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Abstract
Given a resolution of rational singularities 𝜋 : �̃� → 𝑋 over a field of characteristic zero, we use a Hodge-theoretic
argument to prove that the image of the functor R𝜋∗ : Db ( �̃�) → Db (𝑋) between bounded derived categories
of coherent sheaves generates Db (𝑋) as a triangulated category. This gives a weak version of the Bondal–Orlov
localization conjecture [BO02], answering a question from [PS21]. The same result is established more generally
for proper (not necessarily birational) morphisms 𝜋 : �̃� → 𝑋 , with �̃� smooth, satisfying R𝜋∗(O�̃� ) = O𝑋 .

1. Introduction

Operations of the Minimal Model Program often correspond to operations on the derived categories of
coherent sheaves. The case of smooth varieties is understood relatively well. In particular, projective
bundles, blow-ups, and standard flips correspond to semiorthogonal decompositions of derived cate-
gories, see [BO02] and references therein. Furthermore, the K-equivalence conjecture of Kawamata
[Kaw02], building on ideas of Bondal and Orlov predicts that K-equivalent varieties should have equiv-
alent derived categories. In particular, a crepant resolution of a singular variety is conjecturally unique
up to derived equivalence. For a recent survey of various aspects of the interplay between birational
geometry and derived categories for smooth projective varieties, see [Kaw18], and for conjectural re-
lationship to rationality problems, see [Kuz16]. On the other hand, much less is known for singular
varieties. In particular, the relationship between properties of the derived category of a singular variety
and its resolution is still unclear. Of course this relationship should depend on the type of singularities
of X. Recall that a variety X over a field of characteristic zero has rational singularities if the derived
pushforward R𝜋∗O�̃� coincides with O𝑋 for some (hence, every) resolution 𝜋 : �̃� → 𝑋 . One old major
open question is the Bondal–Orlov localization conjecture:
Conjecture 1.1 [BO02, Section 5], [Efi20, Conjecture 1.9]. Let 𝜋 : �̃� → 𝑋 be a resolution of rational
singularities. Then the functor R𝜋∗ : Db( �̃�) → Db(𝑋) between bounded derived categories of coherent
sheaves is a Verdier localization, that is the induced functor

R𝜋∗ : Db ( �̃�)/Ker(R𝜋∗) → Db(𝑋)

is an equivalence.
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It is convenient to split this statement into two parts:
(a) the induced functor R𝜋∗ : Db( �̃�)/Ker(R𝜋∗) → Db (𝑋) is fully faithful;
(b) the functor R𝜋∗ : Db ( �̃�) → Db (𝑋) is essentially surjective.

Validity of Conjecture 1.1 does not depend on the choice of a resolution of X, at least in characteristic
zero [PS21, Lemma 2.31]. Understanding this conjecture is essential for linking the Minimal Model
Program to operations on derived categories, as well as for understanding derived categories of singular
varieties. Indeed, a typical investigation of Db (𝑋) proceeds by descending results from Db( �̃�) to Db(𝑋),
typically restricting to cases when the localization conjecture holds (see, e.g. [KKS22, KS22a] for how
this strategy can be implemented).

Recent progress on Conjecture 1.1 includes [Efi20], [BKS18], and [PS21]. Notably, it holds for
cones over projectively normal smooth Fano varieties [Efi20] (as explained in [KS22a, Example 5.4,
Corollary 5.6]), all quotient singularities in characteristic zero [PS21, Theorem 2.30], and singularities
admitting a resolution with one-dimensional fibers [BKS18, Theorem 2.14], however, in general, it
remains wide open. Our main result is the weaker version of (b) which answers the question asked
in [PS21, Introduction]. Let G0 (𝑋) := K0(Db (𝑋)) be the Grothendieck group; it is isomorphic to the
Grothendieck group of the abelian category of coherent sheaves on X. The group G0 (𝑋) is covariantly
functorial for proper morphisms, hence plays the role of a K-theoretic version of the Borel–Moore
homology, similarly to Chow groups. By the “Homological Bondal–Orlov localization,” we mean the
implications of Conjecture 1.1 for G0 (𝑋), as explained in [PS21, Section 4 of the Introduction]. We
prove the following:
Theorem 1.2. Let 𝜋 : �̃� → 𝑋 be a proper morphism of algebraic varieties over a field k of characteristic
zero with �̃� smooth and satisfying R𝜋∗(O�̃� ) = O𝑋 . Then the image of R𝜋∗ : Db ( �̃�) → Db (𝑋) generates
Db (𝑋) as a triangulated category. In particular, the induced homomorphism R𝜋∗ : G0 ( �̃�) → G0 (𝑋) is
surjective.

