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On Certain Formulae connected with the Function
(cosna. — cosnd)/(cosa ~ cosf).

By D. G. Tavror, M.A.

(Received 1st January 1914. Read 13th March 1914).

§1. This paper deals with certain formulae which, though
probably not all new, have not appeared in the text-books. They
were suggested to the writer while engaged in discussing the
expression for the intensity of the transmitted beam in the
Lummer-Gelrcke Interference Spectroscope, viz.

1 - 2p"cosnd + p™

“1-2pcosf +p°’

where p is the square of the reflexion-coeflicient, which in practice
falls not far short of unity, 2n is the number of internal reflexions,
and 6 is the phase-difference of successive elementary beams.*
If we put k=log, p, we have

1Ak — cosnd
chk — cosf ’

which at once suggests the function in the title.

J=p

The function J has a very high maximum value for § =0, 2w, ...,
yielding sharp bright bands with feebly luminous interspaces ; and
the sharpness of the bands is measured by the value of d*J/d6”® for
these values of 6. The most useful formula, obtained by direct
differentiation, is

ﬂ) — 9,1 =Py —np(1-py
at* /e~ (1-p)* ’

and the limit of this expression for p =>1 is - }n’(n®-1).

*8ee Dr E. Gehrcke, Die Anwendung der Interferenzen in der Spectro-
skopie und Metrologie, (Braunschweig, 1906), p. 69. I have modified the
notation. The subject was brought to my notice by Prof. A. L. Selby.
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The following specimen values were obtained by this method : }

n p (dEJ/dO")(,:O
15 -8 535
15 -883 1649
15 9 2097
15 10 8400
20 -883 3070
20 10 26600

But it is clear that J could be differentiated or integrated any
number of times if it were expressed as a finite Fourier series, in
cosines of multiples of 0.

§2. The expression
cosno — cosnb
cosa. — cosd
can be written

(i) as a product of (n — 1) factors each linear in cosf, thus:
- n-1
cosna. - cosnf =271  cosf - cos<m + gr——ﬂ)},
coso — cosf r=1 7
(¢f. Hobson, Plane T'rig., §188);
(ii) as a finite series of powers of cosf, up to the (n - 1)*"; to be

obtained by multiplying out the factors above, or from the
relation (ibid. §78)

2cosné = (2cosb)" - %(2cos6)"‘2 + 7‘(—”2}2(20030)"’*. o

(iii) in the form we propose to consider, as a linear function of
cosines of multiples of 6, up to the (n ~ 1),

t n=15, p="883 are the actual values in a typiecal case.
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§3. To find the coefficients in the identity

chnk ~ cosnf n-1
T =1
chk — cost 2%+ E 1“’00870'

On multiplying up we have

Gy — 2hk . a,4-a,_,=0, (r=1,2,...(n=-1)), ............ (2)
achk —a,=2chnk, a,_ ;1 =2; ........cooiiiii (3)

from (2), putting p=-¢F,
a, = Apr + BP—',
where A, B are independent of r; and from (3),

n _2 —n
B=—2”—_,, A=_2P

p-p p-p~
whence
Ap T —p™™)  2h(n-—r)k
T p-pe shk
and
chnk — cosnB shnk 9 n-1
Tk —cos0 _ ahk Tk Z sh(n—r)keosr6. ...........(4)

‘We may note that % is positive or negative according as p is
greater or less than unity.

§4. From (4) we at once deduce

-1

cosno. - cosnf  sinne
2 sin(n — r)ocosrf,

cosa — cosf sine sina

-1

sinn6 2 sin(n - r)fcosro. ; ............. (5)

" sin# smG

chnk — chnu  shnk 9 m-1
HE—chw _ ahk T sk Z, sh(n —r)kchru,

2 n—l
=s:z:: + % P2 sh(n ryuchrk; ... (6)
- -1
11—_02f:—00= n §=:1 (n — r)cosrd,
sinnf 2 =5t
=—Sin—0"+m El sm(n —.r)B, ..................... (7)
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1 - chnu

n-1
ol 2 )
T o + 2_:.‘,1 (n - r)chry,

shnu 2 n-l
_ ——— _— ’ - } caectetsessestnssgevisonnese
shu + shu r§1 sh(n - r)u; ’ ®)

chnk — cosn8  shnk 2 n-l
chk —cos6  shk | shk 2 $h(n ~ r)kcosrd,

=sinn0 2’ sin(n—7Y0chrk......cccvvnanninnn. 9)

sinf sm@

§5. Replacing 6 by 6+, and u by u + tm, we have

- — Y 3 2
cosna. — (- )"cosn =0 2 (- y'sin(n ~ r)acosrd,
cos + cosd sine  sine r=1
1 n
= - ;l?n—e 'S 2 (~)cos(n - r)osinrd ~ (= s)usllonnG’ ..(5')
F=1
chnk — "ch'nu shnk 2 -l
ch/c(+ c/)Lu =ik ok 2 (7 )ehln - r)kchry,
n-1 —\n

