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1 The cast and characters

The setting is a tutorial on program verification in Agda. Please consult the programme for
further details. [See also Appendix A.]

Dramatis personæ

Tutor . . . . . . . A permanent resident of the ivory tower.
. . . . . . . . . . . . [She wears socks and sandals.]

Lisa Lista . . . A math student with secondary subject CS.
. . . . . . . . . . . . [She likes a good mathematical argument.]

Harry Hacker A Haskell geek.
. . . . . . . . . . . . [He likes to type, but is still a stranger to Agda.]

Ken . . . . . . . . An Agda expert.
. . . . . . . . . . . . [He even has � and � printed on his bed sheets.]

Lambert . . . . A retired math teacher.
. . . . . . . . . . . . [He likes to calculate.]

Dramatis locus

A small but pleasant room in some medieval college building.

2 Monday

Synopsis: The tutor is on a mission: she wants to dispel the common misconception that
binary search is about searching an ordered table.
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2 A. Dinges and R. Hinze

Tutor: Good morning class. This week I would like to discuss formalising one of the
standard algorithms every programmer and computer science student should know: binary
search.

Harry: Aah, searching an ordered table as described by Knuth (1973, Section 6.2.1)?
That’s pretty straightforward, isn’t it? We assume that we have a linearly sorted sequence
of keys K1 ≺ · · · ≺ Kn. Given a key K, we would like to know if there is an index i such
that Ki ≡ K. We pick an arbitrary index m with 1 � m � n and compare K to Km. There
are three possible outcomes with resulting actions:

• K ≺ Km: we eliminate the keys Km , . . . , Kn from consideration.
• K ≡ Km: the search is done.
• K � Km: we eliminate the keys K1 , . . . , Km from consideration.

The problem can be solved in logarithmic time, if we iterate this step and the index picked
is always the midpoint, m := � (1 + n) /2�. This is really old hat!

Lisa (frowns): That’s a bit too concrete for my taste. I actually prefer Bird&Wadler’s
formalisation (1988). Given naturals l and r and a predicate P : N → Set, we are look-
ing for the smallest index i ∈ [ l , r ] such that P i holds. If the predicate is monotone,
∀ a b → a � b → (P a → P b), then the problem can be solved in sub-linear time. We
pick an index m ∈ [ l , r ] and check P m. There are two possible outcomes with resulting
actions:

• P m holds: we eliminate the indices 1 + m , . . . , r from consideration.
• P m does not hold: we eliminate the indices l , . . . , m from consideration.

Like in Harry’s setup, the algorithm runs in logarithmic time, if we always pick the
midpoint, m := � (l + r) /2�.

Lambert: But there is no guarantee that a suitable index actually exists. Did you notice
that the programs provided by Bird&Wadler are partial? Likewise, searching an ordered
table for a certain key may fail.

Tutor (smiles): These points are all well taken, but I suggest that we ignore them for the
moment and start afresh, solving a little puzzle instead. Agreed? [The students nod.]

You are presented with the following sequence of 2 + n boxes, each containing a natural number.
The numbers are hidden from you; only the contents of the first and of the last box is revealed.

4

0

?

1

?

2

· · · ?

n

711

1 + n

Your goal is to find an even–odd pair, two neighbouring boxes such that the contents of the left box
is even and the contents of its right neighbour is odd. Open as few boxes as possible.

Lisa: The problem description seems to suggest that an even–odd pair always exists.
Perhaps, we should first prove this implicit assumption.

Harry: But is it actually true? After all, the boxes might contain only even numbers, or
only odd numbers, or a sequence of odd numbers followed by a sequence of even numbers.

Lisa (frowns again): Harry, these possibilities are ruled out as we can observe that the first
box contains an even number and the last box an odd number.
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Binary search—think positive 3

Lambert: So the existence of an even–odd pair depends on a precondition.

Harry: Ah, I see. And we know that there are at least two boxes. That’s another
precondition, right?

Lisa: Good point. The proof of existence then proceeds by induction on n. If n is 0, we
have found an even–odd pair. Otherwise, we open the second box, the box numbered 1.
If we are lucky, it contains an odd number. If the number is even, we remove the leftmost
box, the box numbered 0, and apply the same strategy to the residual sequence of 1 + n
boxes. All preconditions are satisfied: there are at least two boxes; the contents of the
new leftmost box is even; the contents of the rightmost box is still odd. Consequently, an
even–odd pair is bound to exist.

Ken: I guess we can start turning Lisa’s proof into Agda code? I’d like to suggest a small
change though: the problem description builds on zero-based intervals. It seems prudent to
follow Bird&Wadler’s lead, that is, to consider arbitrary intervals. Otherwise, we need to
shift the interval in the recursive step. [The others signal agreement.] The proposition then
reads:

even-odd-pair : ∀ (l r : N)
→ l ≺ r
→ (box : N → N)
→ even (box l) × odd (box r)
→ ∃ (λ i → even (box i) × odd (box (1 + i)))

The sequence of boxes is represented by a function box : N → N that maps positions to
contents . . .

Harry: . . . and the precondition l ≺ r ensures that there are at least two boxes! Can you
remind me what the type ∃ (λ i → . . . ) means?

Ken: This is actually a �-type, a dependent pair type. In constructive logic, an existential
quantification is given by a pair, consisting of a witness and a proof that the witness satisfies
the stated proposition. It’s a dependent pair as the proof depends on the witness. In our
scenario, this pair consists of a natural number i and two proofs: one holding evidence that
box i is an even number, and the other showing that box (1 + i) is an odd number.

Harry: Thanks. However, I am not sure that the setup works. I foresee problems with
Agda’s termination checker. [. . . lowers his voice mumbling . . . ] Agda is pretty picky when
it comes to termination.

Lisa: Harry is right. My argument is neither inductive on l, nor on r. Perhaps we should
represent the interval [ l , r ] differently, say, by offset and size, so that we can induct over
the size?

