay — a).

The counting function for the set A is A(y, x) =#{a€A:y<a < x}.

In 2003, Nathanson [4] constructed a family of arbitrarily sparse sets A CZ
satisfying ra(n) =1 for all n € Z. In 2011, Tang et al. [6] proved that there exists a
family of sets A C7Z satisfying d4(n) =1 for all nonzero integers n. We call A a bi-
basis of Z if r4(n) > 1 for all n € Z and d4(n) > 1 for all n € Z \ {0}. In particular, we
call A a unique representation bi-basis of Z if r4(n) = 1 for all n € Z and d4(n) = 1 for
all n € Z \ {0}. For other related problems, see [1-3, 5].
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In this paper, we obtain the following results.

TueoreMm 1.1. Let ¢(x) be a positive function such that lim,_,, ¢(x) = +0o. Then there
exists a set A € Z such that

ra(m)=1 forallneZ,
oa(n)=1 forallneZ\ {0}
and
A(=x, x) < ¢(x)
forall x> 1.
Tueorem 1.2. There exists a unique representation bi-basis A of Z such that

4(log x —log2) 4(log x — log 2) N

1<A(—x,x)< 7
log 15 (=, %) log 3
forall x> 1.
2. Proof of Theorem 1.1
We will construct an ascending sequence of finite sets A} € A, C - - - such that the

following three conditions are satisfied:

(1) #Ar=4k-1;

(i) ra(m)<lforallneZ, 64,(n) <1forallnezZ)\{0};

(i) rau(m)y=1forne[-k—1,k+1],04(m)=1forallne[-k—-2,k+2]\ {0}

Conditions (ii) and (iii) imply that the infinite set

A= OAk
k=1

is a unique representation bi-basis for Z.
We construct the sets A by induction. Let A; = {1, —1, 2}, so that

Al+A1={0,1,2,-2,3,4}, A —-A; ={0,£1, £2, +3}.
Suppose that, for some integer k > 1, we have constructed a set A satisfying (i) and
(ii).
For k > 1, define
diy =max{la| : a € A}.

Then

Ag € [—dy, di].
If both d; and —d belong to A, then we have the two representations of 0 in the sumset
A + Ag:

0=1+ 1) =di+ (—dp).
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That is, only one of the two numbers d; and —d; belongs to A;. Then we know
that if —d; € Ay, then Ay + Ay C [-2dy, 2d, — 2]. Otherwise, Ay + Ay C [-2d; + 2, 2d,].
Moreover, in either case, Ay — Ay C [-2d; + 1, 2d;, — 1].

Fork > 1, let

w=minf{ln|:n¢ A+ A}, w=min{n>0:n¢A, — A}

We know that
1<u,<2dy—-1, 4<v,<2d;-1.

Choose integers x; > 3dy + 1, yx > 3x; + 2uy.
Case 1: uy ¢ A + Ay. Put

Ape1 = A U {ug + Xk, =Xk, Vi Vi + i)

Then
Aps1 + A1 = S U A + A U (g + X + A U (=x + Ap) U (i + Ap)
U (v + yi + Ap),
Apr1 = Ap1 =T U (A — A U (i + xp — Ap) U £(xg + Ay)
U £k — Ar) U (v + yi — Ap),
where

S = {2(yk + Vi), 29k + Vi, 2Yk, Ug + Vi + X + Vi, U + X + Vi,
Vi + Yk — X, Yk — Xk, 2k + Xi), Ug, —2Xp},
T = {£(vi + X + Y1), £k + yi), 2Ok — Xk + Vi — ug),

(Ve — Xk — ug), £(uy + 2x5), i
We know that

U+ x + A C[2di + 3, x +3di — 1],  —xx + Ay S [—xx — di, —2d; — 1],
Vi + A C e — dis ye + di)s v+ i + Ak S [y — di, yi + 3dy — 1],
X+ 3di < 2(uy + xp) < v + Yk — X < yi — dp.
Moreover, (yx + Ax) N (v + yp + Ax) = @. In fact, if (yp + Ap) N (Vg + yi + Ap) # D,
then there are a,a’ € Ay such that y; +a=vy+y+d’, so vy =a—a’, which is
impossible. Hence