Here, we say that a set of objects S ⊂ Db(𝑋) generates Db(𝑋) as a triangulated category if every
object of Db (𝑋) can be obtained from the objects of S by iterating cones and shifts. Importantly, taking
direct summands is not required (this would make the statement much weaker, with no implications
about the map on G0).

We prove this by reducing to k = C and using an argument from Hodge theory, going back to
Steenbrink’s work on Hodge theory of singularities [Ste83] (see Lemma 2.5 for this step). Theorem 1.2
applies, in particular, to resolutions of rational singularities. We note that this kind of surjectivity is
specific to derived categories of coherent sheaves and G0 (𝑋); it is easy to find examples when it fails
for other kinds of Borel–Moore homology theories, such as Chow groups or singular homology (see
Examples 3.2 and 3.3).

Let us explain why Theorem 1.2, as well as the full Bondal–Orlov localization Conjecture 1.1, is a
nontrivial and subtle statement. The key reason why the condition R𝜋∗(O�̃� ) = O𝑋 is relevant when
studying derived categories of coherent sheaves is the projection formula: for every F ∈ Db (𝑋)

R𝜋∗L𝜋∗(F) � F ⊗ R𝜋∗(O�̃� ) = F ,

and this motivates at least part (b) of Conjecture 1.1. However, unless F is a perfect complex, L𝜋∗(F)
is a complex unbounded to the left, whereas the question is about existence of a bounded complex on �̃� .
Thus, a certain truncation of L𝜋∗(F) may be required, but a truncation does not immediately yield the
complex we need, see [Kaw19, Lemma 7.4], where it is shown that F is a direct summand of the image
of a truncation of L𝜋∗(F). In particular, we do not have a canonical lifting of a complex F ∈ Db(𝑋) or
even its class [F] ∈ G0(𝑋) to �̃� .

Our approach is indirect: using standard K-theory arguments, it suffices to consider the structure
sheaves O𝑍 ∈ Db (𝑋) of closed subvarieties 𝑍 ⊂ 𝑋 . We construct a birational modification 𝜎 : �̃� ′ → �̃� ,
such that the fibers of 𝜋𝜎, with their reduced scheme structure, have simple normal crossings, see
Lemma 2.7. Hodge theory is used to prove that these fibers have no higher cohomology for the structure
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sheaf (see Proposition 2.4 and Lemma 2.5). We call the latter property of a morphism O-acyclicity, and
we use it to show that O𝑍 lies in the image of R𝜋∗ eventually up to a small correction term, namely, that
O𝑍 coincides with R𝜋∗(R𝜎∗O(𝜋𝜎)−1 (𝑍 )red) away from a proper subset of Z (see Lemma 2.8). Finally,
we deduce Theorem 1.2 by induction on the dimension of Z (see Proposition 2.10).

From Theorem 1.2, we can deduce that part (b) of the Bondal–Orlov localization (essential surjec-
tivity) already follows if we know part (a) (fully faithfulness):
Corollary 1.3. Under assumptions of Theorem 1.2, if R𝜋∗ : Db( �̃�)/Ker(R𝜋∗) → Db (𝑋) is full (i.e.,
surjective on Hom-spaces), then R𝜋∗ is essentially surjective. In particular, if R𝜋∗ is fully faithful, then
it is a Verdier localization.

Thus, in the terminology of [KS22a, KS22b], R𝜋∗ is a Verdier localization if and only if it is a so-
called categorical contraction, which is a priori a weaker statement meaning Verdier localization up to
direct summands.

Notation and conventions

We work over a field k of characteristic zero. Unless stated otherwise, our varieties are assumed to be
reduced and quasi-projective over k.

2. O-acyclic morphisms and surjectivity of R𝜋∗

When working with derived categories and rational singularities, the following property is relevant.
Definition 2.1. Let 𝜋 : �̃� → 𝑋 be a surjective proper morphism with geometrically connected fibers.
We say that 𝜋 is O-acyclic at 𝑥 ∈ 𝑋 if H>0 (𝜋−1 (𝑥)red,O) = 0.

