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Abstract

Epstein and Horn, in their paper 'Chain based lattices', characterized P, -lattices, and P2-lattices in terms
of their prime ideals. But no such prime ideal characterization for P0-lattices was given. Our main aim in
this paper is to characterize P0-lattices in terms of their prime ideals. We also give a necessary and
sufficient condition for a P-algebra to be a P0-lattice (and hence a /Vlattice).
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0. Introduction

Traczyk (1963) introduced the concept of chain based lattices (P0-lattices) as an
abstraction of Post algebras. Epstein and Horn (1975) studied chain based lattices in
detail and obtained a prime ideal characterization of these lattices in special cases,
namely, /Vlattices and P2-lattices. But no such prime ideal characterization for Po-
lattices was given. In this paper, we give a prime ideal characterization for Po-
lattices. The main tool used in this paper is that every bounded distributive lattice is
isomorphic with the lattice of all global sections of a sheaf of bounded distributive
lattices over a Boolean space (See Maddana Swamy (1974) and Subrahmanyam
(1978)).

Epstein and Horn (1975) (Theorem 7.3) proved that the prime ideals of a P0-lattice
of order n lie in disjoint maximal chains each with at most n — 1 elements and they
have shown that the converse is not true even in the case of a P-algebra. In this paper,
we prove that a P-algebra L is a P0-lattice (and hence a P2-lattice) if and only if the
prime ideals of L lie in disjoint maximal chains each with at most n — 1 elements for
some integer n and satisfy the continuity axiom (see Definition 3.3 and Theorem 3.5
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below). Further, we characterize Prlattices and P2-lattices in terms of the stalks of
the corresponding sheaves and such characterization for P0-lattices is given by
Maddana Swamy and Manikyamba (to appear) (Theorem 5.6).

Throughout this paper, by L, we mean a (nontrivial) bounded distributive lattice
(L, v , A , 0,1) and B = B(L), the centre of L. The dual of L is denoted by Ld. For any
a e B, we write a' to denote the complement of a. For any x e L , The principal ideal
generated by x is denoted by (x]. For any x,yeL, the largest element zeL such that
x A z ^ y (if exists) is denoted by x -• y and the largest element a e B such that
x A a ^ y (if exists) is denoted by x => y. If, for every x,yeL, x -> y (x => y) exists,
then we say that L is a Hey ting algebra (B-algebra). Further if, for any x, yeL,

(x->y)v{y->x)= l((x => y) v (y => x) = 1)

then L is called a L-algebra (P-algebra). For any x e L, we write !x to denote 1 => x, (if
it exists), and call it the pseudosupplement of x. We refer to Birkhoff (1967) and
Epstein and Horn (1974) for the elementary properties of these types of lattices.

By a sheaf of bounded distributive lattices we mean a triple (Sf, n, X) satisfying the
following:

(1) y and X are topological spaces.
(2) n : y -> X is a local homeomorphism.
(3) Each stalk n~1(p), peX, is a bounded distributive lattice.
(4) The maps (x,y) i-» x v y and (x,y) *-*x Ay from

into y are continuous.
(5) The maps 0 : pi-> 0(p) and 1 : pt-> l(p)of X into Sf are continuous where 0(p)

and l(p) are the smallest and largest elements of n~l(p) respectively.
We call y the sheaf space, X the base space and n the projection map. We write yp

for n~ l{p) and call yp the stalk of y at p. By a (global) section of the sheaf (y, n, X),
we mean a continuous map a : X -> y such that 7r ° a = idx, identity map of X. For
any two sections a and x,{peX\ o{p) = z(p)} is open. For the preliminary results on
sheaf theory, we refer to the pioneering work of Hoffmann (1972).

