PRIME IDEAL CHARACTERIZATION OF CHAIN BASED LATTICES

U. MADDANA SWAMY, G. C. RAO and P. MANIKYAMBA

(Received 1 March; revised 9 September 1979, 6 February 1980)

Communicated by D. E. Taylor

Abstract

Epstein and Horn, in their paper 'Chain based lattices', characterized P_1 -lattices, and P_2 -lattices in terms of their prime ideals. But no such prime ideal characterization for P_0 -lattices was given. Our main aim in this paper is to characterize P_0 -lattices in terms of their prime ideals. We also give a necessary and sufficient condition for a P-algebra to be a P_0 -lattice (and hence a P_2 -lattice).

1980 Mathematics subject classification (Amer. Math. Soc.) : primary 06 D 99; secondary 18 F 20.

Keywords and phrases: B-normal lattices, P-algebra, chain based lattices, sheaf of bounded distributive lattices, continuity axiom, $\mathcal{P}(L)$ is determined by a subset of L.

0. Introduction

Traczyk (1963) introduced the concept of chain based lattices (P_0 -lattices) as an abstraction of Post algebras. Epstein and Horn (1975) studied chain based lattices in detail and obtained a prime ideal characterization of these lattices in special cases, namely, P_1 -lattices and P_2 -lattices. But no such prime ideal characterization for P_0 -lattices was given. In this paper, we give a prime ideal characterization for P_0 -lattices. The main tool used in this paper is that every bounded distributive lattice is isomorphic with the lattice of all global sections of a sheaf of bounded distributive lattices over a Boolean space (See Maddana Swamy (1974) and Subrahmanyam (1978)).

Epstein and Horn (1975) (Theorem 7.3) proved that the prime ideals of a P_0 -lattice of order *n* lie in disjoint maximal chains each with at most n-1 elements and they have shown that the converse is not true even in the case of a *P*-algebra. In this paper, we prove that a *P*-algebra *L* is a P_0 -lattice (and hence a P_2 -lattice) if and only if the prime ideals of *L* lie in disjoint maximal chains each with at most n-1 elements for some integer *n* and satisfy the continuity axiom (see Definition 3.3 and Theorem 3.5 below). Further, we characterize P_1 -lattices and P_2 -lattices in terms of the stalks of the corresponding sheaves and such characterization for P_0 -lattices is given by Maddana Swamy and Manikyamba (to appear) (Theorem 5.6).

Throughout this paper, by L, we mean a (nontrivial) bounded distributive lattice $(L, \lor, \land, 0, 1)$ and B = B(L), the centre of L. The dual of L is denoted by L^d . For any $a \in B$, we write a' to denote the complement of a. For any $x \in L$, The principal ideal generated by x is denoted by (x]. For any $x, y \in L$, the largest element $z \in L$ such that $x \land z \leq y$ (if exists) is denoted by $x \Rightarrow y$ and the largest element $a \in B$ such that $x \land a \leq y$ (if exists) is denoted by $x \Rightarrow y$. If, for every $x, y \in L, x \Rightarrow y (x \Rightarrow y)$ exists, then we say that L is a Heyting algebra (B-algebra). Further if, for any $x, y \in L$,

$$(x \rightarrow y) \lor (y \rightarrow x) = 1((x \Rightarrow y) \lor (y \Rightarrow x) = 1)$$

then L is called a L-algebra (P-algebra). For any $x \in L$, we write !x to denote $1 \Rightarrow x$, (if it exists), and call it the pseudosupplement of x. We refer to Birkhoff (1967) and Epstein and Horn (1974) for the elementary properties of these types of lattices.

By a sheaf of bounded distributive lattices we mean a triple (\mathcal{S}, π, X) satisfying the following :

- (1) \mathscr{S} and X are topological spaces.
- (2) $\pi: \mathscr{S} \to X$ is a local homeomorphism.
- (3) Each stalk $\pi^{-1}(p)$, $p \in X$, is a bounded distributive lattice.
- (4) The maps $(x, y) \mapsto x \lor y$ and $(x, y) \mapsto x \land y$ from

$$\mathscr{S} \lor \mathscr{S} := \{(x, y) \in \mathscr{S} \times \mathscr{S} \mid \pi(x) = \pi(y)\}$$

into \mathscr{G} are continuous.