Tutor: Don’t give up so easily. A few weeks ago, we formalised the strict order on the
natural numbers in several different ways. [She pauses.] Anyone?

Lisa: Of course! The endpoint l is strictly smaller than r if and only if the difference r ·− l
is positive.

Tutor: Should you need a reminder about notation such as _ ·−_, please check the course
material [Appendix A].
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4 A. Dinges and R. Hinze

Harry: Ah, I see the light. For the task at hand, we could use the variant of the strict order
that builds on the difference of the endpoints!

data _≺_ : N → N → Set where
one : n ≺ 1 + n
succ : 1 + m ≺ n → m ≺ n

_�_ : N → N → Set
m � n = (m ≡ n)  (m ≺ n)

The proposition 4 ≺ 7, for example, is evidenced by succ (succ one), as the difference of
seven and four is three. Honestly, at the time I didn’t see the point of formalising the order
in umpteen different ways.

Ken: I guess we can start turning Lisa’s proof into Agda code now? May we assume that
the predicates even and odd are provided from somewhere?

Tutor: Sure, and you may use the function parity : ∀ n → even n  odd n that decides
whether a natural is even or odd.

Harry (busily typing): This is a breeze. When I conduct the case analysis, Agda is able to
fill in the rest . . . Well, almost, I have to specify the left endpoint for the recursive call:

even-odd-pair l r (one) box (e , o) = l , e , o
even-odd-pair l r (succ 1+l≺r) box (e , o) with parity (box (1 + l))
. . . | inr o′ = l , e , o′

. . . | inl e′ = even-odd-pair (1 + l) r 1+l≺r box (e′ , o)

The first equation deals with the case that there are only two boxes. Otherwise, we open
the box numbered 1 + l. There are now two cases that we can investigate using with. In
the first one, the box numbered 1 + l contains an odd number, evidenced by o′. Thus, we
have completed the task. In the second case, the box contains an even number, evidenced
by e′. Here, we recurse on the smaller interval ranging from 1 + l to r.

Lambert: Sorry, I don’t use Agda on a regular basis. What does 1+l≺r mean?

Ken: That’s an Agda idiosyncrasy. Remember that in Agda only a space separates.1 The
sequence of characters 1+l≺r contains no space, so this is one identifier of type 1 + l ≺ r.
The name typically reflects the type.

Tutor: Well done. Lisa’s proof has algorithmic content, detailing a simple search strategy:
open the boxes sequentially from left to right until an even–odd pair is found. So the Agda
code captures left-to-right sequential search. But, we set out to formalise binary search.

Harry: Ha, that should be easy. We simply change the definition of the standard order on
the naturals to reflect the new search strategy. [Starts typing.] Is there any notation for the
midpoint or centre of an interval?

Lambert: Good question. I don’t think there is. But, may I suggest one? What about
� a mid b �? The floor brackets indicate that the real midpoint is rounded downwards, and
the notation is a slightly shorter than � (a + b) /2�.

1 There are a few exceptions to the rule, most notably parentheses, ‘(’ and ‘)’, and curly braces, ‘{’ and ‘}’.
These characters are not allowed to appear in a name at all.
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Binary search—think positive 5

Harry: Okey-dokey. [Continues typing.] Voilà. I have simply changed the final line of the
datatype definition. The new constructor states that if the midpoint of l and r is greater
than l and less than r, then l ≺′ r. The new name reflects the fact that the sizes of the
sub-intervals are added.

data _≺′_ : N → N → Set where
one : n ≺′ 1 + n
_�_ : l ≺′ � l mid r � → � l mid r � ≺′ r → l ≺′ r

Lisa (a connoisseur of sequence implementations): Interesting, this reminds me of the
difference between standard lists and join lists, well, balanced join lists.

Harry (ignoring Lisa): . . . and the implementation of even-odd-pair can be easily adapted,
as well. The recursive cases are now nicely symmetric.

even-odd-pair′ l r (one) box (e , o) = l , e , o
even-odd-pair′ l r (l≺′m � m≺′r) box (e , o) with parity (box � l mid r �)
. . . | inr o′ = even-odd-pair′ l � l mid r � l≺′m box (e , o′)
. . . | inl e′ = even-odd-pair′ � l mid r � r m≺′r box (e′ , o)

Tutor: Well done, again. We have stressed repeatedly that proving is programming. As
programmers, we appreciate that an abstract datatype, like the type of sequences, can be
implemented in a variety of different ways. Likewise, an abstract concept such as an order-
ing relation can be evidenced in many different ways. Choosing a concrete representation
for an ordering is as important as choosing a concrete data structure for a sequence type.

Lisa (with a sceptical undertone): It’s a bit odd (pun intended) that the proof doesn’t use
any properties of the mid-point, isn’t it? In particular, we do not make use of the fact that
the midpoint lies between the endpoints.

Tutor: Oh, is that the time already? Think about Lisa’s objection for tomorrow’s tutorial.

3 Tuesday

Synopsis: By abstracting from a particular search strategy, the tutees steer the development
in an unforeseen direction.

Ken: I have given Lisa’s comment some thought and I think she has a point. However, I
consider this a feature, not a bug, an opportunity to generalise the development. Do you
mind if I share some code with you? [He opens his laptop.] First, I have generalised the
two definitions of order.

data �_,_� : N → N → Set where
Leaf : (n : N) → � n , 1 + n �

Node : (m : N) → � l , m � → � m , r � → � l , r �

Both variants of the strict order discussed yesterday can be seen as detailing a strategy,
a strategy for exploring an interval. The first captures a sequential search from left to
right, the second a binary subdivision scheme. The new type allows us to specify arbitrary
strategies. [He glances at his fellow students who look confused.] Ah, sorry, I have renamed
the type—I like to think of its elements as interval trees; the names reflect this.