By Spec L we mean the set Y= 0\L) of all prime ideals of L with the hull-kernel
topology; the topology for which {Yx\xeL} is a base, where for any xeL,
Yx = { P e y | x ^ P } . Throughout this paper X denotes SpecB, which is a Boolean
space; a compact, Hausdorff and totally disconnected space. Since a i-> Xa is a
Boolean isomorphism of B onto the Boolean algebra of all clopen subsets of X, we
identify a and Xa and write simply a for Xa. We write Y1" to denote the subspace of
Spec L consisting of all minimal prime ideals of L with the relative topology. We
write, for any x e L, Y^ for Ym n Yx. For any p e X, let yp be the quotient lattice L/0p,
where 6p is the congruence on L given by

(x,y)edp if and only if x A a = y A a for some aeB — p
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and let ¥ be the disjoint union of all ¥p, p e X. For each x e L, define x : X -> ¥ by
x\p) = 6p(x), the congruence class of 6P containing x. Topologize ¥ with the largest
topology such that each x, xeL, is continuous. In this topology {x(C/)| U is a
neighbourhood of p] forms a basis for the neighbourhoods of x(p). Define n : ¥ -* X
by n(s) = p if s e y p . The following theorem is the main tool used in this paper and is
due to Subrahmanyam (1978) (see also Maddana Swamy (1974)).

THEOREM 0.1.

(1) (¥,n,X) described above is a sheaf of bounded distributive lattices in which
each stalk ¥p has exactly two complemented elements, namely 0(p) and l(p).

(2) For any aeB, peX, a\p) = !(/?) if pea and d\p) — 0(p) ifp$a.
(3) For any x,yeL and aeB, x\a = y\a if and only if x A a = y A a.
(4) x i-> x is an isomorphism ofL onto the lattice T(X, ¥) of all global sections of

the sheaf (¥, n, X). We identify x with x and write simply x for x.
(5) For any prime ideal P of L, there exists a unique peX such that

Pp : = (x(p) | x e P} is a prime ideal of ¥p. On the other hand, ifQ is a prime
ideal of ¥p where p e X, then {x e L\ x(p) e Q] is a prime ideal of L. This
correspondence exhibits the set of all prime ideals ofL as the disjoint union of
the sets of prime ideals of the stalks. Moreover, if P and Q are prime ideals of
distinct stalks ¥p and ¥q, the P and Q are incomparable when they are regarded
as prime ideals of L.

Throughout this paper, by stalk ¥p, peX,we mean the stalk of the sheaf (¥, n, X)
described above.

For any x,yeL, we write (x, y)£ for the ideal {zeL\x A Z < y) ofL and by (x, y)%,
we mean the ideal (x, y)£ n B of B. We write (x)£ for (x, 0)£. L is said to be dense if
(x)* = {0} for all 0 # x e L. Following Cignoli (1971,1978), L is said to be B-normal
if, for any x,yeL,(x A y)Jj = (x)J v (y)%, where v denotes the join operation in the
lattice of ideals of B and Lis said to be B-completely normal if, for any x,yeL,
{x,y)i v(y,x)J = B.

Since, for any peX, the stalk ¥p is dense if and only if ((x A y)% ^ po (x)JJ £ p or
M B ^ P for all x, y e L), the following theorem is a consequence of the results of
Cignoli (1971).

THEOREM 0.2. The following are equivalent.
(1) L is B-normal.
(2) For any x,yeLsuch that x A y = 0, (x)J v (y)% = B.
(3) For any peX, the ideal (p) of L generated by p is prime.
(4) For any a,beB, a ^b, [a,b]L : = {xeL |a ^ x ^ b} is B-normal.
(5) For any aeB, [0,a~]L is B-normal.
(6) Each stalk ¥p, peX, is dense.
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Following Cornish (1972), L is said to be normal if every prime ideal of L contains
a unique minimal prime ideal and L is said to be relatively normal if each interval
[x,)] in L is normal. It can be observed that every B-completely normal lattice is
relatively normal. But the converse is not true (see Theorem 0.4 below). If both L and
Ld are normal (relatively normal), then we say that L is doubly normal (doubly
relatively normal). The following is a routine verification by using the results of
Cornish (1972).

THEOREM 0.3. The following are equivalent.
(1) L is doubly relatively normal.
(2) L is relatively normal and Ld is normal.
(3) L is normal and Ld is relatively normal.
(4) SpecL is a disjoint union of maximal chains.

