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SPHERICAL FUNCTIONS
ON ORTHOGONAL GROUPS

YASUHIRO KAJIMA

Introduection

Let G be a p-adic connected reductive algebraic group and K a maximal com-
pact subgroup of G. In [4], Casselman obtained the explicit formula of zonal spher-
ical functions on G with respect to K on the assumption that K is special. It is
known (Bruhat and Tits [3]) that the affine root system of algebraic group which
has good but not special maximal compact subgroup is 4,, C,, or B, (n > 3), and
all B,-types can be realized by orthogonal groups. Here the assumption “good” is
necessary for the Satake’s theory of spherical functions.

Thus in this paper we write down explicitly the zonal spherical functions on
all p-adic (we assume that p does not lie over 2 for the convenience of calculation)
orthogonal groups but the case of even dimensional split orthogonal groups (this
case is contained in the work of Casselman) and determine the image of Satake
transform. To do so, we use Macdonald’s idea by which he has obtained explicit
formula for the p-adic Chevalley group.

Now we recall briefly some basic notion of Satake transform. Let L(G) be the
set of all compactly supported continuous functions on G with values in C. We
put

LG, K) ={fe LG | flugn) = f(g) forall u,u €K, ge G).

For f,, f, € L(G, K), we define their product by the convolution

i) @ = [ fleeT fe)de,

where g € G, and dg, is the bi-invariant Haar measure on G normalized by the
condition that the volume of K is equal to 1. The multiplication gives the structure
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of C-algebra to L(G, K). The algebra L(G, K) is called local Hecke algebra of G
with respect to K. A complex-valued function w is called a zonal spherical func-
tion if w is continuous, not identically zero, satisfies the condition that

w(g)w(g,) = j}; w(g kg, dk,

for all g,, g&, € G. Now the Satake transform of f € L(G, K) with respect to a
zonal spherical function w is given by

f=7= [ ordg.

It is known that the transform above is an isomorphism from L(G, K) onto a
polynomial ring. Since each element of L(G, K) is written as a finite sum of the
characteristic functions of sets KgK for g € G and the zonal spherical function is
constant on KgK, we have only to know the explicit formulae of the zonal spheric-
al functions and the volume of KgK to obtain explicit formula of Satake transform.
We determine the explicit formulae of the zonal spherical functions in Section 2
except for even dimensional split orthogonal groups and calculate the volume KgK
in Section 3.

NotaTioN. Let k be a p-adic field where p does not lie over 2. We denote the
maximal order in k by o and its prime ideal by p = (II). We denote by I, the
identity matrix of degree #. For a topological group G, we denote the volume of a
set SC G for a given Haar measure by volg(S). We omit the index G in
vol;(S) if there is no confusion.

§1. Definitions and properties of fundamentals

1.1. Let V be a right vector space over k of dimension #, and <> a
non-degenerate symmetric bilinear form on V with Witt index v. We put #, = »
— 2v. In this paper we treat only the case where #, # 0 as mentioned in the in-
troduction. There exists (not uniquely determined) a system of vectors {e,, e}
(1 £ ¢ <) such that

e, e =<ej, e =0 e, ep =0, foralld,j,
(0y; is Kronecker’s symbol). Put

Vo= Zek+ Zek), Ly={x < V,|{x, 2> €0}, L= Zep + Zejp+ L,
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Then V, is anisotropic and L is a maximal lattice of V. There is an orthogonal sys-
tem of vectors {f} (1 < i < ny) such that

O Ly= 2 fo, ord, (<, ) < ord, (<o, ) < +++ < 0rd, (< i)

We define a as the non-negative integer such that

(2) ord, ({fo, £2) = < 0rd,({fysy, fo?) = 1.

We also put

(3) B=mn,— a.

Hereafter we fix this basis {ey,...,e, £, .. .,f,,o, e,...,e}} of Vand identify the

algebra End, (V) with the matrix algebra M, (k). Then the symmetric bilinear
form ,) is represented by the matrix

0 0

Kl

}ng,

o | O

0
I | o

where we set

1
S, = diag({f, £, .., o fo?) EM,,o(k),ip=< )
1

By the well-known theory of quadratic forms on local fields, we may assume that
S, is one of the following matrices:

n,=1) D, @, (W, (ur)
w=2 (1) (b (o) ) (o)
T um T —u ur um

(n, = 3) —u |, —u o7 R 4

(n, = 4)
— um

where # is a representative of ox/(Ox)z. Let G and G, be orthogonal groups of
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similitudes of V and V, respectively, with respect to {,», that is,

G=1{ge GLV) |'gSg = u(@ S}

(4)
G, = {g, € GL(V,) |tg050g0 = po(gy So}-
As in [7] we define three subgroups K, H, and N as follows:
(5) K:={keGlkL=L ={k <G|k, k' € GL(n, o)}

(6) H := (diag(&,,..., &, hy, tte(h)E ..., te(h) &) € G| & € K", hy € G}

0 0
(7) N:i={n= * | I, 0 € G},
* I'A7

where A is a lower unipotent triangular matrix. This K is a good maximal compact
subgroup of G. In fact, K is a special good maximal compact subgroup of G except
for the case n, = 8 < 2. However, it is known that K is not special in the case of
n, = B < 2. In other words

Remark 1 . The maximal compact subgroup defined above is good but not
special if and only if (a, 8) = (0,1) or (0,2).
We define the symbol e, and the group M by