Harry (still confused): So one : n ≺ 1 + n is now Leaf n : � n , 1 + n �?
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6 A. Dinges and R. Hinze

Ken: Yes, and the second constructor generalises _�_. Both constructors take an explicit
argument—you will see why in a moment. Perhaps, it is instructive to look at an exam-
ple tree first? [The others nod in approval.] Here is a strategy for exploring the interval
� 0 , 17 �.

Node 8 (Node 4 (Node 2 (Node 1 (Leaf 0) (Leaf 1)) (Node 3 (Leaf 2) (Leaf 3)))
(Node 6 (Node 5 (Leaf 4) (Leaf 5)) (Node 7 (Leaf 6) (Leaf 7))))

(Node 12 (Node 10 (Node 9 (Leaf 8) (Leaf 9)) (Node 11 (Leaf 10) (Leaf 11)))
(Node 14 (Node 13 (Leaf 12) (Leaf 13))

(Node 15 (Leaf 14) (Node 16 (Leaf 15) (Leaf 16)))))

Harry: Sorry, I need to draw a picture. [He sketches the interval tree on the whiteboard.]
This looks like a binary sub-division scheme to me. Each inner node is labelled with the
smallest, that is, the leftmost element of its right subtree. The leaves contain the numbers of
the interval from left to right, including the left endpoint, but excluding the right endpoint.

8

4

2

1

0 1

3

2 3

6

5

4 5

7

6 7

12

10

9

8 9

11

10 11

14

13

12 13

15

14 16

15 16

Fig. 1. The whiteboard: Harry’s sketch of Ken’s interval tree.

Lambert (addressing Ken): I see, since 17 is not contained in the tree, you use the notation
for right-open intervals2: � 0 , 17 �. You certainly have taken Dijkstra’s advice (1982) to
heart!

Tutor (addressing the others): Just in case you haven’t read EWD831: Dijkstra makes
an argument why the subsequence of natural numbers 2 , 3 , . . . , 12 should be written
2 � i ≺ 13, ruling out 1 ≺ i � 12, 2 � i � 12, and 1 ≺ i ≺ 13.

Harry (who is not paying attention): I have seen this tree somewhere. [He turns the pages
of TAOCP 3.] Here it is! Knuth introduces “comparison trees” to illustrate different strate-
gies for searching an ordered table; this tree appears in Figure 5 (1973, Page 412) to
visualise binary search. We are on the right track!

Ken: May I continue? I have tidied up the signature.

even-odd-pair : � l , r �

→ (box : N → N)

2 Parentheses are not allowed as parts of Agda identifiers. As a result, we opt for the less conventional � l , r �
notation for half-open intervals, rather than the standard [ l , r ).
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Binary search—think positive 7

→ even (box l) × odd (box r)
→ ∃ (λ i → even (box i) × odd (box (1 + i)))

Since the tree constructors take explicit arguments, we no longer need to pass the endpoints
explicitly—l and r are now implicit arguments. As a result, the proof is less cluttered.

even-odd-pair (Leaf n) box (e , o) = n , e , o
even-odd-pair (Node m t u) box (e , o) with parity (box m)
. . . | inr o′ = even-odd-pair t box (e , o′)
. . . | inl e′ = even-odd-pair u box (e′ , o )

A leaf signals success, whereas a node marks a decision point.

Harry: That’s pretty slick.

Tutor: Indeed. As an aside, the proposition even (box l) × odd (box r) is a lovely exam-
ple of a functional invariant. In case you have not come across this concept before, the
life-cycle of an invariant can be divided into three phases:

• The invariant is established (birth): this is the responsibility of the caller, the
function that invokes even-odd-pair.

• The invariant is maintained (life): this is the responsibility of the callee. In our
example, even-odd-pair adjusts the invariant using parity information.

even

l

· · · ?

m

· · · odd

r

The box numbered m with l ≺ m ≺ r is inspected. If its contents is odd, the search
continues on the left; if it is even, the search continues on the right.

even

l

· · · odd

m

· · · odd

r

or even

l

· · · even

m

· · · odd

r

• The invariant entails the desired result (fulfilment): again, this is the task of the
callee. In our example, there is little to do as the invariant is the result.

even

n

odd

1 + n

The art of programming in Agda is to arrange things in such a way that each of these three
tasks is as direct as possible.

Ken: In particular, the proof shows that the correctness of the search does not depend on
the specific strategy we use. The strategy “only” affects the running time.

Lisa (who has been unusually quiet): I am even more concerned now. It seems to me
that m, the argument of Node, can be an arbitrary natural number. In particular, it may
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8 A. Dinges and R. Hinze

lie outside the given interval. For example, if t : � 1 , 47 � and u : � 47 , 11 � then
Node 47 t u : � 1 , 11 �!

Ken: Well, no. The expression � 47 , 11 � is certainly a legal type. It is, however, unin-
habited: there is no element of this type. We can show that the existence of an interval tree
implies that the left endpoint is below the right endpoint.

domain : � l , r � → l ≺ r
domain (Leaf n) = one
domain (Node m t u) = ≺-transitive (domain t) (domain u)

Lisa: I see. Putting the order-theoretic spectacles on, Leaf n is indeed just one, evidence
that the size of the interval � n , 1 + n � is one. And the Node constructor, which joins
two intervals, amounts to transitivity. [She pauses briefly.] Since Ken’s type generalises
the order types, we can also show the converse of domain. [Starts typing.] Agda’s code
inference comes in handy.

sequential : l ≺ r → � l , r �

sequential (one) = Leaf _
sequential (succ 1+l≺r) = Node _ (Leaf _) (sequential 1+l≺r)

The endpoints l and r are not in scope. However, as the code is dictated by the type, I
can simply use underscores for the arguments of the tree constructors. Agda will infer the
correct arguments automatically. So, overall, we have demonstrated that the propositions
l ≺ r and � l , r � are equivalent. Consequently, the corresponding implementations of
even-odd-pair are equivalent, as well! Thanks, this puts my mind to rest.