Here, 𝑥 ∈ 𝑋 is a scheme point and 𝜋−1 (𝑥) is a scheme of finite type over k(𝑥). Note that because we
assume fibers to be geometrically connected, we have

H∗(𝜋−1 (𝑥)red,O) = k[0] . (1)

We say that 𝜋 is O-acyclic if it is acyclic at each point 𝑥 ∈ 𝑋 , and we say that 𝜋 is O-acyclic after a
modification if there exists a proper morphism 𝜎 : �̃� ′ → �̃� , such that 𝜋𝜎 is O-acyclic.

The following lemma shows, in particular, that to check that 𝜋 is O-acyclic, it suffices to consider
fibers over closed points of X. Here, 𝜋 is the morphism as in Definition 2.1.

Lemma 2.2. 𝜋 is O-acyclic at 𝑥 ∈ 𝑋 if and only if it is acyclic at general closed points 𝑥 ′ ∈ {𝑥}.
Proof. Let 𝑍 = {𝑥} and E be the reduced 𝜋-preimage of Z. The result follows from [Har77, Corollary
12.9] and the generic flatness of the restricted morphism 𝜋𝑍 : 𝐸 → 𝑍 . �

In the case when 𝜋 is flat and all fibers are reduced, being O-acyclic is equivalent to R𝜋∗(O�̃� ) = O𝑋

by base change. In general, the relation between these two properties is quite subtle.
Example 2.3. Let 𝜋 : �̃� → 𝑋 be a resolution of singularities. Then 𝜋 can be O-acyclic, but
R>0𝜋∗(O�̃� ) ≠ 0, because higher derived pushforwards involve thickenings in a nontrivial way.
(1) The map 𝜋 can be chosen as a log resolution of a nonrational surface singularity whose exceptional

locus E is a tree of rational curves. For instance, consider the Brieskorn singularity X given by the
equation 𝑥2+𝑦3+𝑧7 = 0. The exceptional curve of its minimal resolution (the weighted blow-up with
weights (3, 2, 1)) is the cuspidal cubic C given by 𝑥2 + 𝑦3 = 0 in P(3, 2, 1), and so X does not have
rational singularities by Artin’s rationality criterion since H1 (𝐶,O) = k (see [Art66, Proposition 1]
or Example 2.6 below). On the other hand, by blowing-up the minimal resolution three times, we
obtain a log resolution 𝜋 : �̃� → 𝑋 whose exceptional locus E is a tree of rational curves: its dual
graph is 𝐷4; the rational curve in the middle has self-intersection −1, and the other ones −2, −3,
and −7. Note that H1 (𝐸,O) = 0, which means that 𝜋 is O-acyclic.
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(2) Consider the affine cone X over a smooth projective variety 𝑌 ⊂ P𝑁 with H>0 (𝑌,O) = 0 but
H>0(𝑌,O(1)) ≠ 0 (see [Kol13, Proposition 3.13]). For instance, one can take the surface suggested
by Starr in [Shi]: 𝑌 ⊂ P2 × P1 is a divisor of bidegree (𝑑, 1) with 𝑑 ≥ 4. Then the blow-up of the
vertex 𝜋 : �̃� → 𝑋 has reduced O-acyclic fibers (fibers consist of a point or of Y), but X is not a
rational singularity.

In the opposite direction, we have the following:

Proposition 2.4. If 𝜋 : �̃� → 𝑋 is a proper morphism with �̃� smooth and satisfying R𝜋∗(O�̃� ) = O𝑋 ,
then 𝜋 is O-acyclic after a modification.

This is a remarkable result, as we are essentially able to make a very naive base change statement
for a morphism 𝜋 which is not flat. Partial results of this kind can be obtained by the formal functions
theorem (see Example 2.6), however, the formal functions theorem alone is not sufficient to control all
cohomology groups of the fibers. We begin with the following particular case of Proposition 2.4 which
we prove using complex algebraic geometry.

Lemma 2.5. Let 𝜋 : �̃� → 𝑋 be a proper morphism satisfying R𝜋∗(O�̃� ) = O𝑋 . Let 𝑥 ∈ 𝑋 be a closed
point, and assume that 𝐸 = 𝜋−1 (𝑥)red has simple normal crossings, then 𝜋 is O-acyclic at x.