2 2
ordy(Q) = % M=1Z" % L

It is easy to see that ¢, =2 if « =3, and ¢, = 1 if &« # B. For (m) = (ml,...,
m, . (m)
my, o € M, we define I as follows:
0
0™ = diag(@™, ..., I™, 0™, gw)™ ™, ..., po(w)™ ™™,

2
where w denotes an arbitrarily fixed element of G, such that Ol‘dpﬂo(w) =2 We
0

denote by D the subgroup in H generated by H(M), for (m) € M. We consider any
character s of D as a character of H by putting s(h) =1 for al € H,= HN
GL(n, 0). It is known ([7]),

G = KHK = KDK (Cartan decomposition),
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= KHN = KDN (Iwasawa decomposition).
We define the modular function ¢ on H by
8) d(hnh™)/d(n) = &7 (h).
For a character s of D, we define a function ¢, on G by
9 ¢, (khn) = s()d"*(h) (k€ K,h€ H,n€N).

Then the zonal spherical function w, on G is defined to be
(10 0™ = [ gabdk, @< 6)
K

where the Haar measure dk on K is normalized such that vol(K) = 1. It is trivial
that ¢, is a multiplicative function on H. Since any #° € H normalizes N, we have

11 ¢ (k) = ¢ (khmh') = ¢ (khh'n) = ¢ (W) (W) = ¢s(x) $s(h),

where x = khn, 0’ = b’ 'nl’.

1.2. Now we prepare some notion. The group K, H, and N, are the same as
defined in Section 1.1. In a v-dimensional vector space R’ with standard basis
{e,,..., &), the root system 2 of B, -type is given by

X=A{te, e xel1<4,7< v, i+
A set of positive roots and a set of simple roots of 2, are given as follows:
St=Ae, e tene—el1<i<y 1<<k<y),
{e,, 6, — 6 1< i< v— D}

Also define X~ = X\ Z*. For any simple root @ € 2.7, we define an isometry
w, of R”, which we call simple reflection, by

w,(@) =—a, and w, (" \a) =X \a.

We define the Weyl group as the group W generated by w,, a € > Now let
w=w,... w, € Whe a “reduced” word, that is to say, w,’s are simple reflections,
and w is not a product of #” simple reflections for #” < 7. We call 7 the “length” of
w and denote it by [(w). It is known that if w = w, ... w,_,w, is a reduced word
where w, = w, for a simple root @ € >, than we have

(12) (w, ... w,_)a€ X" and wa= (w, ... w, ) (—a) €2
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(cf. [8, p.216]). For a simple root a, we define automorphism w'® on M and w(a)
€ GL(V) as follows:

W& = My Myyrs My = My
m,—m; GFi,i+ 1),
2
w(,s”)::[mu—»——mu-ke—omo,
m,—m; (J # v).
13 Crrvvy s fryeens frp €he s Qe — €14)
S ey iy Ciyrs €y @y frae i S @iy €y €y s ).
14 (e, vy € frreeos fup €e s eDw(e)
= ey bny € — S fore s S € €ys oy €D

Denote by W,, (resp. W,) the group generated by w'® (resp. w(a)). Then W = Wy,
= W,, and we identify them if there is no confusion. It is easy to see that

(15) wlI™w? =10 forwe W.
Thus, since W C K, we can take

" m . m,
(16) x=H()ED,(m)=(m1,...,m,,,e—°)w1thm12...Ze—o
0 0
as the representatives of double cosets K\ G /K. Therefore we have only to evalu-
ate w,(x) for x € D of the form above.

Now we define nilpotent matrices M(E ¢; T ¢)(#), and M (£ e)(® 1 < h
< ny for t € k as follows:
tifr=i,s=j,
M, —¢e)®) =m,), m,=|—t itr=n+l—j,s=n+1-—1,
| O otherwise.
tifr=4,s=n+1-—j,
M@E, +e)®) =0my), me=|—t ifr=j,s=n+1—1,
| O otherwise.
M(—¢,—e)(® ="M, + &) .
—Kf, f ifr=i,s=v+h,
M, (e) @) = (m,y), m, = t ifr=v+hs=n+1-—1,
0 otherwise.
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—Kf fy ifr=n+1—14,s=v+h,
M (—e)® = (m,y), m,, = t ifr=v+h,s=1,
0 otherwise.

Also define exp M for nilpotent matrices M € M, (k) by

2
expM=1+—J¥+%—+-~-.

Now we define subgroups U;(£ €), Uy, Uiesey 0of G by
Ul(te):={expM,(£e)®|te k}
(17) Uey = Ule) -~ U, (&), U_,, = Uj(—=¢) -+ Uy (—¢)
U(:ts,d:e,—) = {eXD M(i g; + 87) (t) I tE€ k).

It is easy to see that for some fixed 2 € {1,..., v}, U,(¢,) commute with each
other, which implies that Uy, (resp. U._,,) is a group. The fact that Uy, .., are
groups is trivial.

Remark 2. The ((+ v, n+1—v)-entry A <i<m)of u=u, " - u, €
U, is the same as that of u,.

For u = (u,,) € Uy, (resp. U,,)), we put

ord,u = ord,(#;,,,_;) (resp. ord,u = ord, (s,,,_;)).
Similarly we define ord,u for u = exp M(£ ¢, T ¢) (9 by
ord,u = ord,t.
We define
UpW :={u€ U, |ordu > 1.