Ken: You are welcome. I like the name sequential as it indicates that we are encoding
the left-to-right sequential search as an interval tree. By the way, it is not more difficult to
convert Harry’s “midpoint trees” [Page 5] to interval trees.

binary-subdivision : l ≺′ r → � l , r �

binary-subdivision (one) = Leaf _
binary-subdivision (t � u) = Node _ (binary-subdivision t) (binary-subdivision u)

We basically rename the constructors.

Harry: It is intriguing that an interval tree can be viewed in two different ways: as evidence
for a relation, the strict order of the naturals, or as a data structure, fixing a search strategy.

Tutor: A nice closing, Harry. That will do for today. There is one missing puzzle piece
though. We have not yet discussed how to construct balanced interval trees, capturing
binary search—a challenging task for tomorrow!

4 Wednesday

Synopsis: The discussion gets sidetracked by a technical issue: proofs of termination in
Agda.

Harry (with a perfidious smile): Problem solved! Instead of creating balanced interval
trees, I have shown that the propositions l ≺ r and l ≺′ r are equivalent. One direction is
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Binary search—think positive 9

straightforward—left as an exercise to you. The proof of the other direction constructs the
desired balanced tree.

balanced : l ≺ r → l ≺′ r
balanced (one) = one
balanced (succ p) = balanced (a≺a-mid-b p) � balanced (a-mid-b≺b (succ p))

For one-point intervals there is nothing to do. If the size of the interval is greater than one,
I need to show that the midpoint lies between the endpoints.

a≺a-mid-b : 1 + a ≺ b → a ≺ � a mid b �
a-mid-b≺b : a ≺ b → � a mid b � ≺ b

The proofs are pretty straightforward but not very instructive. As one would hope,
binary-subdivision (balanced 0≺17) gives the tree that is still sitting on the whiteboard.
[See Figure 1.]

Lisa: Good job Harry! So this is where we finally use properties of the midpoint. The
propositions are somewhat asymmetric though. I guess this is due to the fact that we are
rounding downwards?

Lambert: Yes, indeed. The floor midpoint is only strictly greater than the left endpoint if
the difference of the endpoints is at least two: 1 + a ≺ b.

Lisa (peeking over Harry’s shoulder): May I? [She takes Harry’s laptop to scrutinise the
Agda code.] Harry, you have been cheating: balanced has a termination pragma attached
to it!

Harry (sighs): Guilty as charged. Agda’s termination checker was recalcitrant. I am pretty
sure, however, that the program terminates—I ported it to Haskell and tested it extensively.
The Haskell compiler never complains about non-termination!

Ken: You have excessive expectations, Harry. Agda can only prove termination if the
function is structurally recursive, which is not the case with your function. You may
pass p, a sub-structure of the argument succ p, to a recursive invocation of balanced but not
a≺a-mid-b p or a-mid-b≺b (succ p). Anyway, I would argue that a termination pragma is
a cultural faux-pas in dependent type theory. It mars the entire development. Fortunately,
a cure is readily at hand: we add a “recursion permit” to your function.

Tutor: Just to double-check: earlier this term, we discussed general recursion. In partic-
ular, we looked at a modular approach to course-of-values recursion using accessibility
predicates. [Looks around at blank faces.] It seems some of you need a refresher. Ken,
would you be willing to summarise the idea?

Ken: Sure. Say, we are programming a list consumer:

consume : List A → B
consume xs = . . .

The function is, however, not structurally recursive; rather, it recurses over the length
of the list argument xs. To establish termination, we add an argument of type
Accessible (length xs), where Accessible is defined:
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10 A. Dinges and R. Hinze

data Accessible (n : N) : Set where
permit : (∀ {m} → m ≺ n → Accessible m) → Accessible n

You may want to think of the additional argument as a “recursion permit”: it allows us to
pass any list to a recursive call as long as it is shorter than xs.

consume : (xs : List A) → Accessible (length xs) → B
consume xs (permit because) = . . . consume ys (because p) . . .

We only need to provide a proof, p : length ys ≺ length xs, that certifies that the length
is actually decreasing. Agda happily accepts the definition as it is structurally recursive
on the recursion permit—note that Accessible is an inductively defined predicate on the
naturals.

Lisa: So to fix Harry’s function, we add an argument of type Accessible (r ·− l), as we need
to recurse over the size of the interval � l , r �, right? Then we have to show that the size
of the interval is decreasing for both recursive calls: m ·− l ≺ r ·− l and r ·− m ≺ r ·− l.
[Ponders.]

Lambert: May I lend you a helping hand? These inequalities follow from order-theoretic
properties of monus, which is monotone in its first argument and antitone in its second.

shrink-left : a ≺ b → � a mid b � ·− a ≺ b ·− a
shrink-right : 1 + a ≺ b → b ·− � a mid b � ≺ b ·− a

The first proposition is a consequence of � a mid b � ≺ b and monotonicity; the second
follows from a ≺ � a mid b � and antitonicity. Well, at least in principle, the proofs are
slightly more intricate as we require strict inequalities.

Harry: Nicely done Lambert. Surely, the standard library provides the necessary results.
[He grabs his laptop.] Let me fix the definition of balanced. Ken’s setup strikes me as an
instance of the worker/wrapper scheme. Thanks to Lisa and Lambert, the definition of the
worker function is pretty straightforward.

worker : l ≺ r → Accessible (r ·− l) → l ≺′ r
worker (one) (permit because) = one
worker (succ p) (permit because) =

worker (a≺a-mid-b p) (because (shrink-left (succ p)))
� worker (a-mid-b≺b (succ p)) (because (shrink-right p))

[Pauses.] But I am unsure how to define the wrapper, the function balanced itself. It needs
to supply an argument of type Accessible (r ·− l) . . .