Proof. When k = C, this result has been proved in [DB81, Proposition 3.1] for resolutions of cone
singularities, and in [Ste83, Proposition 3.7 and Section 3.6], [Ish14, Propositions 8.1.11.(ii) and
8.1.12] or [Nam01, Lemma 1.2] for resolutions of rational singularities. We give a self-contained proof
for completeness. Extending the scalars, we can assume that k is an algebraically closed field. By the
Lefschetz principle, we can further assume that k = C and prove the result via Hodge theory. By
the GAGA principle, the derived pushforward R𝜋∗ is the same when computed in the analytic or in
the Zariski topology [Gro71, Expose XII Theorem 4.2]. Similarly, H∗(𝐸,O) coincides when computed
in the analytic or in the Zariski topology.

Let (𝑉, 𝑥) ⊆ (C𝑛, 0) be an affine neighborhood of x in X. The intersection of V with a ball of
radius 𝜖 centered at 0, denoted 𝑈 � {𝑣 ∈ 𝑉 ⊆ C𝑛 | |𝑣 | < 𝜖}, is a Stein neighborhood of x in X. The
preimage 𝜋−1 (𝑈) is an Euclidean neighborhood of E, and the inclusion 𝑗 : 𝐸 → 𝜋−1 (𝑈) is a homotopy
equivalence (see, e.g. [Dur83, Proposition 1.6]). We consider the following diagram containing singular
cohomology and analytic sheaf cohomology

H∗(𝜋−1 (𝑈),C)

𝑗∗

��

�� H∗(𝜋−1 (𝑈),O)

𝑗∗

��
H∗(𝐸,C) �� H∗(𝐸,O).

Here, the horizontal maps are induced by sheaf inclusions C ⊂ O and the vertical maps are restrictions.
Since j is a homotopy equivalence, the left vertical map is an isomorphism. By the work of Deligne
[Del74], the cohomology groups of the simple normal crossing variety E carry a mixed Hodge structure,
such that 𝐹0/𝐹1 is canonically isomorphic to H∗(𝐸,O) (see, e.g. [Ste83, Section (1.5)]), hence, the
bottom horizontal map is surjective. Thus, the right vertical map is surjective as well. Since R𝜋∗(O�̃� ) =
O𝑋 and U is Stein, we have H>0 (𝜋−1 (𝑈),O) = 0, and this implies H>0 (𝐸,O) = 0. �

We do not know if the conclusion of Lemma 2.5 holds for the scheme preimage itself, without
taking reduced scheme structure. The assumption on the singularities of E can be weakened to the
requirement that E has only Du Bois singularities, which grants the surjectivity of the morphism
H∗(𝐸,C) → H∗(𝐸,O) (see [Kov12, (1.4)] for details on Du Bois singularities). However, it is not clear
whether the assumption on the singularities of E can be removed at all, at least when 𝜋 is birational. This
is true for resolution of rational singularities of dimension two or more, generally admitting a resolution
with one-dimensional fibers by the following generalization of Artin’s rationality criterion (see [Art66,
Proposition 1]).
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Example 2.6. Let 𝜋 : �̃� → 𝑋 be a proper morphism satisfying R𝜋∗(O�̃� ) = O𝑋 . Let 𝑥 ∈ 𝑋 be a
schematic point and 𝐹 ⊂ 𝜋−1(𝑥) any closed subscheme; in particular, we can take 𝐹 = 𝜋−1 (𝑥) or
𝐹 = 𝜋−1(𝑥)red. Suppose that 𝑑 = dim(𝜋−1(𝑥)) > 0. Then H𝑑 (𝐹,O) = 0. Indeed, let 𝐸𝑘 � �̃� ×𝑋
SpecO𝑥/𝔪𝑘

𝑥 , where 𝔪𝑥 is the maximal ideal of x. For 𝑘 > 0 large enough, there exists an epimorphism
O𝐸𝑘 → O𝐹 . For dimensional reasons, if K𝑘 is the kernel of O𝐸𝑘 → O𝐹 , then H𝑑+1 (𝐸𝑘 ,K𝑘 ) = 0.
Hence, H𝑑 (𝐹,O) = 0 as soon as H𝑑 (𝐸𝑘 ,O) = 0. But the latter group vanishes by the formal functions
theorem and R𝜋∗(O�̃� ) = O𝑋 :

0 = (R𝑑𝜋∗(O�̃� )𝑥)
∧ = lim

←−
H𝑑 (𝐸𝑘 ,O) � H𝑑 (𝐸𝑘 ,O).