Then Uy, (D), (@ € 20) are subgroups and we have foralla € 22, w € W
(18) WU D™ = Upey D, and wU,yw ™" = Uyy).

For [ > 0, we define U*(I) (resp. U™ (I)) to be the subgroup of K generated by
UpD,a€ X" (resp. Upy(D, a € X7), ie.,

Ur(D) = U,y a€ ZH, U ()= Uy lac Z7.
Moreover we define

U= U, lae Z5.
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It is easy to see that U (0)-H,- U~ (1) = H’-U*(0)- U~ (1) is a subgroup of K
where Hy = H N K, which we denote by B :

(19) B:=U"0)-H,U (1) =H,U'0)-U Q.

Now we write down some groups defined above explicitly.

n+1l—1i
Vv
I, |*%%%| % <i
*
Uy, =f{uweGlu= 0 I, * H
®
0 0 L

where diagonal blocks are identity matrices, *’'s are on the i-th row or the (» +
1 — ¢)~th column, and entries in the 1 X 3 block is zero except for (¢, » + 1 —
1) -entry, other entries are zero.

At | c" | D"
Uty = {u = 0 | L, | E" |€GlA"—1I,B"~1,D", € M)},
0| 0 | B
A 0 0
UW={w=| C |I, | 0 |€GIA~1,B —1,D7, €M),
D | E | B
where A" and B (resp. A” and B") are upper (resp. lower) unipotent triangular
matrices.
* % '
% % | % % v
0 * *
0 * i * Y
B={ecK|lb= mod p},
* | % %
0 0 | =* % )
0 *

where (1,1) and (4,4) blocks are upper triangular matrices, (2,1), (4,1) and (4,2)
blocks are zero matrices. (It turns out that (1,3), (2,3), and (4,3) blocks are con-
gruent to zero matrices mod p.)
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Remark 3. Put, Uf(e,)) () := Uj(e,) N Ug,(D), and

u=u ... u, € U, (decomposition in (17)).

Since <¢}, ¢,> = 0, we have
fwp + 0+ foly, h + o Sy = — 2y

where y is the (v, # + 1 — V) -entry of %, and z; is (v + ¢, » + 1 — v)-entry of
u;. This equality implies [3, Theorem (10.1.15), Proposition (10.1.12)] that

(20) ord,{fiz, fix> = ordy =1
for all i (1 < i< ny. Since — {fx;,, frix>/2 is the (v, n + 1 — v)-entry of u,
we have
u; € Ul(e,) (D) for all 1.
Therefore
21) [V (® : Uy o] = T U/) D : Uste) om)).

Now we state the following theorem of Hijikata which is used later.

TueoreM H (Hijikata [5, p.33]). The maximal compact subgroup K is decomposed
as follows:

K = U BuwB (disjoint union).

wew

Remark 4. 1In [5] Hijikata proved the Bruhat decomposition in more general
situation. But we use Hijikata’s theorem in restricted form as above. In our case,
the Theorem H is proved by straightforward calculation.

Now as the Lemma 2.6.2 in [6], we know

(22) U')= 1 Uy, and U" = T U,,
aez* aez*

(23) (resp. U () = 1 Uy (D,and U =N= 11 U,)
aez” aez”

where we can take the products above in an arbitrary order. Moreover, for any
simple root 2 € =" and [ = 0, we put

(24) U= T Up®, U= 11 Uy,

bexzt\{a} bez*\{a}
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(25) U= N U,W,and U= M U,.

beZ™\{-a} bez™\{—a}

Then these groups are written as semidirect product as follows:

(26) Ur() = U, - UL, U = U, U2,
(27) U)=U,0-UW,and U = U, U7,

where U:a)(l), U:a), US®(), and U are normal subgroups of UT(), UY,
U™ (D), and U", respectively. Thus we have

+ . @ __ @
du” = duyy-du, = du, du,,

28
28) du_ = du_, du"® = du"du_,

for any simple root @ € >, In the following, we assume that

vol(U*(0)) = vol(U,,(0)) = vol(UL(0)) = 1.
Now define the modular function d,(h) for # € H, and a € 2. by

(29) 8, () = d(hu,h ™)/ dug,.

Then it is easy to see that

(30) 0,(h) -6_o(m) =1, and 8,(h) -6, (whw; ") = 1,

for any simple root @ € X", Also define

(31) 3*(h) = dhu'®h™")/ du'?,

for h € H, and @ € 2*. Then we have

(32) 6“(m) -0,(h) = 6(h)

for any simple root a € X",
Now for any simple root a € 3., z € I™, and w, € W, we have

(33) d(wzw, u" (waw, ™)
= d((wzw, ") g, wzw, ") ™) - d((wzw, Dul (w,zw; ™)
= 0,0 "du, d(wzw,Yu? waw )™ (by (30))
=0, dug, dxulz™) = 6,0 " duy, 0" (@) du'”
=0, (2)-0(x)-du". (by (32))

Since (33) is equal to d(w,xw, )du" by definition, we have
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(34) 0(wxw;")/0(x) = (0,(x) "

§2. Calculations of spherical functions

2.1. We now calculate the zonal spherical function ws(x_‘). We put V, =
vol(BwB) where vol(K) = 1. For the convenience of notation, we define

(35) I0,:=10"" €D, mi) e M

(36) (e, — g,y ‘=1, and [I(g) :=1II,

where m(v) = (0,_;, 1,00, m(®) = (0,_,, 1, — 1, 0,_) if i # v. (Here O, is a zero
matrix in M(1, 7).) Let £ = I, such that

m 1
(m) = (ml,..., m,, e—:) with m; = -« Zmuze—omo.