Ken: I do like the worker/wrapper presentation. Yes, the worker uses the recursion permit,
which the wrapper provides. Fortunately, permits can be produced in a completely generic
way, independent of the application at hand.

accessible : ∀ {n} → Accessible n
accessible {zero} = permit access-zero
accessible {succ n} = permit (access-succ (accessible {n}))

The “ticket machine” is defined by structural induction on the naturals. The natural number
zero is accessible as there is no number below zero.
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Binary search—think positive 11

access-zero : m ≺ 0 → Accessible m
access-zero m≺0 = ex-falso-quodlibet (¬n≺zero m≺0)

Using the proof of m ≺ 0 given to us, we construct a contradiction.

Lambert: Ex falso sequitur quodlibet—from contradiction, anything follows.

Ken: Your Latin is pretty good, Lambert! For the successor of a natural number,

access-succ : Accessible n → m ≺ 1 + n → Accessible m
access-succ (permit because) (one) = permit because
access-succ (permit because) (succ succ-m≺succ-n) =

because (succ-reflects-≺ succ-m≺succ-n)

we distinguish two cases. Either m equals n, in which case, we simply return the recursion
permit for n provided as an argument. Otherwise, when m is strictly smaller than n, we use
the recursion permit for n to show that m is accessible. As an aside, the first case demon-
strates that structural recursion is a special case of course-of-values recursion—recall that
one evidences n ≺ succ n.

Harry: Great! Then we can drive the story home.

balanced : l ≺ r → l ≺′ r
balanced l≺r = worker l≺r accessible

Phew, this was rather hard work. [He pauses to reflect on the development.] But, do we
really need the intermediate structure, my midpoint trees? Using a recursion permit, I
could rewrite our very first definition of even-odd-pair, to directly implement a binary
sub-division scheme.

Tutor: Well, you can certainly deforest midpoint trees, fusing producer and consumer—a
rather mechanical optimisation step. I would argue, however, that the present design is
preferable as it nicely separates concerns. The proof of total correctness is divided into
two parts:

• A proof of partial correctness: even-odd-pair establishes the existence of an
even-odd pair. The proof relies, however, on an assumption: the existence of a
midpoint tree. A priori, we have no reason to believe that your type l ≺′ r is
inhabited.

• A termination argument: balanced shows that suitable midpoint trees exist. The
proof involves properties of the midpoint.

Different proof techniques are used in each part: functional invariants for partial correct-
ness and accessibility predicates for termination. Midpoint trees serve as a connecting
element.

Unfortunately, time is already up. Tomorrow, we look at further applications of binary
search.

5 Thursday

Synopsis: The discussion returns to the original topic: the beauty and power of binary
search.
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12 A. Dinges and R. Hinze

Tutor: Good morning class. I must say I am very pleased that you have come up with
a solution to the even-odd puzzle that abstracts away from the search strategy. Are there
further opportunities for abstraction? For example, is there anything special about evenness
and oddness? Or, could we replace the parity properties by arbitrary predicates, say, P like
petty and Q like quirky?

Lisa: Well, inspecting the definition of even-odd-pair, it seems that we make only a single
assumption: the predicates are exhaustive, each natural number is either even or odd. In
order to generalise the proof, we could assume the existence of an oracle that classifies a
given natural as petty or quirky.

Harry: Shouldn’t we also require that the predicates P and Q are exclusive? In other words,
Q should be the complement of P.

Lisa: Hmm, I don’t see why. A number may be both petty and quirky—we leave it to the
wisdom of the oracle to judge which property prevails.

Ken (busily typing): The amendment goes through smoothly. To reduce clutter, I have
passed the predicates P Q : N → Set as implicit arguments.

interval-search : � l , r �

→ (oracle : ∀ n → P n  Q n)
→ P l × Q r
→ ∃ (λ i → P i × Q (1 + i))

interval-search (Leaf n) oracle (p , q) = n , p , q
interval-search (Node m t u) oracle (p , q) with oracle m
. . . | inr q′ = interval-search t oracle (p , q′)
. . . | inl p′ = interval-search u oracle (p′ , q )

Thankfully, the even-odd puzzle is an instance of the general scheme.

even-odd-pair strategy box =
interval-search strategy (λ n → parity (box n))

And now the grand finale: if we instantiate the search strategy to Harry’s midpoint trees,
we obtain a generic implementation of binary search!

binary-search : l ≺ r
→ (oracle : (n : N) → P n  Q n)
→ P l × Q r
→ ∃ (λ i → P i × Q (1 + i))

binary-search l≺r = interval-search (binary-subdivision (balanced l≺r))

Tutor: Excellent! Let us now discuss further applications of binary search. Do you know
the game “Guess My Number”?

Someone thinks of a, say, three-digit number and the others try to guess it. After each guess, they
are told whether the number is greater or less than their guess.

Lisa: Ha ha, that’s a good one! [Starts typing.] I am not that familiar with the Agda library
—how can I decide the ordering on the naturals?
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Binary search—think positive 13

Ken: The library offers several functions that you could use, for example, the two-way
comparison _�?�_ : ∀ m n → (m � n)  (m � n). The operator looks perhaps a bit
weird. A question mark typically indicates a decision procedure: _�?�_ decides whether
the arguments are related by _�_ or by _�_.

Lisa: Thanks. Here we are.

guess-my-number : (n : N) → n ≺ 1000 → ∃ (λ i → (i � n) × (n ≺ 1 + i))
guess-my-number n n≺1000 =

binary-search 0≺1000 (λ i → i �?� n) (zero�n n , n≺1000)

Tutor: Very good. Do you remember the life-cycle of a functional invariant? The
guess-my-number application establishes the invariant of binary-search, providing evi-
dence that 0 � n ≺ 1000 as P i = (i � n) and Q i = (n ≺ i).

Harry: Now I see why Lisa is laughing: the postcondition tells us that i is actually equal
to n. Not a very useful function, but a reassuring result.

Tutor: The game was intended as a preparatory step. Let me tweak the oracle, applying a
function, say, squaring to the index: λ i → i 2 �?� n.