(5) The maps $\hat{0}: p \mapsto 0(p)$ and $\hat{1}: p \mapsto 1(p)$ of X into \mathscr{S} are continuous where 0(p) and 1(p) are the smallest and largest elements of $\pi^{-1}(p)$ respectively.

We call \mathscr{S} the sheaf space, X the base space and π the projection map. We write \mathscr{S}_p for $\pi^{-1}(p)$ and call \mathscr{S}_p the stalk of \mathscr{S} at p. By a (global) section of the sheaf (\mathscr{S}, π, X), we mean a continuous map $\sigma : X \to \mathscr{S}$ such that $\pi \circ \sigma = id_X$, identity map of X. For any two sections σ and τ , $\{p \in X \mid \sigma(p) = \tau(p)\}$ is open. For the preliminary results on sheaf theory, we refer to the pioneering work of Hoffmann (1972).

By Spec L we mean the set $Y = \mathscr{P}(L)$ of all prime ideals of L with the hull-kernel topology; the topology for which $\{Y_x | x \in L\}$ is a base, where for any $x \in L$, $Y_x = \{P \in Y | x \notin P\}$. Throughout this paper X denotes Spec B, which is a Boolean space; a compact, Hausdorff and totally disconnected space. Since $a \mapsto X_a$ is a Boolean isomorphism of B onto the Boolean algebra of all clopen subsets of X, we identify a and X_a and write simply a for X_a . We write Y^m to denote the subspace of Spec L consisting of all minimal prime ideals of L with the relative topology. We write, for any $x \in L$, Y_x^m for $Y^m \cap Y_x$. For any $p \in X$, let \mathscr{S}_p be the quotient lattice L/θ_p , where θ_p is the congruence on L given by

$$(x, y) \in \theta_p$$
 if and only if $x \wedge a = y \wedge a$ for some $a \in B - p$

and let \mathscr{S} be the disjoint union of all \mathscr{S}_p , $p \in X$. For each $x \in L$, define $\hat{x} : X \to \mathscr{S}$ by $\hat{x}(p) = \theta_p(x)$, the congruence class of θ_p containing x. Topologize \mathscr{S} with the largest topology such that each \hat{x} , $x \in L$, is continuous. In this topology $\{\hat{x}(U) \mid U$ is a neighbourhood of $p\}$ forms a basis for the neighbourhoods of $\hat{x}(p)$. Define $\pi : \mathscr{S} \to X$ by $\pi(s) = p$ if $s \in \mathscr{S}_p$. The following theorem is the main tool used in this paper and is due to Subrahmanyam (1978) (see also Maddana Swamy (1974)).

THEOREM 0.1.

- (1) (\mathscr{S}, π, X) described above is a sheaf of bounded distributive lattices in which each stalk \mathscr{S}_p has exactly two complemented elements, namely $\hat{O}(p)$ and $\hat{1}(p)$.
- (2) For any $a \in B$, $p \in X$, $\hat{a}(p) = \hat{1}(p)$ if $p \in a$ and $\hat{a}(p) = \hat{0}(p)$ if $p \notin a$.
- (3) For any $x, y \in L$ and $a \in B$, $\hat{x}|_a = \hat{y}|_a$ if and only if $x \wedge a = y \wedge a$.
- (4) $x \mapsto \hat{x}$ is an isomorphism of L onto the lattice $\Gamma(X, \mathscr{S})$ of all global sections of the sheaf (\mathscr{S}, π, X) . We identify \hat{x} with x and write simply x for \hat{x} .
- (5) For any prime ideal P of L, there exists a unique $p \in X$ such that $P_p := \{x(p) \mid x \in P\}$ is a prime ideal of \mathscr{S}_p . On the other hand, if Q is a prime ideal of \mathscr{S}_p where $p \in X$, then $\{x \in L \mid x(p) \in Q\}$ is a prime ideal of L. This correspondence exhibits the set of all prime ideals of L as the disjoint union of the sets of prime ideals of the stalks. Moreover, if P and Q are prime ideals of distinct stalks \mathscr{S}_p and \mathscr{S}_q , the P and Q are incomparable when they are regarded as prime ideals of L.

Throughout this paper, by stalk $\mathscr{S}_p, p \in X$, we mean the stalk of the sheaf (\mathscr{S}, π, X) described above.