Surjectivity of the last map holds because all transition maps H𝑑 (𝐸𝑘+1,O) → H𝑑 (𝐸𝑘 ,O) are surjective
by the cohomology vanishing argument above.

The next result produces a desingularization of the fibers of a morphism. For completeness,
we reproduce a proof due to Wlodarczyk.

Lemma 2.7 [Wlo16, Proposition 6.0.5]. Let 𝜋 : �̃� → 𝑋 be a proper morphism with �̃� smooth. Then
there exists a morphism 𝜎 : �̃� ′ → �̃� which is a composition of blow-ups along smooth centers, such
that all fibers of 𝜋𝜎, with reduced scheme structure, are simple normal crossing varieties.

Proof. We will construct a sequence of (compositions of) smooth blow-ups

�̃�𝑛
𝜎𝑛
−→ �̃�𝑛−1 −→ · · · −→ �̃�1

𝜎1
−→ �̃�0 = �̃�,

such that for all 𝑘 ≤ 𝑛, the morphism 𝜋𝜎1 · · ·𝜎𝑘 has simple normal crossing (snc) fibers over an
open subset 𝑈𝑘 ⊂ 𝑋 with the complement 𝑋 \ 𝑈𝑘 of codimension at least 𝑘 + 1. Then we can
take �̃� ′ = �̃�𝑛 and 𝜎 = 𝜎1 · · ·𝜎𝑛 for 𝑛 = dim(𝑋). The variety �̃�0 = �̃� satisfies our assumptions
because, by generic smoothness, 𝜋 is smooth over a dense open subset of X. Assume that �̃�𝑘−1 is
constructed. Let 𝑍 = 𝑋 \ 𝑈𝑘−1. By assumption, Z has codimension at least k. If the codimension
of Z is strictly larger than k, we can set �̃�𝑘 = �̃�𝑘−1. Otherwise, let 𝑍1, . . . , 𝑍𝑚 be k-codimensional
irreducible components of Z. Let 𝜎𝑘 : �̃�𝑘 → �̃�𝑘−1 be a sequence of smooth blow-ups which pro-
vides a log-resolution of (𝜋𝜎1 · · ·𝜎𝑘−1)

−1(𝑍1 ∪ · · · ∪ 𝑍𝑚), that is, we require that 𝜎𝑘 is an iso-
morphism away from the preimages of 𝑍1, . . . , 𝑍𝑚, and the preimage of every 𝑍𝑖 with respect to
𝜋𝜎1 · · ·𝜎𝑘 is an snc divisor. A simple argument using generic smoothness guarantees that there ex-
ists an open subset 𝑈𝑖 ⊆ 𝑍𝑖 , such that for any 𝑥 ∈ 𝑈𝑖 , the fibers (𝜋𝜎1 · · ·𝜎𝑘 )

−1(𝑥) also have sim-
ple normal crossings (see, e.g. [Wlo16, Proposition 4.0.4]). Thus, the set of points 𝑥 ∈ 𝑋 , where
(𝜋𝜎1 · · ·𝜎𝑘 )

−1(𝑥) is not an snc variety, is contained in a closed subset of codimension at least
𝑘 + 1. �

Proof of Proposition 2.4. We take the modification 𝜎 from Lemma 2.7. Since 𝜎 is a birational modi-
fication of the smooth variety �̃� , we have R𝜎∗(O�̃� ′ ) = O�̃� , hence R(𝜋𝜎)∗(O�̃� ′ ) = O𝑋 . We need to
check that 𝜋𝜎 is O-acyclic. By Lemma 2.2, it suffices to prove the same for closed points 𝑥 ∈ 𝑋 . The
result now follows from Lemma 2.5. �

The following two lemmas are used in our inductive proof of Theorem 1.2.

Lemma 2.8. Let 𝜋 : �̃� → 𝑋 be O-acyclic at 𝑥 ∈ 𝑋 . Let 𝑍 ⊂ 𝑋 be the closure of x and 𝐸 ⊂ �̃� be the
reduced preimage of Z. Consider the complex

F•𝑍 := Cone(O𝑍 → R𝜋∗(O𝐸 )).