S, A + A, ug + X+ A, =X + Ag, Vi + Y+ Ag, i+ Ay

are pairwise disjoint.
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Similarly, we can show that
Ap = A, T, (g + xi — Ap), (O + Ag), £k — Ar)s (i + Y — Ag)

are pairwise disjoint.
By the hypothesis, if n € Ay + Ay, then ry,,, (n) = r4,(n) = 1, and if n(# 0) € Ay — Ay,
then d4,,,(n) = 64,(n) = 1. Moreover,

U + X + Ag, =X + A, Vi + Yi + Ag, yi + Ay

are translations. If n belongs to one of the above four sets, then r4,., (1) = 1. Similarly,
if n belongs to one of the sets

(ug + xx — Ap), £ + Ap), £k — A), £(ve + Yk — A,
then 64,,,(n) = 1. It follows that, for all k > 2,
ra,(m) <1 forallneZ,

and
0a,,,(n) <1 forallneZ\ {0}.

Case 2: uy, € Ay + A;. Put
A1 = Ap U {=ug — Xi, Xk, Yo Vi + Vi)

As in the proof of Case 1, we know that ry,,,(n) <1 for all n € Z, d4,,,(n) <1 for all
neZ\{0}.

Now we shall prove that the set A satisfies (iii).

If u; ¢ Ay + Ay, then, by the construction of Ag,; in Case 1, up € Agyq + Apyr- If
—uy € Agy1 + Agy1, then, by the definition of w1, Uger > upry > ug. If —up & Apyy +
Api1, then ug = ug. Thus ugy = uyx € Agy1 + Agy1- By the construction of Ay, in
Case 2, —uyy1 € Apyn + Aryo. Thus Uk+2 > Ugs] = Ug.

If ux € Ay + Ay, then, by the construction of Ay, in Case 2, —uy € Agyy + Agr-
Moreover, u, € Ay + Ay CArsr1 + Aks1, SO Upyn = U] > Ug.

By the above discussion, u;,, > u;. By the construction of A,, uy > 3. Thus uy >
up + k— 1>k + 2. If there exists an integer n such that [n| <k + 1 and n ¢ Ay, + Ay,
then uy, < k + 1, which is a contradiction. Hence

(—k—-1,-k---=1,0,1-- -k, k+ 1} C A + Ang.

Similarly, we can show that vy < vi,;. Combining with v; =4, we have v > k + 3.
Hence
{(-k-2,-k—-1----1,0,1---k+1,k+2} C Ay — Ax.
Let A=J;., Ax. Then Z=A+A=A-A. If rsa(n)>2 for some integer n or
04(m) > 2 for some nonzero integer m, then there exists a positive integer k such that
ra,(n) = 2 or 84,(m) > 2, which is a contradiction. So A is a unique bi-basis of Z.
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Now we will show that A can be arbitrarily sparse. Given a function ¢(x) tending
to infinity as x — co, we use induction to construct a sequence {x;};”, such that
A(—x, x) < ¢(x) for all x> x;. We observe that

A(—x, x) = Aps1(—x, x) <4k + 3 ford; < x <djy1.
We begin by choosing an integer x; > 7 such that
o(x) =7 for x> xi.

Then
A(=x,x) <7< p(x) forx; <x<d,.

Let k > 2, and suppose we have selected an integer x;_; > 3d;_; + 1 such that
o(x) =4k -1 for x> x;

and
A(—x, x) < p(x) for xp_; < x <d.

There exists an integer x; > 3d; + 1 such that
o(x) =4k +3 for x> x;.

Then
A(—x, x) <4k +3 <@(x) for x; <x<dyq,

)
A(=x, x) < @(x) for x; < x <dj.

It follows that
A(—x, x) < @(x) forall x> x;.

This completes the proof of Theorem 1.1.

3. Proof of Theorem 1.2
We apply the method of Theorem 1.1 with

xp=3d+1, ypr=3x+2u forallk=2.

Note that
3dy < xp < uy + xp < v + Vi < 15d;,
that is,
3dk < dk+l < 15dk
Since d; = 2,

2.3 g, <2151,
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Fordk<x§dk+1,
2.3 l<x<2-15%
Then 1 log 2 I log 2
og x — log k< og x — log N

1.
log 15 log 3

It is easy to see that
4k — 1 <A(-x,x) <4k +3 fordi < x<d.

Hence

4(log x — log 2) 1< A(x, x) < 4(log x — log 2) L7

log 15 log 3
This completes the proof of Theorem 1.2.
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