For any $x, y \in L$, we write $(x, y)_L^*$ for the ideal $\{z \in L \mid x \land z \leq y\}$ of L and by $(x, y)_B^*$, we mean the ideal $(x, y)_L^* \cap B$ of B. We write $(x)_L^*$ for $(x, 0)_L^*$. L is said to be dense if $(x)_L^* = \{0\}$ for all $0 \neq x \in L$. Following Cignoli (1971, 1978), L is said to be B-normal if, for any $x, y \in L, (x \land y)_B^* = (x)_B^* \lor (y)_B^*$, where \lor denotes the join operation in the lattice of ideals of B and L is said to be B-completely normal if, for any $x, y \in L$, $(x, y)_B^* \lor (y, x)_B^* = B$.

Since, for any $p \in X$, the stalk \mathscr{S}_p is dense if and only if $((x \land y)_B^* \not\subseteq p \Leftrightarrow (x)_B^* \not\subseteq p$ or $(y)_B^* \not\subseteq p$ for all $x, y \in L$, the following theorem is a consequence of the results of Cignoli (1971).

THEOREM 0.2. The following are equivalent.

(1) L is B-normal.

- (2) For any $x, y \in L$ such that $x \wedge y = 0$, $(x)_B^* \vee (y)_B^* = B$.
- (3) For any $p \in X$, the ideal (p) of L generated by p is prime.
- (4) For any $a, b \in B$, $a \leq b$, $[a, b]_L$: = { $x \in L | a \leq x \leq b$ } is B-normal.
- (5) For any $a \in B$, $[0, a]_L$ is B-normal.
- (6) Each stalk \mathscr{S}_p , $p \in X$, is dense.

Following Cornish (1972), L is said to be normal if every prime ideal of L contains a unique minimal prime ideal and L is said to be relatively normal if each interval [x, y] in L is normal. It can be observed that every *B*-completely normal lattice is relatively normal. But the converse is not true (see Theorem 0.4 below). If both L and L^d are normal (relatively normal), then we say that L is doubly normal (doubly relatively normal). The following is a routine verification by using the results of Cornish (1972).

THEOREM 0.3. The following are equivalent.

- (1) L is doubly relatively normal.
- (2) L is relatively normal and L^d is normal.
- (3) L is normal and L^d is relatively normal.
- (4) Spec L is a disjoint union of maximal chains.

Cignoli (1978) proved that every *B*-completely normal lattice is isomorphic with the lattice of all global sections of a sheaf of chains over a Boolean space. If *L* is *B*completely normal, then our stalks \mathscr{S}_p turn out to be chains (see Theorem 0.4 below) and our sheaf (\mathscr{S}, π, X) coincides with that of Cignoli (1978). In the following theorem, the equivalence of (1), (2) and (4) is proved by Cignoli (1978) (Theorem 2.1), (2) \Leftrightarrow (6) is proved by Subrahmanyam (1978) and the equivalence of (1), (3) and (5) follows from Theorem 0.3 and the fact that a dense distributive lattice has a unique minimal prime ideal.

THEOREM 0.4. The following are equivalent.

- (1) L is B-completely normal.
- (2) For any $x, y \in L$, there exists $a \in B$ such that $x \land a \leq y$ and $y \land a' \leq x$.
- (3) L is relatively normal and L^d is B-normal.
- (4) L is B-normal and L^d is relatively normal.
- (5) L^d is B-completely normal.
- (6) Each stalk \mathscr{S}_p , $p \in X$, is a chain.

1. Po-lattices

DEFINITION 1.1. (Traczyk (1963).) If there is a chain $0 = e_0 \le e_1 \le ... \le e_{n-1} = 1$ in L such that L is generated by $B \cup \{e_0, e_1, ..., e_{n-1}\}$, then we say that $\langle L; e_0, e_1, ..., e_{n-1} \rangle$ is a P_0 -lattice. In this case $\{e_0, e_1, ..., e_{n-1}\}$ is called a *chain base* for L.

From Theorem 0.4 above and from Theorem 5.6 of Maddana Swamy and Manikyamba (to appear), it follows that every P_0 -lattice is *B*-completely normal.