Then F•𝑍 is supported on a proper closed subset of Z.
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Proof. Replacing 𝜋 by the restricted morphism 𝜋𝑍 : 𝐸 → 𝑍 does not affect the definition of F•𝑍 . The
fiber of F•𝑍 at the generic point 𝑥 ∈ 𝑍 is isomorphic to

Cone(k(𝑥) [0] → H∗(𝐸𝑥 ,O)), (2)

where 𝐸𝑥 is the generic fiber of 𝜋𝑍 . By assumption, 𝜋𝑍 is O-acyclic at the generic point 𝑥 ∈ 𝑍 , hence
(1) implies that (2) vanishes. In particular, F•𝑍 vanishes at the generic point 𝑥 ∈ 𝑍 . Therefore, F•𝑍 is
supported on a proper closed subset of Z. �

Lemma 2.9. Let D𝑚 be the triangulated subcategory of Db(𝑋) consisting of complexes acyclic away
from a codimension m subset. Then D𝑚 is generated by D𝑚+1 and all O𝑍 for 𝑍 ⊂ 𝑋 with Z integral,
codim(𝑍) = 𝑚. In particular, Db(𝑋) is generated by all structure sheaves O𝑍 .

Proof. This is the standard topological filtration argument in algebraic K-theory going back to
Grothendieck (see, e.g. [CP21, Lemma 1.7]). We recall the argument. Filtering complexes by their
cohomology sheaves, it suffices to consider a coherent sheaf F set-theoretically supported on a reduced
subscheme 𝑍 ⊂ 𝑋 of codimension m. Each subquotient I𝑛𝑍F/I𝑛+1𝑍 F is a O𝑋/I𝑍–module, hence it is
scheme-theoretically supported on Z so we can assume F = 𝑖∗(F0), where 𝑖 : 𝑍 → 𝑋 is the inclusion,
for a coherent sheaf F0 on Z. A simple argument using induction on the number of irreducible compo-
nents of Z allows us to assume that Z is integral. In this case, since we assume X to be quasi-projective,
there is a sufficiently ample line bundle O(𝐻) and a morphism

𝜙 : O⊕𝑛𝑍 (−𝐻) → F0

which is an isomorphism over generic point of Z. In other words, Cone(𝜙) ∈ D𝑚+1, and we can assume
F0 is a line bundle O𝑍 (−𝐻) on Z. The same argument using

Cone(O𝑍 (−𝐻) → O𝑍 ) � O𝑍∩𝐻 ∈ D𝑚+1

reduces the statement to the case F0 = O𝑍 , and we are done. �

Proposition 2.10. If 𝜋 is O-acyclic after a modification, then the image R𝜋∗(Db ( �̃�)) generates Db (𝑋)
as a triangulated category.

Proof. By definition, there exists a birational morphism 𝜎 : �̃� ′ → �̃� of smooth varieties, such that 𝜋𝜎
is O-acyclic. Since R𝜋∗(Db ( �̃�)) contains R(𝜋𝜎)∗(Db ( �̃�)), it suffices to show that R(𝜋𝜎)∗(Db ( �̃�))
generates Db (𝑋) as a triangulated category.

Let T be the triangulated subcategory of Db(𝑋) generated by R(𝜋𝜎)∗(Db ( �̃�)). We need to show
that T = Db (𝑋). Let D𝑚 be the subcategory of Db(𝑋) consisting of complexes acyclic away from a
codimension m subset. We check by the descending induction on m that D𝑚 ⊂ T for all 0 ≤ 𝑚 ≤
dim(𝑋) + 1; this proves the result because D0 = Db (𝑋). For the induction, base Ddim(𝑋 )+1 consists of
the zero-complex, so the statement holds. Assume D𝑚+1 ⊂ T , for some 𝑚 ≥ 0. To show that D𝑚 ⊂ T ,
by Lemma 2.9, it suffices to check that for all integral subschemes 𝑍 ⊂ 𝑋 of codimension m, we have
O𝑍 ∈ T . Let 𝑥 ∈ 𝑍 be the generic point. By Lemma 2.8, applied to 𝜋𝜎, F•𝑍 is a complex supported on
a proper closed subset of Z and the statement follows by the induction hypothesis. �

Proof of Theorem 1.2. By Proposition 2.4, 𝜋 is O-acyclic after a modification, hence, by Proposition
2.10, the image of R𝜋∗ generates Db (𝑋). �

Proof of Corollary 1.3. Let T ⊆ Db(𝑋) be the image of R𝜋∗. Then T is closed under shifts, and since
R𝜋∗ is assumed to be full, T is also closed under taking cones of morphisms. Thus, T is a triangulated
subcategory of Db(𝑋). On the other hand, by Theorem 1.2, T generates Db (𝑋) as a triangulated
category. Since T is already closed under taking shifts and cones, we obtain T = Db (𝑋). �
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3. Examples and counterexamples

Both Bondal–Orlov Conjecture 1.1 and Theorem 1.2 fail when X does not have rational singularities.