Note that x above satisfies the conditions

U N2 ' CcU W, zUy,» -z CUy,®
and
(37) x: U(—a)(r)x_l D Uiy

for any positive root @ € 2" and any integer 7.
Morever it is easy to see that

(38) w U (1) w<B,andw*Hyyw=H,C B
for every w € W (H, = H N K). Thus we have from the decomposition (19),
(39) Bw-B=U"(0)-wB.

Now for a character s of D, the value of the zonal spherical function wq in

Section 1 at z = II™ above is

(40) w,(z7) = f o (xl)dk = X f ¢,(xk)dk (by Theorem H)
K weW YBwB

=3 v, fB & (zwb) db,

wew

(by (38) and (39), using zU*(0)z™" < U*(0) < K,) where db is normalized as
vol(B) = 1. Then we have
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(41) w,z) =32 Vw'f ¢, (xwu)du”,
Ut

wew

where vol(U*(0)) = 1. Putting ' = w™'zw, we have
+ + -1 + +
(42) »[f*(@ ¢ (xwu ) du” = Lw«» ¢s(w™ zwu")du
= f ¢ (xutz ) dut = (s6"%) (x") f o (x'utx ™ du*
U*(0) Ut
= (56" (@707 @) bu)du’ = (557 @) [ ¢, (u")du”.
2’ Ut (O™t z’ Utz ™!

Here for any character x of D and w € W, we define a character w(x) (or
simply wy) of D by

(43) wy (d) = x (w ™ dw).
Then (42) = w(s6™"%) (2) f ¢, (u")du". We denote this by J,(s), ie.,
2’ Ut (02
J,(8) = w(sd™"?) (x) ¢ (u)du” <= f ¢s(xwu+)du+>.
Ut (0! Ut

Then we have from (41)

(44) w@™) = ZW Vi T ().

Remark 5. Since U*(0) is compact, K is open, and G = KHN, there exists a
finite set {#,#,} C HN such that z'U"(0)2’™" is contained in the union of the sets
Khn, Thus we have

J.(8) = w(ss™?) (2) - Z vol(Kh,n, N U0z 56" (h)
where vol(U*(0)) = 1. In other words, J,(s) € R[(s) @I)*,..., (s L) *1.

The computation of w,(z ") is reduced to the integrals J,(s), w € W. Let us
continue the calculation. If w = 1 (= identity), we have

(45) J.(8) = J, () = (56" ()

using the fact that zU(0)z™" € K (by (37)). Now assume w # 1. Then there ex-
ists a simple root @ € X.* such that
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(46) wa € 27, w= w'w, with [(w) = l(w) + 1.
Then 2'U*(0)2"™" can be written as a semi-direct product of
Z:=z ULz " and Z,:= 2'Uy, 0)2"™

uniquely. Therefore we have

(47) J.(s) = w(sd™"% (x)-j;aj;qu(u”ua)duidua

_ —-1/2 a a _ a a

= (w(sé )(x))( _/; s fU m)qﬁs(u u,)du. du, j; . j;] m)\zaqﬁs(u u,)du +dua).
Putting

1 _ -1/2 a a
(48) i = w6 @ [ [ su)diidu,
0 . ~1/2 a a

(49) Jos) = w(s™) @) fZ ] fU B i,
we have
(50) Jo(8) = Ju(®) = J,Gs).

Now we define C,(a, s) for any simple root @ € X" by
(51) Coa, 9= [ g,u)du,
@

We did not care the convergence of integrals, but it is easy to see that if
| s(Il(@)) | > 1 for a simple root a (see (36)), then Cy(a, s) and all integrals are
absolutely convergent, and so, our calculations above are justified.

2.2. In this section, we give relations of J,, ],3» ],j, and Co(a, s). We prepare
several lemmas.

LEMMA 1. In the notation as before, we have

(52) Jo® = @Y @ws™ @ [ g.wdu,

Wq.

-1 -1
where Z° = 2’ UL Q)2 ™, 2’ = w xw, w = w'w,.

Proof. We put x, = w' 'zw’ = w,x’'w,". Since w, Uf0)w, = U{(0) (sce
(18) and (24)), we have
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w, 2w, = w, 2’ ULz w,' = 2, U0z
Since w'a € 27, we have u)’U‘,(O)w’—1 =U,,0) c U™ (0) (by (18)). Thus
(53) w U,z € wzU" O™ 'w < w ' U Ow € K,

where we used (37). Therefore we have

T, () = w(s67) (@) f

2, U 4(0)z7!

f o, (u'u,) du,du;,  (by (47))
T, U% 07!

(54)
= w5 @ [

ZaZ

s ¢, W) du’ X (volume of x,U,(0)x; ).

Since  vol(Ug (0)) =1, vol(U”(0)) =1 and vollz,Ug, Oz ") = 8,(z) =
d(xu e )/ d(ug) (see (29), we have

(54) = w'(s6™*) (2) -6 (x) 6™ (w; " x,m,) f . S @hdu® (by (34))

= WIDWo™N@ [ pwdu’ by wu, = w. O

waZ %W,
LemMA 2. Let a € X7 be a simple root, ie., a =€ — €4, or &, Then a
non-zero element 4 of Uy, is decomposed in G as follows :
(55) w=hyw((@) 2z, for y,z2€ U_,»
(see (36)), where v = — ordpu, he Hy=HN K

Proof. The lemma is easily proved as the proof of G = UHN in Satake [7].