DEFINITION 1.2. Let $S \subseteq L$. Then we say that the set $\mathcal{P}(L)$ of prime ideals of L is determined by S if 0, $1 \in S$ and for each $P \in \mathcal{P}(L)$, there exists $s \in S$ and a minimal prime ideal $P_0 \subseteq P$ such that $P = (s, P_0]$, the ideal of L generated by s and P_0 .

THEOREM 1.3. Let L be a B-completely normal lattice, S a finite subset of L and $0, 1 \in S$. Then the following are equivalent.

- (1) S together with B generate L.
- (2) $s \mapsto s(p)$ is a surjective map of S onto \mathscr{S}_p for each $p \in X$.
- (3) $\mathcal{P}(L)$ is determined by S.

PROOF. (1) \Leftrightarrow (2) is an imitation of the proof of Theorem 5.6 of Maddana Swamy and Manikyamba (to appear).

(2) \Rightarrow (3): Let $P \in \mathscr{P}(L)$ and P_0 be the unique minimal prime ideal of L contained in P. Write $p = P_0 \cap B \in X$. Then it can be seen that $P_p := \{x(p) \mid x \in P\}$ is a prime ideal of \mathscr{S}_p . Since \mathscr{S}_p is a finite chain, there exists $s \in S$ such that $P_p = (s(p)]$. We show that $P = (s, P_0]$. If $x \in P$, then $x(p) \leq s(p)$, so that there exists $a \in B - p$ such that $x \wedge a \leq s$. Now $a' \in p$ and $x \leq s \vee a' \in (s, P_0]$ and hence $P \subseteq (s, P_0]$ and the other inequality follows from the fact that $\{y \in L \mid y(p) \in P_p\} = P$.

(3) \Rightarrow (2): Let $x \in L$ and $p \in X$. We may assume that $x(p) \neq 1(p)$. Then $(x(p)] \in \mathscr{P}(\mathscr{S}_p)$ so that $P = \{y \in L \mid y(p) \leq x(p)\} \in \mathscr{P}(L)$. Hence $P = (s, P_0]$ for some $s \in S$, where P_0 is the unique minimal prime ideal contained in P. Also, since $s \in P$, $s(p) \leq x(p) \neq 1(p)$ and hence $Q := \{y \in L \mid y(p) \leq s(p)\} \in \mathscr{P}(L)$. Now $Q \subseteq P$ and hence $P_0 \subseteq Q$. Since $s \in Q$, we have $P \subseteq Q$ and hence P = Q. Therefore $x \in Q$, so that $x(p) \leq s(p)$. Hence x(p) = s(p). Thus (2) follows.

THEOREM 1.4. Let L be a B-completely normal lattice. Then the following are equivalent.

- (1) L is P_0 -lattice.
- (2) $\mathcal{P}(L)$ is determined by a finite subset of L.
- (3) $\mathcal{P}(L)$ is determined by a finite chain in L.

PROOF. (1) \Leftrightarrow (3) follows from the above theorem and Theorem 5.6 of Maddana Swamy and Manikyamba (to appear) and (3) \Rightarrow (2) is clear.

 $(2) \Rightarrow (3)$: Let S be a finite subset of L which determines $\mathscr{P}(L)$. For each $p \in X$, since $s \mapsto s(p)$ is a surjective map of S onto \mathscr{S}_p , there exists a partition $\alpha_p = \{A_{1p}, A_{2p}, ..., A_{n_pp}\}$ of S such that, for $1 \leq i \leq n_p$, x(p) = y(p) for all $x, y \in A_{ip}$ and x(p) < y(p) whenever $x \in A_{ip}$ and $y \in A_{i+1p}$. Hence there exists $a_p \in B - p$ such that, for $1 \leq i \leq n_p$, $x \land a_p = y \land a_p$ for all $x, y \in A_{ip}$ and $x \land a_p \leq y \land a_p$ whenever $x \in A_{ip}$ and $y \in A_{i+1p}$. Hence there exists $a_p \leq B - p$ such that, for $1 \leq i \leq n_p$, $x \land a_p = y \land a_p$ for all $x, y \in A_{ip}$ and $x \land a_p \leq y \land a_p$ whenever $x \in A_{ip}$ and $y \in A_{i+1p}$. By the usual compactness argument in the Boolean space X, there exist a partition $\{a_1, ..., a_k\}$ of B and partitions $\alpha_j = \{A_{1j}, A_{2j}, ..., A_{n_jj}\}$, $1 \leq j \leq k$, of S such that, for $1 \leq i \leq n_j$ and $1 \leq j \leq k$, $x \land a_i = y \land a_j$ for all $x, y \in A_{ij}$ and