Cignoli (1978) proved that every B-completely normal lattice is isomorphic with
the lattice of all global sections of a sheaf of chains over a Boolean space. If L is in-
completely normal, then our stalks £fp turn out to be chains (see Theorem 0.4 below)
and our sheaf {if, n, X) coincides with that of Cignoli (1978). In the following
theorem, the equivalence of(l), (2) and (4) is proved by Cignoli (1978) (Theorem 2.1),
(2) <=> (6) is proved by Subrahmanyam (1978) and the equivalence of (1), (3) and (5)
follows from Theorem 0.3 and the fact that a dense distributive lattice has a unique
minimal prime ideal.

THEOREM 0.4. The following are equivalent.
(1) L is B-completely normal.
(2) For any x,yeL, there exists aeB such that x A a < y and y A a' < x.
(3) L is relatively normal and Ld is B-normal.
(4) L is B-normal and Ld is relatively normal.
(5) Ld is B-completely normal.
(6) Each stalk ifr peX, is a chain.

1. P0-lattices

DEFINITION 1.1. (Traczyk (1963).) If there is a chain 0 = e0 ^ ey ^ ... ^ en_1 = 1
in Lsuch that Lis generated by B u {e0,eu...,en-i}, then we say that <L; eo,eu...,
en_!> is a P0-lattice. In this case {eo,ei,...,en_l} is called a chain base for L.

From Theorem 0.4 above and from Theorem 5.6 of Maddana Swamy and
Manikyamba (to appear), it follows that every P0-lattice is B-completely normal.
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DEFINITION 1.2. Let S £ L. Then we say that the set 3f\L) of prime ideals of L is
determined by S if 0,1 e S and for each P e 0\L\ there exists seS and a minimal prime
ideal Po c p such that P = (s, P o ] , the ideal of L generated by s and Po.

THEOREM 1.3. Let L be a B-completely normal lattice, S a finite subset of L and
0, l e S . Then the following are equivalent.

(1) S together with B generate L.
(2) s i-> s(p) is a surjective map ofS onto ifp for each peX.
(3) 9\L) is determined by S.

PROOF. (1) o (2) is an imitation of the proof of Theorem 5.6 of Maddana Swamy
and Manikyamba (to appear).

(2) => (3): Let P e i?(L) and Po be the unique minimal prime ideal of L contained
in P. Write p = PonBeX. Then it can be seen that Pp : = {x(p) | x eP} is a prime
ideal of £fp. Since ifp is a finite chain, there exists seS such that Pp = {s(p)~\. We show
that P = (s, Po]- If x e P , then x(p) ^ s(p), so that there exists aeB—p such that
x A a < s. Now a' e p and x ^ s v a' e (s, Po] and hence P £ (s, Po] and the other
inequality follows from the fact that {yeL\y(p)ePp} = P.

(3) => (2): Let xeL and p e l . We may assume that x(p) ^ l(p). Then
(x(p)]ei?>(,yp) so that P = {yeL\y(p) *S x(p)} e^(L). Hence P = (s,P0] for some
seS, where Po is the unique minimal prime ideal contained in P. Also, since seP,
s(p) < x(p) # l(p) and hence Q : = {ye L | ><p) s? s(p)} e i^(L). Now Q £ P and hence
Po S Q. Since s 6 Q, we have P £ Q and hence P = Q. Therefore x e Q, so that
x(p) < s(p). Hence x(p) = s(p). Thus (2) follows.

THEOREM 1.4. Let L be a B-completely normal lattice. Then the following are
equivalent.

(1) Lis P0-lattice.
(2) < (̂L) is determined by a finite subset of L.
(3) i^(L) is determined by a finite chain in L.

PROOF. (1) o (3) follows from the above theorem and Theorem 5.6 of Maddana
Swamy and Manikyamba (to appear) and (3) => (2) is clear.

