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NOTE ON A STABILITY THEOREM 

BY 

L Â S Z L Ô S Z É K E L Y H I D I 

ABSTRACT. In this note the stability theorem of Albert and 
Baker concerning the n-th difference equation is proved by using 
invariant means. 

In this note we give a short proof for the following stability theorem: 

THEOREM. Let G be an additive Abelian semigroup with 0, / : G —» C a 
complex valued function for which (x, y) -» A"/(x) is bounded. Then f — P is 
bounded for some P : G ^ C satisfying A^ VnP(x) = 0. 

Here C denotes the set of complex numbers and we have used the following 
notations: if / : G -^C then for all x, y in G let 

Ay/(x) = /(x + y ) - / ( x ) 

and for all n = 1, 2, 3 , . . . , x, y l 5 . . . , yn+1 in G let 

An
y:iynJ(x) = AynJA';i,...,yJ)(x). 

Although the above result is known (a special case of a theorem of [1]), our 
idea is new because our method is based on the use of invariant means. 

Proof. First we remark that by the results of [2] Ayu yJ is a linear 
combination of some translates of functions of the type A"/ and hence the 
boundedness of (x, y) —* A"/(x) implies the same property of 

(x, y1,...,yn)->A^...5yn/(x). 

Here we also need the notion of invariant mean on G. Let B(G) denote the set 
of all bounded complex valued functions on G. It is well known [3] that there 
exists a functional M : B ( G ) - ^ C with the properties: M(f+g) = 
M(f) + M(g), M(A/) = AM(/), M(l) = 1 and M(fy) = M(f) for all /, g in B(G), A 
in C and y in G (here fy denotes the function defined by fy (x) = /(x + y) for all 
x and y in G). Such functionals are called invariant means. Let M denote one 
of them and we write Mx if M is applied with respect to the variable x. It is 
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obvious, that we have 

MxK,...,y„/(x)] = 0. 

Indeed, 

Mx[A"yu...,yJ(x)] = Mx[An
y:lynJ(x + yn) - A ^ . ^ / U ) ] 

= Mx[an
yi_yn_uyn+xf(0)-An

yi_yn_1J(0)] = 0. 

From this fact we infer by induction: 

My„+ 1 , . . . , My„+t[A-.fc,y„+t/(x)] = (-l)kAn
yi,...,J(x). 

Now, without loss of the generality we may assume that /(0) = 0. Let, for x in 
G, 

f0(x) = (-l)"+ 1My„ . . . , Afyii_1[AJ1,...>y._1>x/(0)], 

which is obviously bounded. On the other hand, for all uu . . . , un in G we 
have: 

AS1.....J/-/0)(x) = AC1.....u./(x) 

H-lTK^Mys-- • > Myn_,[A^.1.,y„_1/(x)-A^.1.,y„_1/(0)] 

= AS, u„/(x) + ( - l ) " M y i , . . . , M^JAZ^A^JW] 
= Kt „„/(x) + (-l)"(-l)^1A^...> U n/(x) = 0, 

hence the theorem is proved. 
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