II
We only note the following decomposition for the case where S, = ( _ uII)'

and # = 4.
1 —Ia Mub A All 1
1 0 a _ hl h2 Ma 1
1 b h3 h4 - 0 1
1 (A~ Al —M'Mae — I'Hub 1
1 m 1
« -1 1 a/A 1
1 1 b/A 0 1 '
1 I 1/A —a/A Tub/A 1
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where A=HOwd*—d?)/2, W =1, '=0",hl=—Ma’ /A~ 1, h2 = —
Habu/A, h3 = — llab/A, and hd = 1 — [ub’/A. O

LEMMA 3.  In the notation as above, we have

fU L, B, = (Cola, 9= D (w9 @)™ (W) @).

Proof. For u, € Uy,\ U, (0), we have from Lemma 2,
u, = by w, [a)" 2,

where h€ HN K, y, 2 € U_,, Since ord,u, <0, we have ordyy = ordz =
— ord,u, > 0, and hence y, 2 € U, (0) C K. It is easy to see that

(56) rhr' ' €K,

and we have b:= w(— a) € X" by virtue of the choice of w ((46)). Thus recall-
ing (18) and (37), we have

(57) xyx’ = w zwyw 'z " w € w2 U,, (0w C w U 0)w C K.
From (56), (57), and w, 'z’w, € H, we have
(58) ¢ (' ux’™) = ¢ (w; 2w, (@) z™

= ¢, (AL@)) ¢, (w, ' Tw)x’ ™)) = ¢, (u,) -, (w, 'x'w,) - ¢, (x ™)
B9 = g, ) (ws) @)™ ('s) @) 67 5" (wx'w;)

= ¢, (u,) ((ws) ()™ (w's) () -6, (x") (by (34)).

By (59), we have

—_ r 4 /—‘1
(60) ‘]; (m\zaqbs(ua) du, = 6,(x") X L (,,)\U,,(O)¢s (x’u,x” ) du,
b (ug) duy- (ws) ()™ ((w's) ().
Ui \Ua®
Now since vol(U,(0)) = 1, we get our lemma from (60). U

Now we give explicit formulae of C,(a, s)) for orthogonal groups. Except for
the case a = 0, C,(a, s) is known by Casselman [4].

THEOREM 1. We keep the notation as above. We put ¢ = | 0/v|, and S, = s(I1,),
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where s; is a character of D, and I, is defined in (35) as before. We have

q— S,
q—qS;’

i) Cole, — &4y, 8) =

G- @ -1
; where T=——27=S, + (a+B)
v q q

i) Cye,s) =1+

SZ

Proof. Consider the case where a = ¢,. Using Lemma 3 for the case where
w =1, w=w, and x = n”, (m) = 1,...,1,0), we get

[ 6.(u)du, = (Cy(a, ) — 1) S
U@\Ug(~2)

Thus we have

61 '/l‘l,,(—z)\Uam) ¢S(ua) dua - Jz‘l,,\u,,(m ¢S(ua) dua B ft;,,\u,,(—Z) ¢s(ua) dua
= (Cyla, s) =11 — SD.

Now from (21),
)
[Ue, @ :Uq, i+ DI = I [Ufe) () : Ue)) i + D].
j=1
It is easy to see thatif 1 £ j < a(resp.a+1 <j<#n,=a+ f), then
q if 1is even,
1 if 7is odd,

1 if 7is even,
q if 1 is odd,

[U/e) (@ : Uje) G+ D] = [
<resp. LUj) @ : Uje) G+ D] = [

which implies
q” if i is even
62) (U, @ : U, G+ D] = [ ; !
q  if 7 is odd.
Moreover from Lemma 2, we have for # € Uy,

u=hyw, @)z, for y,z€ U_,",

where = — ord,u, and » € Hy= H N K. Thus, if u € Uy \ Uy (0), then we
have y € K, and h-y-w, € K. Since z € N, we have ¢,(u) = (s0"%) ((1(a))"),
which implies
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f ¢ (uy) du, = (s6°) (@) (¢° — 1) + °0) (@) (¢"** — ¢°).

Ua(=2\U4(0)

Since 6(I1(@)) = ¢~ ™, we have proved our theorem for the case where @ = €,

For the case where a = ¢; — ¢;,,, it is proved similarly. L]
Remark 6. 1f s = 0%, a = ¢, then
f ¢ u)du, =@ — 1D+ @ —)=¢"-1=60Ul@) "' —1=S,—1.
U4 (~2\U,4©

~1/2

This implies C,(¢,, d ) = 0. Similarly, we have C,(¢; — €,,,, i =o.