(2) => (3): Let S be a finite subset of L which determines i?(L). For each p e X, since
s i-> s(p) is a surjective map of S onto Sfp, there exists a partition ap = {AXp, A2p,...,
Anpp] of S such that, for 1 ^ i =% np, x(p) = y(p) for all x ,ye/ l i p and x(p) < y(p)
whenever x e Aip and j> e / l i + lp. Hence there exists apeB-p such that, for 1 ^ i ^ np,
x A ap = y A ap for all x,yeAip and x A ap ^ y A ap whenever xeAip and
yeAi+ ip. By the usual compactness argument in the Boolean space X, there exist a
partition {a1;...,ak} of B and partitions a, = {Alj,A2j,...,Anjj}, 1 ̂ j < /c, of S such
that, for 1 ^ j ^/jj- and l ^ j ' ^ / c , x A a, = y A ô  for all x,yeAi} and
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x A aj ^ y A a} whenever xeAi} and yeAi+ iy Put n = maxt ^j^knt. If, for any;',
nj < n, then we write A(j = Anjj for all rij <i ^ n. Choose x^eA^ for 1 ^ i ^ n and
1 < j < k and write et = V ) = I(X;J A aj) f°r 1 < ' ^ "• For any peX,peaj for exactly
one j and hence ef(p) = x;j(p) < xi+1j(p) = ei+ i(p), which shows that {eu...,en} is a
chain in L. Now, let xeLand peX. Then there exists seS such that x(p) = s(p).
Choose j , 1 < j ^ k, such that p e a,. Then s e AtJ for some i, 1 ^ i ^ n, so that
x(p) = s(p) = xtj{p) = e,(p). Hence, by Theorem 1.3 above, it follows that
{0,e0,el7...,en, 1} determines 0>(L).

2. ?!-lattices

DEFINITION 2.1. (Epstein and Horn (1975).) A ?!-lattice is a P0-lattice
<L; eo,ei,...,en_1} such that ei+1 ->e,- = et for 0 ^ i ^ n —2.

DEFINITION 2.2. If C = {x0 < Xj < ... < xm} is a finite chain and « is a positive
integer, then by the nth element of C we mean xn if n < m and xm if n ^ m.

THEOREM 2.3. Let L be a B-completely normal lattice and each maximal chain of
prime ideals ofL contains at most n— 1 elements. Then L is a P ̂ lattice if and only if,
for any xeL and 0 ^ i ^ n — 1, Gix : = {peX | x(/>) is the ith element of Sfp} is open.

PROOF. (Thanks to the referee for suggesting this proof which is simpler than the
original one.) Suppose L is a Pj-lattice. Then by Theorems 7.5 and 3.3 of Epstein and
Horn (1975), there exist eo,e1,...,en_l such that <L; eo,el,...,en^1} is a Pi-lattice.
Nowe((p) = ei+1(p) implies e,(p) = l(p) because, ifb e B — p is such that b A ei+1 < e;,
then b ^ ei+ j -> et = et. Therefore, by Definition 2.2, e,(p) is the ith element of ¥p.
Hence Gix is open.

Conversely suppose Gix is open for all x € L and 0 ^ i ^ n — 1. Hence there exists a
chain

in L such that e<(p) is the ith element of ifp for all p e X and 0 «S i ^ n - 1 . Since, for
any xeLand peX, x(p) = et(p) for some i, 0 < i ^ «— 1, by Theorem 1.3 above,
<L; e0, eu..., en_ t > is a P0-lattice. Suppose x A ei+1 ^ ^. Then either x(p) ^ e,(p) or
ei+ i(p) < e,(p) a n d in the later case, e,(p) = l(p). Hence x(p) s£ e^p) for all pe X, so
that e1+i -»e; = et. Thus <L; eo,e!,...,en_i> is a P!-lattice.

3. P2-lattices

DEFINITION 3.1. (Epstein and Horn (1975).) A P2-lattice is a Prlattice
<L; eo,e1,...,en_l} such that !e,- exists for all i.
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The following theorem is a consequence of Defintion 4.3 of Epstein and Horn
(1975) and Theorem 4.3 of Maddana Swamy and Manikyamba (to appear).

THEOREM 3.2. Lis a P2-lattice if and only if Lis a Prlattice and for anv xeL,
{pe X \x(p) < l(p)} is open.

DEFINITION 3.3. Let L be aB-completely normal lattice and let each maximal chain
of prime ideals of Lbe finite. For each p e X, let n(p)be the number of prime ideals of L
which contain p. We say that &\L) satisfies the continuity axiom if p >--> n(p) is a
continuous map from X into Z with the discrete topology (where Z is the set of all
integers).