= — i 2 ( - )yeh(n — r)kshru - %‘kﬁ‘ [ (6')

1 "cosnf

———1(+—c)o$s" n+2 z (- ) (n—r)cosrd,

2 =) ( - )'sinnd ,

= ——S“l'r—l“e— E] ( )ser——;l—.T, ................ (7)

%ch’m +2 z (= Y(n - r)chru,

2 (- Yshnu ,
= 2 (= )shru——Cm— e, 8)
chnk — (~ )cosnd shnk 2

chk(+ c)ose = ohk shk z (= Yeh(n -~ r)keosrt,
_ 2 _(=)"sinnf ,
‘"555, l( Yeh(n - r)ksinré prmy R 9

Similarly, by substituting 7+ 6, ir -, diwrtwu, Jir -k for
6, o, u, k respectively, a large variety of formulae can be deduced,
proceeding on the right by alternate sines and cosines of multiples
of 0 (or alternate hyperbolic sines and cosines of multiples of u),
and having for denominators on the left such quantities as
coso. + sinf, sina + sinf, chk + shu, shk + shu,
1 +sind, 1 * shu, chk +£sind, shk + sind, sino + shu.
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§6. We have (¢f. Hobson, §74, ex. 1).

sinno

= - 2 - ety erarreeeren
. 2cos(n - 1) + 2cos(n — 3o + (10)

where, however, if = is odd, the final term is unity. Also

I —
cos(@n — 1) = 2cos(2n — 2)a ~ 2cos(2n — 4)e... + (- 1),

coso

—1)* 4 cos2
(————)——i—mf: 2cos(2n - 1o — 2c08(2n - 3)ex... + ( ~ )" '2cosa,

coso
sin2no. . -
= 28in(2n - 1) - 2sin(2n - 3)e... .,

cosa
1 — cos2no . .
———— = 2%in(2n - 1) + 2sin(2n - 3)e....,

sina

with similar results in hyperbolics. Applying (10) to the co-
efficients in (5), we obtain an expansion of our function which is
linear in the cosines of multiples of «, and also in those of 6 ; in
fact, a finite double Fourier series, thus:

cosna — cosnf

=42 cosracossd + 22 (costo. + costd) + ¢, ......... (11)
coso. — €08 by T

the summations extending to all positive integral non-zero values
of r, s, ¢ for which n -r—38, n—¢ are odd positive integers, and ¢
being zero or unity according as = is even or odd. Thus eg.

(cosba — cos58)/(cosw — cosb)

= 4(cos3acost + cos20.c0526 + cosacos3f + cosacost)
+ 2(cos4o + cos4 6 + cos2a + cos26) + 1.

Similar results will follow for the other formulae of §§4, 5.
And while the formulae of these articles are suitable for repeated
differentiation and integration with regard to one or other of the
symbols involved, those of the form (11) will admit of these processes
being applied with respect to doth variables.

§7. Repeated Differentiations.— Expansions.

By (10),
f an (sin'rw.) _
@\ sine. }a=° 2n,, . cos}m,
where ny=(n-1"+(n-3)"+..,
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the last term being 1™ or 2™ according as = is even or odd ; hence
sinno

a0
——=n+2 -
sine vt m2=1( )"am

(LZ"'
@m)!

Similarly let
n, =(n-1)"-(n-3)"+..;
then when n 18 even,

(=W 4 cosna

’ 2 “iq m,,! m?ﬂ
coso o m2='1 (=) ng’"(?m) N
¢ being zero or 2 according as 47z is even or odd ; and when n is
odd,
cosno. i , a™
coso 1 +2,,.2=1 (=)o (2m) !
By (7),
ar /1~ cosné’) e osyma
{ d6=\ 1 - cosb }o=o— O, m 0O ’
n-1
where o= 21 (n—r)rm™;
1 -cosnf ®, n o
bence T coss " 2m% (=) a"'zm(Qm) r
By (9),

d™ fchnk — cosn 2cosimmr "2l .
W( chk _7;5,0?)}0:0 STk AT shn —r)k;

let us put
n:l rmsh(n —r k n-1 " pn—r v_p—rl-f—r
kn. m= = —El;—— = 7%1 7 P p_l (m>0),
and

chnk — 1 1 /p*-1\°
k = = ="
™0 ehk - 1 p““‘(p—l)’p °
then

chnk — cosnd © o
ok —cos et 2 Z (S Ry

§8. Integration.
(i) From the formulae of §6 we have
sm?badﬁ _ 2sin(n ~ 1)8 + 2sin(n - 3)0 b e,
o sinf n -1 n-3

¢ being zero or unity according as n is even or odd ;
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(=),