It follows from Theorem 1 that, for w € W, C,(a, s) = C,(wa, ws) if both a
and wa are simple roots. Therefore we can define C,(a, s) for any root @ by

(63) Ci(a, s) = Cy(wa, ws).
LEMMA 4. In the notation as before, we have

6y [, [ g duldu, = [ ocwpants < [ g.w)du,,

@\Za

where Z* = 2 UL 2™, Z, = 2'U (02", and wa € 3~

Proof. Suppose a = ¢, Define [ by /= ord,z, .., — ord,z,, where %, .,
(resp. z;) is (w — v+ 1, n — v + 1)-entry (resp. (v, v)-entry) of x’. It is clear
that /= ord,u, — ordpar:’uax’_1 for u, € U,u+ I, Since ' =w 'zw and
w(a) € 27, we have I 2 0 and Z, = U, (— D). From Lemma 2, u, € Uy, \ Z, =
U \ Uy (— D can be written as follows:

(65) u, = hyw, I)" 2z,

where h€ Hy=HNK,0=<1< r =ord,y = ord,z = — ord,u, and y, 2z €
U, (» < K. Since h normalize the group Z°, we have

fz . _/; ¥ o (u'u,)dudu, = j; , B (u'yw,) du’, X f ¢, (L) du,.

Ua)\Zg
Now the fact that the unipotent group U, (0) normalize U:a)(O) ((26)),
w, UL Ow,' = U0) and w,UgyOw,' = U_,(0) (by (18)) vyields that
U._,(0) normalize U.”(0), and hence the group x'U_,(0)z’" normalize the
group Z* = x’Uia)(O)x’_l. Here the matrix y in (65) is contained in K and
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YE Uy cU_ () =2'U_, 0z,

we have

_/; aq’)s(uaywa) du’, = J; . ¢ (u’w,) dul,
which proves our lemma. For a = ¢, — ¢,;,,, we can prove similarly. L]
Now, we can give the following relations of J,,(s), J,(s), J,-(s), and Cy(a, s).

PROPOSITION 1.  In the notation as before, we have

(66) JXs) = Cyla, 9], (w,s),
and
(67) Jo(s) = (Cyla, s) — 1], (s),

where w = w'w,, (w) = l(w") + l(w,), w, is a simple reflection corresponding to the
simple root a € 2"

Proof. Firs let us prove (66). Recall that
(68) Ja(s) = w(s6™"%) () f f b, (u’n,) du’,du,.
VAR P

a a . -1 a -1 —a —-a
For v € Z°, u, € U,,, we write w,  w, = khn, w,nw, = u u, where u
(~a) -1 s a -1
€ U_% and u, € U, and put h, = w,h,w, € H. Writing u“u, = w,kh,nw, u,
-1 -1
= w,kw, h,w,nw, u, we have

(69) ¢ (u'u) = ¢ (hawmw, u,) = ¢ (hyu “uju,).

Since u “uu, = (i) {w, wa,u,w,) " (weu w,) (wa,u,w)w,) € (wyuy) U
we have (69) = @,(h,u,u,) and (using (11)) it is equal to

(70) s (horiiughs ' hy) = b (hauu,h;") (67 (hy).
Here we have (using (34) and wj =1)

(6% (hy) = s(wh,w, )6 (hy) = ¢, (w; u'w,)5,(h,).
Thus we have

¢s (uaua) = ¢s (hzu,auah;_l) X ¢was(w;1uawa) 5{1 (hz) .
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Hence we have

(71) L J, b (u"u,) du'tdu, = _/; j{; Gs(hythughy) By, o(wy uw,) 0, (hy) du'sdu,
(@

(@

a

= | ¢,(u,)du, f e Bu,s W) du’ = Cyla, s) f e Bus () du”.

U

Substituting this to (68),

Ja(s) = w(sd ") (x) Cyla, ) f

wg

B ) i
1Z%,
By Lemma 1, we have

T (w,s) = w(so™?) (x) f ¢, (") du’, and hence
Z0%, °

-1
Wq

J.(s) = Cyla, )], (w,s).

Now we have completed the proof of (66). Next we prove (67).
First, it is easy to see from Lemma 1 that

f ¢ w,) du’, = f o, (w, u’w,) du’
Zﬂ Za

= [, adul = W's@) ™ @s") @], ().
By definition

02 RO =we @ [ [ g dudu,

(a)\za

Il

-1/2 a a .
w(sd ) (p) Lﬂ¢s(u w,) du, f Z ¢s(u,)du, (by Lemma 4)

Ua\Zqa

= w(s6™"?) (@) (w's (@)~ (wd""?) @) ], (s) _/:, @ (u,) du,

@\Zq

= ws(@) - W's@) T, () fU () du,

@\Za

Now using Lemma 3, we have J, = (C,(a, s) — 1)/, (s). ]

2.3. A character s of D is called non-singular if s(II;) #1 for all i # 1,.. .,
v — 1, and | sL) | # 1. Now we prove the following proposition.
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ProprosiTiON 2 (reduction formula). Suppose that s is nonsingulayr and a € >ta
simple root such that wa is a negative root and W' = ww,.

(73) J.(s) = Cy(a, $)], (w,s) — (Cyla, s) — 1) ], (s)

Proof. The formula in our proposition follows from Proposition 1, as far as
the integrals are convergent, and it is satisfied if | s(Il(@)) | > 1. Now J,(s),
Jw (), and J,, (w,s) are polynomials with respect to s(d,) d; € D as mentioned be-
fore. Therefore (73) is valid (by analytic continuation) whenever the right-hand
side is defined, i.e., whenever s is nonsingular. ]

For w=w, ... w, € W (reduced word), we denote by E(w) the set of all
products w;y' - -+ w,"(e, = 0 or 1).