Observe that, if L is a Store lattice B-completely normal, then p t->(p), the ideal
in L generated by p, is a homeomorphism (see Maddana Swamy and Manikyamba
(1979), Theorem 4) of X onto Ym.

REMARK 3.4. Epstein and Horn (1975) gave an example of a F-algebra L which is
not a P0-lattice. We observe that it is only because 9{L) does not satisfy the
continuity axiom.

THEOREM 3.5. Let Lbe a P-algebra. Then L is a P2-lattice if and only ift?(L) satisfies
the continuity axiom and there exists an integer n such that each maximal chain in &{ L)
has at most n—\ elements.

PROOF. Suppose <L; eo,el,...,en__l) is a P2-lattice. Suppose n(p) = i. Then

eo{p) < e^p) < ... < et(p) = 1.

Now for any xeL, it is clear that x(p) = l(p) if and only if ! xeB-p. Therefore
! e ; _ , e p and leieB — p. Let a = \ei — \ei_l. Then pea and for all qea,

\e( — ! e j _ ! eB — q, so that e^^q) < e^q) = \(q). Thus n(q) = i for all qea and the

continuity axiom is proved. Conversely suppose i^{L) satisfies the continuity axiom
and each maximal chain in sP(L) has at most n — 1 elements. Since p >-> (p) is a
homeomorphism of X onto Ym and since for any peX,\6fp\ = n(p)+ 1, to each
p e X, there exists aeB — p such that | y p | = | Sfq | for all q e a. Hence there exists a
partition {al,...,ak} of AT such that | ^ p | = \Sfq\ for all p, qea,^and \ ^ i ^ k. Hence
L= n U i Ha,-, &), where F(a,, if) is the lattice of all sections of the clopen set ai into
if. By Theorems 16 and 17 of Epstein (1960), T{ab if) is a Post algebra and hence by
Lemma 4.9 of Epstein and Horn (1975), it follows that L is a f2-lattice.

The following lemma is due to Maddana Swamy and Manikyamba (to appear).

LEMMA 3.6. L is a B-algebra if and only if {pe X \x(p) ^ y{p)} is clopen for every
x,yeL.
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THEOREM 3.7. Let Lbea B-completely normal lattice satisfying the continuity axiom
and suppose each maximal chain in &(L) has finite length. Then the following are
equivalent.

(1) L is a P0-lattice.
(2) L is a Pi-lattice.
(3) L is a P2-lattice.
(4) L is a B-algebra.
(5) L is a P-algebra.

PROOF. (3) => (2) => (1)is clear and the equivalence of (4) and (5) is immediate by
the definition, since L is B-completely normal. Further, (5) => (3) is proved in the
above theorem. Now we are left with the proof of (1) => (4).

Suppose <L; eo,eu...,en- ,> is a P0-lattice. Let x,yeL and peX such that
x(p) < \ip). Now, write

.</„ = {0(p) = eo(p) < e,(p) ^ ... ^ en_ ,(p) = Up)}.

Choose integers i, < i2 < ... < ik such that

eo(p) = ... = eit.x(p) < eh(p) = eh+1(p) = ... = e^.^p) < eh(p) = ....

Since J*(L) satisfies the continuity axiom, there exists aeB — p such that
j •9y

q j = j .•/'p | for all qea. Also, for each ip there exists ais eB — p such that etj A atj =
(.',-,.,-1 A al; and hence there exists be B — p such that eu A b = eu,,_ t A b for all ij.
Now there exists j < k such that x(p) = e^ip) and y(p) = ek{p). Hence there exists
ceB — p such that x A C = ei: A C and y A C = ehc. Clearly pea A b A c and, for
any q e a A b A C, if x(q) = y{q), then eh(q) = ek(q) which implies that | ifq \ < | Sfq |,
which contradicts the fact that p, qea. Therefore x{q) < y(q) for all qea A b A C.
Hence {p e X \ x{p) < y(p)} is open. Thus L is a B-algebra, by Lemma 3.6. This proves
the theorem.

The authors thank the referees for their valuable comments.
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