J‘ cos(2n - 1)6d6  2sin(2n - 2)60  2sin(2n - 4)6
0 cosf - 2n -2 B n—-4

o+ (- )*2sind

.[ (-1)'+ cos2n0d(9 _ 2sin(2n-1)6  2sin(2n - 3)0
cosf T 2n-1 %m-3

sin2n0df  2cos(2n - 1)6  2cos(2n - 3)6
jr cosd  2n-1 n-3

J‘ 1 - cos2nd ” 2cos(2n - 1)  2cos(un — 3)0
yr  sinf m-1  2m-3

From these we obtain

=T

JT sin2n6d6 = sin(2n ~ 1) 6d6
—F—=0, —_—
0 sin@ ,[o sinf

I

=4r;

EaagRy T T SV

4* sin2n6d0 <1 41
0 sinf

_y=1\  (rsin(2n— 1)0d9
2n 1)’ 0 sinf

cos(2n -1 0d9 imcos(2n — 1)6d6 T
J’o ( ) )"—171' j. ( ) ( - )"_)7’

T cos® T cos®

™ (—)"“+cos2n6d0_0 rﬂr( !+ cos2nd 40

0 cosf cosf

1
=(=)1 1 .
=(-) 2(1+3+...+2n_1>,

7 sin2n0d6 [ sin2nfdf 1 1 + )
Jo cosf  Jir cosd <2n—1—2n-3

F"] —cos2nf ) =J'" L '°_082n9d6=2(1+%;+... +—1—>.

sing jw  sind In-1
(ii) From (5), (7), (9) we have

df=———0+ 2 )

coso. — cosd sino el rsinc

J‘ cosno — cosnd sinno 2! 2sin(n — »)asinrg

—008n8 10 n 42 2 simo,
1 — cosf

chnk~cosn0 shnk 0 2, ! 2sh(n — r)ksinr@
_[o chk - cosO sh rshk ’
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hence
* cosna. —cosnd ., wsinna
J—O cos. —cosd ~ sina ’
7 1 —cosnb
Jo md 6 = n,
7 chnk - cosn@ wshnk
Jo chk - cosf = Tehk
In the last write p=e¢*, and obtain
7 1 - 3p"cosnf + p™ pr-1
Jo 1-2pcosf+p* o1

where p may have any real value.

(iii) Again from (5), (7), (9), on multiplying throughout by
cosrd and integrating from 0 to =, as in finding the coefficients of a
Fourier series, we have

* (cosno — cosnb)cosrBdf  msin(n - r)a
J‘ 0 cosa. — cosf - sino

J‘ﬂ' (1 — cosnf)cosrodo
v =(n -7,
0 1 - cosf ’
[‘# (chnk — cosn)cosrd6 wsh(n —r)k
o chk — cosf B shk ’
and with p as before,
= (1 — 2pcosnd + p™)cosrfd® w p*n - p* L pr-1
=— =xp". .
_[0 1 - 2pcost + p* P pi-1 L4 p—1
(iv) The integral
cosnbdo
J‘ coso. — cos b

is improper if the range of integration includes « (or more
generally rr+a); but we can write

J T cosnfdo 7 chnk - cosnd

SO — chmk j T4 ot
o chk —cosf ¢ o chk —cosd _J’o chk —cos
Now the first integral on the right is essentially positive, hence

. . wchnk . . . .
its value is + i according as % is positive or negative.
sh

Let k be positive, then p =¢*>1, and we have
T cosnfdf  mwe ™
J’o chk — cos®  shk’
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whence
*  cosnfdl T
= . 1).
I01—2pcos0+p’ -1 (p>1)
If we put g=p'=¢*<1, we shall have

L cosnbdf Tq"
= .0 1).
J.o 1-2gcosb+¢* 1-¢° (0<g<1)
(¢f. Bromwich, Infinite Series, p. 167).
Now writing chk=secf, so that shk=tanf, and

1+ tan}f

p= e"—secﬁ+ta.nﬂ———ta 1B’ (0<B<im),

we have from (12)

*  cosnfdl r /1-t\"
JO 1—cos/3cos€=sin,3(1+t)' £=tan}B. wooreerrerrernns (13)

The companion formula

J’r cosnfdf (- )'w /1 -t )"

o l+cosBcosd  sinf \1+¢

may be obtained from (13) either by changing 6 into = -6, or
B into = - 8. The formula (13) is a good example of a discontinuous
function. The integral becomes improper when 8 takes the value
0 or 7, and therefore, as a function of B, is discontinuous at those
values. Thus it is inadmissible to change B8 into -8 or into

7 + 3, though it is allowable to change it into = - 8.
Another form is obtained by putting cosf=e,

= cosnfdé _ T { +e »
o 1 Fecosh J(1=€e) 1+ /(1 -¢%

(v) Finally from (ii),
" J’?r cosno. — cosnb
Jo

——————dud@=0 or =*
o cosa — cosf
according as n is even or odd, while

J‘ s J’ ™ (cosna ~ cosnf)cosrucossfdudb

cosa — cosd

according as » —r — ¢ is even or odd.
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