LEMMA 5.  Suppose that a character s of D is non-singular. Then

(74) Jo(®) =87@ 2 A,u(s) (s) (2).

weE(w)
Here the coefficients 2, 3(s) are rational functions which do not dependent on .
Moreover we have

(75) Aww(s) = 1L Cyla, s),

aez;,

where 2}, is the set of all roots @ € 2" such that wa is negative.

Proof. We prove this lemma by induction on the length [{w) = » of w. First
of all, if » =1, that is to say w = w,, then we have, E(w) = {1, w} and J,(s) =
C,(a, s)J,(ws) — (C,(a, s) — 1)],(s) by Proposition 2 (1 means identity of the
group W). Since J,(s) = s6"*(x) from (45), we have

J.(8) = Cyla, ) ws(@) -6 (x) — (Cyla, $)— 1) (s6"%) (x)
= 5"4(2) (C,(a,9) - (ws) (@) — (Cyla,s)— 1)-s(x)).
Therefore A, = Cy(a, s), and A,,, = C,(a, s) —1. Thus we have proved the case
where » = 1.
Next, suppose # = m and assume our lemma is true if (W) <m —1 w €

W. We write w as w = w'w,, {(w) = m — 1, and /(w,) = 1. Applying the induc-
tion assumption to w’, we have

Jo () =020 = 2,50 @)(@), Ay )= T Cyb,s).

weE (w") bexy,
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Putting this into the formula in Proposition 2,

J.(8) = Cyla, 6@ = Ay z(w,s) - Gow,s) (x)

weE (w’)

—(Cla, D= D5 @) = Ay W9 (2).

weE (w’)

Since E(w") < E(w), E(w)w, < E(w), the equality above implies that J,(s) has
a required form. Moreover since A,, is the coefficient of (ws)(x) =
((w'w,) (s) (x)) we have

Aww = Cola, 8) Ay (w,s) = Cola, s) I C,(b, w,s).

bexl,

Since w,(Z,) U {a} = X}, we have from (63) 4,,(s) = II C,(a, s). U

aezy,
Substituting the formula of Lemma 5 to (44), have -

(76) w, ™ =0"@- ZW V, t,(s) - (ws) (),

where ¢, (s) are independent of x. It follows from Lemma 5 that

0D = A = T Cyla, 9),

aez*

where w, is the longest element of W. By virtue of w,(x™") = wy (x ™) for all
@ € W (7, p.26)), (76) implies

2 Vo, (s) (wivs) (x) = 2 Vo, (s) (ws) (x)  for all w € W.

Now from the linearly independence of characters ws over C for w € W, we have
Vult(s) = Viu,(ws), especially we have (using the fact that C,(a, w,s) = C,(a,
s, which is obtained from the definition of C,(@, s) and w, ILw,=
Imh Vit (8) = Vi, (w8) = Vi, (s™). This implies Vwo,uwo(s_l) = Vi, (s).
Then we have

Vit () = Vi, (ws) = Vwouwo(ws'l) =V, I Ca, ws™) = VwoC(ws'l),

aezt

where we put C(s) = Il C,(a, s). Thus we have

aex*t

2 Vo, (s) (ws) (x) = V,,,OZC(ws_l) (ws) (x),

and then we have proved the following theorem. (Except for the case where ¢ = 0,
the theorem below is obtained by Casselman [4].)
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THEOREM 2 (Formulae for spherical functions of orthogonal groups). Suppose
s is nonsingular. Then, for

m
z=1", (m) = <m1,..., m,, e_(:)> withm, =+ = m, = —m,,

1
€
the spherical function is given as follows:

w,(x™) = k6" (@) Z Clws™) (ws) (x),
wew

whevre

C(s) = 1I Cyla, s,

aqez*t

C,(a, s) are given in Theovem 1, and £ is a constant.

We calculate the value of k. Substituting § = 67 to the formula of the
theorem above, we have

1=x6"(x) X Clws™)(ws)(@ = kC("?,

wew

where we used Remark 6. This yields £ = C(6"%) ™",

§3. Calculations of the volume of KxK

In the notation as before, let x = ™ € D such that

m, ) 1
(77) (m) =(m1m e—:) with my 2 - 2 m, 2 g
By (19) and (39), we have BwB = BwB™' = Bw- U~ (1)H,U"(0) = BwU*(0),

where we used wU” (D) Hw ' = wU ™ (Dw 'wH,w™" < B (by (38)). Then by vir-
tue of Theorem H, we have

(78) KxK = KwxK = U BwU" (O w,xK = U Bw-w,xK
wew weW
= U BwzK= U B wxw 'K
wew wew

(This is not necessarily a disjoint union.) where we used (w,x) U (0) (w,x) =
' UT()x € U™(0) € K, (by (37)) and w, is the longest element of W. We de-
fine W, by W, ={we€ Wlwew ' =2 (={we Wlwm=m,z=10").
Then, it is trivial that Buww'z(ww’) 'K = Bwzw 'K for all w € W,. Therefore
we have
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(79) KxK= U Bwrw 'K.

weEW/wy

Let us see that (79) is a disjoint union. If Bwzw ™ K N Bw'zw 'K # {¢} for
some w, w’ € W, there is an clement b, € B such that (w'zw’™") b, (wxw™") €
K. Thus diagonal entries of (w'zw’ ™) ™ (wzw™") must be unit elements. This im-
plies w'zw’ ™ = wxw™", and hence (79) is a disjoint union. Thus we have