Harry: We obtain the inverse of the function, the square root in your example?

Lambert: Not quite, squaring has no inverse in the naturals. The oracle implicitly defines
the predicates: P i = (i 2 � n) and Q i = (n ≺ i 2). The postcondition of binary search,
i 2 � n ≺ (1 + i) 2, then tells us that we obtain the square root rounded downwards.

Lisa: So we can basically copy the code for “Guess My Number”.

square-root : (n : N) → ∃ (λ i → i 2 � n × n ≺ (1 + i) 2)
square-root n = binary-search (zero≺succ-n n) (λ i → i 2 �?� n)

(zero�n n , square-lemma n)

All that remains to be done is to update the code for installing the functional invari-
ant. Since the search interval is � 0 , 1 + n �, we need to show square-lemma :
∀ n → n ≺ (1 + n) 2.

Harry: This is certainly a valid proposition. [Pauses.] It seems to me that “searching
an ordered table” is very similar to computing the square root. If we model the lookup
table by a function table : N → N that maps positions to keys, then the oracle reads
λ i → table i �?� key.

table-lookup : l ≺ r
→ (table : N → N)
→ (key : N)
→ table l � key × key ≺ table r
→ ∃ (λ i → table i � key × key ≺ table (1 + i))

table-lookup l≺r table key = binary-search l≺r (λ i → table i �?� key)

The difference to Knuth’s setup is striking: his search returns an index i such that Ki ≡ K,
but the search may fail; our search always succeeds, returning an index i such that
Ki � K ≺ K1+i.

Lisa: There is one further difference: Knuth assumes that the table is ordered, that the
function table is monotone; we don’t make this assumption.
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14 A. Dinges and R. Hinze

Harry: Yes, you are right. “Searching an unordered table”? Weird!

Tutor: I see, you are getting into the mood. Ready for one of my favourite puzzles, taken
from Jeff Erickson’s excellent lecture notes on algorithms (2011)?

You are a contestant on the game show “Beat Your Neighbours!”. You are presented with a
sequence of n boxes, each containing a natural number. It costs 100e to open a box. Your goal is to
find a box whose number is larger than its left and right neighbours. If you spend less money than
any of your opponents, you win a week-long trip to Berlin.

0
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2
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7
4

6
5

5
6

3
7

9
8

8
9

1
10

Harry: Does such a box always exist? In your example, the boxes numbered 2, 4, and 8
are winning boxes. But, what if all boxes contain the same number, or the numbers are
strictly increasing from left to right?

Lisa: Perhaps we should first clarify what “larger” means: “strictly larger” or “no smaller”?
Furthermore, the description is incomplete: the leftmost box has no left neighbour, and the
rightmost box has no right neighbour.

Tutor: Well, the boxes at the ends need to beat only one neighbour. Regarding the read-
ing of “larger”: to avoid upsetting the candidates, we should guarantee the existence of a
winning box, so “larger” means “no smaller”.

Lambert: Treating the outermost boxes separately, strikes me as inelegant. To avoid three
different winning criteria, I suggest to add “virtual” boxes to the ends. [He adds “sentinels”
to the example.]
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They are similar to “sentinel nodes”, which serve as traversal terminators in imperative
programming. The virtual boxes contain the smallest natural number, so that the “beats”
condition is trivially satisfied.

Harry: I don’t think that this puzzle is an instance of binary search. Say, you open the
middle box and 6 is revealed to you. What conclusions can you draw? None! Perhaps a
picture is helpful. [He plots the graph of the function.]
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[Mumbles.] Looks like a mountain range to me.
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Binary search—think positive 15

Lisa: Harry Hacker, you are a genius. Imagine you are hiking in the mountains, aiming to
climb some mountain peak. Which strategy do you follow? You consider the slope, not the
height above sea level. [Adds a line of numbers.]

0 4 −2 5 −1 −1 −2 6 −1 −7 −1

If we replace height by slope, slope := (box (1 + i) − box i) / ((1 + i) − i), then we
have a straightforward application of binary search: P i holds if slope i is non-negative,
Q i holds if slope i is non-positive.

Lambert: So in abstract clothing, we are looking for a local maximum.

Ken (again eagerly typing): The code is straightforward, indeed. I don’t use slope though.
Instead, I simply compare the contents of two adjacent boxes.

beat-your-neighbours : (box : N → N)
→ l ≺ r
→ box l � box (1 + l) × box r � box (1 + r)
→ ∃ (λ i → box i � box (1 + i) × box (1 + i) � box (2 + i))

beat-your-neighbours box l≺r =
binary-search l≺r (λ i → box i �?� box (1 + i))

The code assumes Lambert’s sentinel trick as the winning criterion does not treat the boxes
at the ends differently. Just in case you wonder, _�?�_ : ∀ m n → m � n  m � n is
a “non-deterministic” variant of _�?�_. If the arguments are equal, the operator either
returns a proof of m � n or a proof of m � n. We don’t know which, but also we don’t
care.

Harry: So this is an example where P and Q are not exclusive. [Pauses.] On a more general
note, I have to admit that I wasn’t very thrilled by this week’s topic, but binary search is
much more general than I thought initially. In particular, I am intrigued that we do not need
to assume that the data is ordered.

Ken: I like to think that we experience the effect of constructive logic. Both Knuth and
Bird&Wadler are somewhat negative: in the recursive step, they eliminate data from con-
sideration. In the end, their search may fail. We are much more positive: in the recursive
step, we continue with the half that guarantees the existence of a petty-quirky pair—the
other half possibly contains further pairs. Our search is always successful. Constructive
logic favours a positive mindset.

Tutor: Sorry, we are already running overtime. Let’s continue the discussion tomorrow.
If you feel energetic, try to re-implement Bird&Wadler in Agda.

6 Friday

Synopsis: The rôle of monotonicity is discussed.

Tutor: Good morning class. Lisa, do you want to take the lead?