 $x \wedge a_j \leq y \wedge a_j$ whenever $x \in A_{ij}$ and $y \in A_{i+1j}$. Put $n = \max_{1 \leq j \leq k} n_j$. If, for any j, $n_j < n$, then we write $A_{ij} = A_{n,j}$ for all $n_j < i \leq n$. Choose $x_{ij} \in A_{ij}$ for $1 \leq i \leq n$ and $1 \leq j \leq k$ and write $e_i = \bigvee_{j=1}^k (x_{ij} \wedge a_j)$ for $1 \leq i \leq n$. For any $p \in X$, $p \in a_j$ for exactly one j and hence $e_i(p) = x_{ij}(p) \leq x_{i+1,j}(p) = e_{i+1}(p)$, which shows that $\{e_1, ..., e_n\}$ is a chain in L. Now, let $x \in L$ and $p \in X$. Then there exists $s \in S$ such that x(p) = s(p). Choose j, $1 \leq j \leq k$, such that $p \in a_j$. Then $s \in A_{ij}$ for some i, $1 \leq i \leq n$, so that $x(p) = s(p) = x_{ij}(p) = e_i(p)$. Hence, by Theorem 1.3 above, it follows that $\{0, e_0, e_1, ..., e_n, 1\}$ determines $\mathcal{P}(L)$.

2. P₁-lattices

DEFINITION 2.1. (Epstein and Horn (1975).) A P_1 -lattice is a P_0 -lattice $\langle L; e_0, e_1, ..., e_{n-1} \rangle$ such that $e_{i+1} \rightarrow e_i = e_i$ for $0 \leq i \leq n-2$.

DEFINITION 2.2. If $C = \{x_0 < x_1 < ... < x_m\}$ is a finite chain and *n* is a positive integer, then by the *n*th element of *C* we mean x_n if n < m and x_m if $n \ge m$.

THEOREM 2.3. Let L be a B-completely normal lattice and each maximal chain of prime ideals of L contains at most n-1 elements. Then L is a P_1 -lattice if and only if, for any $x \in L$ and $0 \leq i \leq n-1$, $G_{ix} := \{p \in X \mid x(p) \text{ is the ith element of } \mathscr{G}_p\}$ is open.

PROOF. (Thanks to the referee for suggesting this proof which is simpler than the original one.) Suppose L is a P_1 -lattice. Then by Theorems 7.5 and 3.3 of Epstein and Horn (1975), there exist $e_0, e_1, ..., e_{n-1}$ such that $\langle L; e_0, e_1, ..., e_{n-1} \rangle$ is a P_1 -lattice. Now $e_i(p) = e_{i+1}(p)$ implies $e_i(p) = 1(p)$ because, if $b \in B - p$ is such that $b \land e_{i+1} \leq e_i$, then $b \leq e_{i+1} \rightarrow e_i = e_i$. Therefore, by Definition 2.2, $e_i(p)$ is the *i*th element of \mathscr{S}_p . Hence G_{ix} is open.

Conversely suppose G_{ix} is open for all $x \in L$ and $0 \le i \le n-1$. Hence there exists a chain

$$0 = e_0 \leqslant e_1 \leqslant \dots \leqslant e_{n-1} = 1$$

in L such that $e_i(p)$ is the *i*th element of \mathscr{P}_p for all $p \in X$ and $0 \leq i \leq n-1$. Since, for any $x \in L$ and $p \in X$, $x(p) = e_i(p)$ for some $i, 0 \leq i \leq n-1$, by Theorem 1.3 above, $\langle L; e_0, e_1, ..., e_{n-1} \rangle$ is a P_0 -lattice. Suppose $x \land e_{i+1} \leq e_i$. Then either $x(p) \leq e_i(p)$ or $e_{i+1}(p) \leq e_i(p)$ and in the later case, $e_i(p) = 1(p)$. Hence $x(p) \leq e_i(p)$ for all $p \in X$, so that $e_{i+1} \rightarrow e_i = e_i$. Thus $\langle L; e_0, e_1, ..., e_{n-1} \rangle$ is a P_1 -lattice.