(80) | KxK/K| = W},—[ > | BuzK/K|,

wew

where l*| denotes the number of the elements of a finite set *. There exists a un-
ique set W, of representatives of W/ W, with the property that each w € W,
is of minimal length in the coset wW,. Then, each w € W, satisfies a relation

(81) (ww) = l(w) + l(w),

for any w” € W,. Now denote by /"(w) the number of w, in the shortest express-
ion of w with respect to simple reflections. Then

(82) U(ww) = U'(w) +'(w) forall w€ W,, and w € W,.
We put
L(w) = l(w) + (@ — DIV (w).
Then (81), and (82) implies
L(ww") = L(w) + L(w") forall w€ W,, and w € W,.
Using (21), and (62), we see that
(83) 7" = Uy 0) : Uy D] = [U_(0) : U_,, (D]

for any simple reflection w, € W.
Now the following lemma holds.

LEMMA 6. In the natation as before,

—L(w)
| BuxK /K| = q¢~* | BxK/K| for allw € W,,.

Proof. We prove this lemma by induction on the length of w € W, If
I(w) = 0, then w = 1 and hence the equation above is clear. Now we assume that

our lemma is valid for @ € W, such that (@) < I(w) — 1. Let w, be a simple
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reflection such that [(w,w) = [(w) —1. We put w’ = w,w. Now if I(w’) >
l(w'w,) for some w, € W, then l(w) = I(w) + 1> l(ww) + 1= Nw,ww,) =

I(ww,), which implies that w € W,,, means w’ € W,

rep rep- Thus we have by assump-

tion,

(84) | BwzK/K| = ¢+’ | BtK /K |.

Now (19), (26), (27) implies for a simple root a,

®85) B=U"0)HU Q) = U?(0) Uy, Hy U_, 1) - U (Q).

It is easy to see

(86) U_,V)-UL©O) = U0 U_,Q)
and
(87) UyOHU_, (1) =U_,(1H,U,(0).

Therefore from (85), (86), (87), we have

88 B= U:-a) O UV H,U 0) v )
(88) = U@ UL ) Hy U™ 1) Uy (0).

From this, we have

89 BuwzK = U_,(1)" UIi ) -Ho(-_()/_(_“)(l) Uy (0) - wzK
=U_p,(D-US0)-U""Q) wzK.
On the other hand, we have from (85)
(90) w, Bw'zK = w, Uy, (0)-U,”(0)-Hy- U Q) - U,y Dw'zK
=w, Uy, 0) - UL©0) H, U™ Q) -wzK, (by w ™ (—a) € =, (12) and (37))
=U_,0)-UZ0)-U Q) wz K
From (89) and (90), we have
w, BwzK, = LuJ u* BwxK

where # runs through a complete set of representatives of U_,(0)/U_, (1). Now
let us show that u#:BwxK N BwxK # {¢} for some u € U_, (0) implies u €
U_yQ). If u-BwzK N BwxK # {¢} for some u € U_,(0), then there exists
b € B such that

(91) w-bwzK N U_, DUL O U Q) -wzK # {¢}.
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Now since U_, (0) normalize U”(0) and U (1), and the groups U,_, (1),
Ufl) 0), and UT®(1) are all contained in the group B, we have from (91), u-b €
(wx) K(wz) ™" for some b € B, ie.,

(92) (wzw™) " (u-b) (wzw™) € K for some b € B.

. . -1 om)
Now since w € W,,, and w’ = w,w € W,,,, we have, putting waw~ = II"" m #
w,(m). Therefore we have

(93) ordp(wxw_l)_lu(wxw—l) #ordu for u € Ug,.
Moreover since w™ (— @) € ¥, we have
(94) ordp(wxw—l)_lu(wxw_l) Sordu for u€ U,
From (93) and (94) we have

ordp(wxw_l)ulu(wxw"l) <ordu for u€ U_,.
Therefore (92) can hold only if # € B, ie., # € U_,(1). Thus we have

| BwxK/K|=|w,BwzK/K|=|BwxK/K| x [U_,0) : U_, D]
= ¢""" | BuxK/K|.
Therefore, using the induction assumption (84), we have
| BuxK/K| = ¢7*“?-| Bu'zK/K| = ¢"*“*™*" | BtK/K| = ¢*“ | BxK/K|.

Now we have proved our lemma. U

Now we have from Lemma 6,

¢ x X |BwzK/K|=|BzK/K| x |W,| x X ¢,

wew WEWyep

for all w” € W,. Thus we have

’
weWy

S (@) x X |BwzK/K|=|BzK/K| x | W,| x ¢,
wew weW
This implies

(95) |KxK/K]W}7T > | BuzK/K| (by (80))

wew

— I B.Z'K/Kl Z q—L(w).( Z q—L(w’))—l'

wew weEW,

Now we calculate | BxK/K|. Since
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BzK = UY(O)H,U (1)xK (by (19))
= U (0 azx 'HU U)zK = U (0)zK, (by (37) and 2 Hyx = H,)
we have

(96) | BzK/K| = |t 7'BzK/K| = |z 'U* (0)zK /K|
=z U O)z/KN 27U z| = |27 UT©)z/UT©)| by (37)
= §(2) (see (8)).

Putting (95) into (96), we have the following theorem.

THEOREM 3. In the notation as before, we have

|KzK/K| = 6@ - X ¢ " ( X ¢+

weW w eW,
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