Example 3.1. If k is a nonclosed field, 𝐶 ⊂ P2 is a smooth cubic curve without rational points, 𝑋 ⊂ A3

is a cone over C, and �̃� is the blow-up of the vertex of the cone X. The singularity is not rational, and
R𝜋∗ : G0( �̃�) → G0 (𝑋) is not surjective because the image does not contain [O𝑃], essentially because
the Euler characteristic of every object E ∈ Db (𝐶) is divisible by 3, hence never equals one.

In Theorem 1.2, we cannot replace the Grothendieck group 𝐺0 (𝑋) with either integral Chow groups
or Borel–Moore homology. We explain this in detail.

For Chow groups with rational coefficients, the induced map 𝜋∗ : CH∗( �̃�,Q) → CH∗(𝑋,Q) is
always surjective for a proper morphism 𝜋 : �̃� → 𝑋 , since any closed subset 𝑍 ⊆ 𝑋 is dominated by
a closed subset �̃� ⊆ �̃� , such that the restriction 𝜋 |�̃� : �̃� → 𝑍 is generically finite. However, integrally,
this is not always the case.

Example 3.2. If k is a nonclosed field, 𝑋 ⊂ A3 is a cone over a conic C without rational points, and �̃� is
the blow-up of the vertex of the cone X, then 𝜋∗ : CH0( �̃�) = CH0 (𝐶) → CH0(𝑋) = Z is not surjective,
since the pushforward of any 0-cycle in C has even degree.

Examples analogous to Examples 3.1 and 3.2 can be constructed over k = C by spreading out. We
now consider pushforwards for Borel–Moore homology for complex varieties, which for proper varieties
coincides with the usual homology.

Example 3.3. Let X be a projective complex threefold with only isolated nodal (thus rational) singu-
larities and 𝜋 : �̃� → 𝑋 be the blow-up of the nodes Σ of X with exceptional divisor 𝐸𝑝 � P1 × P1 for
𝑝 ∈ Σ. The pushforward H3 ( �̃�,Q) → H3(𝑋,Q) may not be surjective.

To explain this, we need to introduce some notation. Let 𝛿(𝑋) := rk(Cl(𝑋)/Pic(𝑋)) be the defect of
X. We have 0 ≤ 𝛿(𝑋) ≤ |Σ | (see, e.g. [KPS21, Corollary 3.8]). Furthermore, if X is a nodal hypersurface
in P4 of degree 𝑑 ≥ 3, or a nodal double cover of P3 branched in a surface of degree 𝑑 ≥ 4, then
𝛿(𝑋) < |Σ | (see [KPS21, Example 3.13]). The defect 𝛿(𝑋) can be computed from the resolution �̃� via

|Σ | − 𝛿(𝑋) = rk Coker

(
Pic( �̃�) →

⊕
𝑝∈Σ

Pic(𝐸𝑝)

)
= rk Coker

(
𝐻2( �̃�) →

⊕
𝑝∈Σ

H2 (𝐸𝑝)

)
,

where cohomology are taken with integral or rational coefficients. Using duality, we can also write

|Σ | − 𝛿(𝑋) = rk Ker

(⊕
𝑝∈Σ

H2(𝐸𝑝) → H2 ( �̃�)

)
.

The Mayer–Vietoris exact sequence for the mapping cylinder of 𝜋 reads

H3 ( �̃�)
𝜋∗
−−→ H3 (𝑋) →

⊕
𝑝∈Σ

H2(𝐸𝑝) → H2( �̃�),

thus, 𝜋∗ : H3 ( �̃�) → H3 (𝑋) is not surjective provided 𝛿(𝑋) < |Σ |.

We may restrict to the pure part of the homology HBM
pure,𝑖 (𝑋,Q), that is, the lower piece of the weight

filtration of Deligne’s mixed Hodge structure on HBM
𝑖 (𝑋,Q). If 𝜋 : �̃� → 𝑋 is a resolution of singularities

of a proper normal complex variety X, then 𝜋∗ : H𝑖 ( �̃�,Q) → Hpure,𝑖 (𝑋,Q) is surjective, independently
of the singularities of X (see [PS08, Theorem 5.41]).
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