3. P₂-lattices

DEFINITION 3.1. (Epstein and Horn (1975).) A P_2 -lattice is a P_1 -lattice $\langle L; e_0, e_1, ..., e_{n-1} \rangle$ such that $|e_i|$ exists for all *i*.

The following theorem is a consequence of Definiton 4.3 of Epstein and Horn (1975) and Theorem 4.3 of Maddana Swamy and Manikyamba (to appear).

THEOREM 3.2. L is a P_2 -lattice if and only if L is a P_1 -lattice and for any $x \in L$. $\{p \in X \mid x(p) < 1(p)\}$ is open.

DEFINITION 3.3. Let L be aB-completely normal lattice and let each maximal chain of prime ideals of L be finite. For each $p \in X$, let n(p) be the number of prime ideals of L which contain p. We say that $\mathcal{P}(L)$ satisfies the continuity axiom if $p \mapsto n(p)$ is a continuous map from X into Z with the discrete topology (where Z is the set of all integers).

Observe that, if L is a Store lattice B-completely normal, then $p \mapsto (p)$, the ideal in L generated by p, is a homeomorphism (see Maddana Swamy and Manikyamba (1979), Theorem 4) of X onto Y^m .

REMARK 3.4. Epstein and Horn (1975) gave an example of a *P*-algebra *L* which is not a P_0 -lattice. We observe that it is only because $\mathcal{P}(L)$ does not satisfy the continuity axiom.

THEOREM 3.5. Let L be a P-algebra. Then L is a P_2 -lattice if and only if $\mathcal{P}(L)$ satisfies the continuity axiom and there exists an integer n such that each maximal chain in $\mathcal{P}(L)$ has at most n-1 elements.

PROOF. Suppose $\langle L; e_0, e_1, ..., e_{n-1} \rangle$ is a P_2 -lattice. Suppose n(p) = i. Then

$$e_0(p) < e_1(p) < \dots < e_i(p) = 1.$$

Now for any $x \in L$, it is clear that x(p) = 1(p) if and only if $! x \in B - p$. Therefore $!e_{i-1} \in p$ and $!e_i \in B-p$. Let $a = !e_i - !e_{i-1}$. Then $p \in a$ and for all $q \in a$, $!e_i - !e_{i-1} \in B - q$, so that $e_{i-1}(q) < e_i(q) = 1(q)$. Thus n(q) = i for all $q \in a$ and the continuity axiom is proved. Conversely suppose $\mathcal{P}(L)$ satisfies the continuity axiom and each maximal chain in $\mathcal{P}(L)$ has at most n-1 elements. Since $p \mapsto (p)$ is a homeomorphism of X onto Y^m and since for any $p \in X$, $|\mathscr{S}_p| = n(p) + 1$, to each $p \in X$, there exists $a \in B - p$ such that $|\mathscr{S}_p| = |\mathscr{S}_q|$ for all $q \in a$. Hence there exists a partition $\{a_1, ..., a_k\}$ of X such that $|\mathscr{S}_p| = |\mathscr{S}_q|$ for all $p, q \in a_i$ and $1 \le i \le k$. Hence $L = \prod_{i=1}^{k} \Gamma(a_i, \mathscr{S})$, where $\Gamma(a_i, \mathscr{S})$ is the lattice of all sections of the clopen set a_i into \mathscr{S} . By Theorems 16 and 17 of Epstein (1960), $\Gamma(a_i, \mathscr{S})$ is a Post algebra and hence by Lemma 4.9 of Epstein and Horn (1975), it follows that L is a P_2 -lattice.

The following lemma is due to Maddana Swamy and Manikyamba (to appear).

LEMMA 3.6. L is a B-algebra if and only if $\{p \in X \mid x(p) \leq y(p)\}$ is clopen for every $x, y \in L$.

104

THEOREM 3.7. Let L be a B-completely normal lattice satisfying the continuity axiom and suppose each maximal chain in $\mathcal{P}(L)$ has finite length. Then the following are equivalent.

L is a P₀-lattice.
L is a P₁-lattice.
L is a P₂-lattice.
L is a B-algebra.
L is a P-algebra.