Lisa: Sure. A quick refresher is probably not amiss. Given a monotone predicate
P : N → Set and an interval [ l , r ], Bird&Wadler seek to determine the smallest
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16 A. Dinges and R. Hinze

index j ∈ [ l , r ] such that P j holds. In other words, they are looking for a position where
the predicate P flips. This is no different than a petty-quirky pair, where i is petty if ¬ P i
and i is quirky if P i. Now, approaching the task with a positive mindset, we would, of
course, like to guarantee the existence of such a pair. These considerations motivate the
following interface.

find : l ≺ r
→ (monotone : ∀ {a b} → a � b → (P a → P b))
→ (decide : ∀ n → ¬ P n  P n)
→ ¬ P l × P r
→ ∃ (λ j → P j × (∀ i → i ≺ j → ¬ P i))

The preconditions l ≺ r and ¬ P l × P r make sure that a petty-quirky pair exists. Since P
is monotone the pair is also unique. The postcondition rewords this observation to say that
we have found the smallest index j such that P j holds.

Harry: Are you suggesting that monotonicity plays no rôle for the actual search?

Lisa: Exactly! In particular, we can implement Bird&Wadler’s search function find in
terms of our binary-search.

find l≺r monotone decide pre with binary-search l≺r decide pre
. . . | j , ¬P-j , P-1+j

= 1 + j , P-1+j , λ i (i≺1+j : i ≺ 1 + j) P-i →
¬P-j (monotone (≺-succ-is-� i≺1+j) P-i)

We obtain a petty-quirky pair, so 1 + j is the desired smallest quirky index. For
the proof of minimality, we basically apply the contrapositive of monotonicity:
a � b → (¬ P b → ¬ P a). Concretely, from i ≺ 1 + j, which is equivalent to i � j and
¬ P j we conclude ¬ P i.

Lambert: It is interesting to see how things intertwine: the invariant guarantees the exis-
tence of a “quirky” index; monotonicity ensures that it is unique. I am really pleased to
see that Lisa’s program is total in contrast to Bird&Wadler’s code. Their “Introduction to
Functional Programming” is an excellent textbook, but the presentation of binary search
is, well, slightly below standard.

Harry: In their defence, we place an additional burden on the caller of find who needs to
install the functional invariant ¬ P l × P r.

Lisa: Well, yes and no. Yes, they have to provide evidence that the search is in some
sense “promising”. One option is to apply Lambert’s cute sentinel trick: assuming l is non-
zero, the original search interval [ l , r ] is widened to l − 1 ≺ 1 + r, setting P i := ⊥
for i ≺ l and P i := � for r ≺ i. The conditions now hold by definition, so no, I don’t
consider this a burden.

Harry: Hmm, okay. [Pauses.] So monotonicity is only used in an afterthought. [Pauses
again.] Can we please revisit the problem of “searching an ordered table”? I really don’t
see how to define this as an instance of our binary search. Approaching problems with a
positive mindset is all good and well, but we simply cannot guarantee that a given table
contains a given key.
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Binary search—think positive 17

Ken: True. But you can use monotonicity to decide containment. You may want to
implement the following interface:

ord-table-lookup : l ≺ r
→ (table : N → N)
→ (monotone : ∀ {a b} → a � b → table a � table b)
→ (key : N)
→ table l � key × key ≺ table r
→ Decide (∃ (λ i → table i ≡ key))

A property is decidable if you either have concrete evidence that it holds or evidence that
it does not hold.

data Decide (Prop : Set) : Set where
yes : Prop → Decide Prop
no : ¬ Prop → Decide Prop

Harry: I guess you are suggesting to use yesterday’s table-lookup, post-processing its
results? [Starts typing.]

ord-table-lookup l≺r table monotone key pre
with table-lookup l≺r table key pre

... | i , inl pi , qi = yes (i , pi)

... | i , inr pi , qi = no key-not-found
where key-not-found : ¬ ∃ (λ j → table j ≡ key)

The function table-lookup returns proofs that Ki � K ≺ K1+i. I pattern match on the
first proof to check whether Ki ≡ K or Ki ≺ K—recall that we defined m � n =
(m ≡ n)  (m ≺ n). If the former, then I signal success; if the latter, I need to report that
the key has not been found. [Stops typing.]

Ken: May I offer a helping hand? In the negative case, you can derive a contradiction using
irreflexivity. Say, the adversary claims the existence of an index j with Kj ≡ K. Assuming
j � i, monotonicity implies Kj � Ki. Since we already know that Ki ≺ K ≡ Kj, witnessed
by pi, we have Ki ≺ Ki, which is impossible.

key-not-found (j , reflexive) with j �?� i
... | inl j�i = ≺-irreflexive (≺-then-� pi (monotone j�i))
... | inr j�i = ≺-irreflexive (≺-then-� qi (monotone (≺-is-succ-� j�i)))

The other case enjoys a similar proof.

Harry: Cool. [Smiles mischievously.] I never thought that monotonicity would help with
negative feelings.

Lisa: In the success case, monotonicity is also helpful: it implies that the index i lies in the
specified interval: l � i ≺ r.

Tutor: Well done everybody. We certainly have earned an early weekend. I hope you
enjoyed these tutorials as much as I did. As usual, the exercise sheet contains some
ideas for further exploration, revisiting design decisions and generalising the setup.
[See Figure 2.] Enjoy! Oh, and I recommend reading Joshua Bloch’s blog post (2006)
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18 A. Dinges and R. Hinze

Exercise 1 (warm-up). Show the analogue of domain for mid-point trees:

domain : l ≺ r → l ≺ r

This is Harry’s “straightforward” exercise from Wednesday.

The predicates passed to interval search range over the naturals, : → Set. For applications
l , r :

: (n : ) → l n × n r → Set

However, ordering constraints such as l n are often cumbersome to work with. An attractive,
implementation-oriented alternative builds on membership.

data _∈

∈
·

∈
·

∈
·

∈
·

∈
·

∈
·

∈
·

∈
·

_ (i : ) : l , r → Set where
here : i ∈ Leaf i
left : { t : l , m } → {u : m , r } → i ∈ t → i ∈ Node m t u
right : { t : l , m } → {u : m , r } → i ∈ u → i ∈ Node m t u

If I : l , r is an interval tree, n ∈ I is a path from the root of the tree to an n-labelled leaf. A
technicality: since the tree represents only a half-open interval, we also need a variant of membership
that includes the right endpoint (as is applied to r).

data _ _ (i : ) : l , r → Set where
half-open : { I : l , r } → i ∈ I → i I
rightmost : { I : l , i } → i I

Exercise 2. Given an interval tree I : l , r , prove that membership n ∈ I is equivalent to
l n × n ≺ r and n I to l n × n r. In particular, show that the endpoints are included in the
closed interval:

_ : (I : l , r ) → l I
_ : (I : l , r ) → r I

Exercise 3. , which guarantees that the
oracle is not called outside the given range.

interval-search : (I : l , r )
→ { : (n : ) → n I → Set}
→ (oracle : (n : ) → (p : n I) → n p n p)
→ l I) × )r (I
→ ∃ ( i → ∃ ( p → ∃ ( q → i p × (1 + i) q)))

Exercise 4. For simplicity, we have assumed that the endpoints of an interval are natural numbers.
Generalise interval-search so that it works on the integers As a first step, change the interval
datatype [_,_[ to include integer endpoints.

that involve finite look-up tables it is prudent to restrict the domain to the given search interval

(

Implement the following “finite” variant of interval-search

Specialise the generic search to finite look-up tables.

F

Q

P Q

P Q

Fig. 2. Exercise sheet: binary search and its applications.
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Binary search—think positive 19

“Extra, Extra—Read All About It: Nearly All Binary Searches and Mergesorts Are
Broken”, which shows that formal proofs do not eliminate the need for systematic test-
ing—typical programming languages use fixed-precision arithmetic, which can lead to
overflow errors when computing the midpoint. Our Peano naturals support arbitrary-
precision arithmetic, so we avoid this problem.

7 Afterword

This pearl grew out of the authors’ frustration with textbook presentations of binary search.
Given that binary search is one of the standard algorithms every programmer and com-
puter science student should know, the subject is inadequately covered at best. Many
textbooks mention binary search only in passing or they treat only special cases, such as
computing the square root or searching an ordered table. A negative mindset prevails: the
search possibly fails; in the divide&conquer step one half of the search space is excluded
from consideration because searching this half will definitely fail. The correctness argu-
ment requires that the data is ordered, suggesting that monotonicity in some sense drives
the search. One notable exception is Anne Kaldewaij’s textbook (1990): when discussing
“function inversion” (given n, find an argument i such that f i � n ≺ f (1 + i)) he empha-
sises repeatedly that the correctness of the search does not require that f is an ascending
function.

The gist of this pearl is to approach search problems with a positive mind-set: the
search always succeeds; in the divide&conquer step the search continues with the half
that guarantees success. The correctness argument relies on a suitable functional invariant,
not on monotonicity. The “Beat Your Neighbours!” problem, a concrete make-up for local
maximum search, shows that the extra generality is actually needed.

Supplementary materials

For supplementary material for this article, please visit https://doi.org/10.1017/
S0956796825000061
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A Appendix

The complete Agda code can be found in the accompanying material. This appendix lists
some basic types and functions.

Constructive Logic. The disjoint union of two types is defined as follows:

data __ (A : Set) (B : Set) : Set where
inl : A → A  B
inr : B → A  B

An element of type A  B is either of the form inl a for some a : A or of the form inr b
for some b : B. In the “propositions as types” paradigm, the disjoint union corresponds to
logical or.

In Agda, there is an empty type, denoted ⊥, which corresponds to falsity. The empty
type is quite special in that there is a unique function from ⊥ to any type. This unique
function is defined using the absurd pattern “()”.

ex-falso-quodlibet : ∀ {A : Set} → ⊥ → A
ex-falso-quodlibet ()

The function implements the logical rule “ex falso (sequitur) quodlibet”, hence the name.
Negation is a special case of implication: ¬ A := A → ⊥ expresses that it is absurd to

assume A. As ⊥ → A holds trivially, this means that A is, in fact, equivalent to the empty
type, that A is unprovable and hence false.

Natural numbers. Following Peano, we define the natural numbers inductively as a type
with two constructors: zero represents the natural number 0 and succ takes a natural
number and returns its successor.

data N : Set where
zero : N

succ : N → N

In general, for a given natural number n, the partial application _+ n lacks an inverse.
However, we can introduce a subtraction operation, denoted ·− and referred to as monus,
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such that _ ·− n acts as the inverse on naturals greater than n. When m is less than n, the
difference m ·− n is defined to be 0.

_ ·−_ : N → N → N

zero ·− n = zero
succ m ·− zero = succ m
succ m ·− succ n = m ·− n

The “lower” midpoint of two natural numbers a and b is given by � (a + b) /2�. For
purely pragmatic reasons, we unfold the definition of _+_, obtaining

�_mid_� : N → N → N

� zero mid b � = � b /2�
� succ a mid zero � = � succ a /2�
� succ a mid succ b � = succ � a mid b �
The function �_/2� : N → N divides a natural by 2, rounding down.

Standard order. The following properties of _≺_ and _�_ are used in the main body of
the article. The proofs are not too revealing and therefore omitted:

≺-irreflexive : ¬ n ≺ n
≺-transitive : k ≺ m → m ≺ n → k ≺ n
zero≺succ-n : ∀ n → zero ≺ succ n
¬n≺zero : ¬ n ≺ zero
succ-reflects-≺ : succ m ≺ succ n → m ≺ n
zero�n : ∀ n → zero � n
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