PROOF. (3) \Rightarrow (2) \Rightarrow (1) is clear and the equivalence of (4) and (5) is immediate by the definition, since L is B-completely normal. Further, (5) \Rightarrow (3) is proved in the above theorem. Now we are left with the proof of (1) \Rightarrow (4).

Suppose $\langle L; e_0, e_1, ..., e_{n-1} \rangle$ is a P_0 -lattice. Let $x, y \in L$ and $p \in X$ such that x(p) < y(p). Now, write

$$\mathscr{S}_{p} = \{ 0(p) = e_{0}(p) \leq e_{1}(p) \leq \dots \leq e_{n-1}(p) = 1(p) \}.$$

Choose integers $i_1 < i_2 < ... < i_k$ such that

$$e_0(p) = \dots = e_{i_1 - 1}(p) < e_{i_1}(p) = e_{i_1 + 1}(p) = \dots = e_{i_2 - 1}(p) < e_{i_2}(p) = \dots$$

Since $\mathscr{P}(L)$ satisfies the continuity axiom, there exists $a \in B - p$ such that $|\mathscr{S}_q| = |\mathscr{S}_p|$ for all $q \in a$. Also, for each i_j , there exists $a_{i_j} \in B - p$ such that $e_{i_j} \wedge a_{i_j} = c_{i_{j+1}-1} \wedge a_{i_j}$ and hence there exists $b \in B - p$ such that $e_{i_j} \wedge b = e_{i_{j+1}-1} \wedge b$ for all i_j . Now there exists j < k such that $x(p) = e_{i_j}(p)$ and $y(p) = e_{i_k}(p)$. Hence there exists $c \in B - p$ such that $x \wedge c = e_{i_j} \wedge c$ and $y \wedge c = e_{i_k} c$. Clearly $p \in a \wedge b \wedge c$ and, for any $q \in a \wedge b \wedge c$, if x(q) = y(q), then $e_{i_j}(q) = e_{i_k}(q)$ which implies that $|\mathscr{S}_q| < |\mathscr{S}_q|$, which contradicts the fact that p, $q \in a$. Therefore x(q) < y(q) for all $q \in a \wedge b \wedge c$. Hence $\{p \in X \mid x(p) < y(p)\}$ is open. Thus L is a B-algebra, by Lemma 3.6. This proves the theorem.

The authors thank the referees for their valuable comments.

References

- G. Birkhoff (1967), Lattice theory (3rd ed., A.M.S. Colloquium Publications, Amer. Math. Soc., Providence, R.I.).
- R. Cignoli (1971), 'Stone filters and ideals in distributive lattices', Bull. Math. Soc. Sci. Math. R. S. Roumanie 15, 131-137.
- R. Cignoli (1978), 'The lattice of global sections of sheaves of chains', Algebra Universalis 8, 357-373.
- W. H. Cornish (1972), 'Normal lattices', J. Austral. Math. Soc. 14, 200-215.
- G. Epstein (1960), 'Lattice theory of Post algebras', Trans. Amer. Math. Soc. 95, 300-317.
- G. Epstein and A. Horn (1974), 'P-algebras, an abstraction from Post algebras', Algebra Universalis 4, 195-206.
- G. Epstein and A. Horn (1975), 'Chain based lattices', Pacific J. Math. 55, 65-84.

[9]

- K. H. Hoffman (1972), 'Representation of algebras by continuous sections', Bull. Amer. Math. Soc. 73, 291-373.
- U. Maddana Swamy (1974), Representation of algebras by sections of sheaves (Doctoral thesis, Department of Mathematics, Andhra University, Waltair, India).
- U. Maddana Swamy and P. Manikyamba (1979), 'Prime ideal characterization of Stone lattices', Math. Sem. Notes, Kobe Univ. 7, 25-31.
- U. Maddana Swamy and P. Manikyamba 'Representation of certain classes of distributive lattices by sections of sheaves', Internat. J. Math. and Mathematical Phys, to appear.
- N. V. Subrahmanyam (1978), *lectures on sheaf theory* (Lecture Notes, Department of Mathematics, Andhra University, Waltair, India).
- T. Traczyk (1963), 'Axioms and some properties of Post algebras' Colloq. Math. 10, 193-209.

Department of Mathematics, Andhra University, Waltair-530003 India

106