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Abstract

Let/ : G —*• C be a continuous map of a graph and let d(A) denote the derived set (or limit points) of
A C G. We prove that d(Q(f)) c A(/) and the depth of/ is at most three. We also prove that if/
is piecewise monotone or has zero topological entropy, then the depth of/ is at most two. Furthermore,
we obtain some results on the topological structure of £2(/).
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1. Introduction

By a graph we mean a finite one-dimensional polyhedron which is not necessarily
connected and has no isolated points. Recently, there is a growing interest to study
the dynamics of a graph map, that is, a continuous map of a graph, as this kind of
research is related to the study of the dynamics of a surface homeomorphism and the
structure of attractors of a diffeomorphism, see for instance [4] and [10]. In this paper
we study the depth of a continuous map of a graph and the topological structure of the
non-wandering set. To be more precise, we introduce some notation.

Let X be a compact metric space and / : X —> X be continuous. The topological
entropy off is denoted by h(f) (see [1] for the definition and basic properties). For
x € X, {x,f(x),f2(x),...} is called the orbit of x. The set of periodic points,
recurrent points, co-limit points for some x € X and non-wandering points of /
(for the definitions see [1]) are denoted by P(f), R(f), co(x,f) and £2(f). Set
A(f) = \JxeXo>(x,f). It is known that P(f) c R(f) C A(f) C Q(f). Note
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144 Xiangdong Ye [2]

that we use int(A), 3(A) and A to denote the interior, boundary and the closure of a
subset A of X. A graph map / : G -> G is piecewise monotone if there is a finite
subset A of G such that for the closure of each connected component C of G \ A,
/ | c : C - > / ( C ) i s a homeomorphism.

Let £2i = Sl(f). For each non-limit ordinal number a > 2 let fia = £2(/1^,,). If
a is a limit ordinal number define £2a = H^<a ^/s- Then there is a countable ordinal

number c such that Q.c = fia for each a > c and Qc = R(f). The minimal c with the
above property is called the depth of / .

It is known [9] that for an interval map d(Sl(f)) c A(/) and this result can be
generalized to a tree map easily by the same method. In [8] Sharkovskii studied the
depth of an interval map and showed that it is at most 2 (for some other proofs of
the result see [3, 11]) and in [13] the author showed that the depth of a tree map is
at most 3. In [5] Kato showed that for each countable ordinal number a there is a
continuous map of a dendrite (respectively, a disk) such that the depth of the map is a.
Note that the depth of a flow on a 2-dimensional closed manifold is at most 3, [7]. In
this paper we prove that if / : G -*• G is a graph map, then d(Sl(f)) C A(/) and
the depth of/ is at most 3. We also prove that if/ is piecewise monotone or has
zero topological entropy, then the depth of/ is at most 2. Furthermore, we show that:
(\)Q(f)\R(f)is countable and no-where dense, (2) for each connected component
C of G \ R(f): (a) there are only finitely many points from C C\Q(f) with infinite
orbits, (b) if/ has zero topological entropy, then C n S2(/) is finite.

We remark that it is easy to construct interval maps with depths 1 or 2 and it is still
an open question if there is a graph map with depth 3.

2. Preliminary

In this section we obtain some results which are used in the next section. We start
with some notation.

Let G be a graph. For x e G and a sequence of connected neighbourhoods {Vt}
of x with diam(Vj) -*• 0, min{#(3(V;)) : i € N} is denoted by ValG(;c) and is called
the valence of x (in G), where #(A) is the number of elements of a finite subset A
of G. If ValG(;c) = 1, x is called an endpoint of G; if ValGQc) > 2, x is called a
branch point of G. We use e(G) and b{G) to denote the set of endpoints of G and the
set of branch points of G respectively. A finite set v(G) D b(G) U e{G) is a set of
vertices of G if for each simple closed curve S in G, S n v(G) C b(G) U e(G) when
#(S n (b(G) U e{G))) > 3 and #(S n v(G)) = 3 when #(5 n (b(G) U e(G))) < 3,
that is, we add some artificial points with valence 2 as vertices. In this way each edge
(the closure of some connected component of G \ v(G)) is homeomorphic to [0,1]
and if / and J are two edges of G then either / n J = 0 or / n J is a set consisting
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[3] The depth of a graph map 145

of one point. A tree is a graph containing no simple closed curve. A star is either a
tree with only one branch point or an arc.

For a continuous map / of a compact metric space, it is known that £2 (f) is closed,
f(D(f)) = D(f) for each D € {P, R, A], f(Q(f)) C G(f) and R(f) + 0.
Moreover, D(fn) = D(f) for each D e {P, R, A} and n e N.

Let G be a graph and / : G -*• G be a continuous map. For * € G we define
Pc{x,f) = Ouzw Orb(£/,/), where <&" is the set of all neighbourhood of x and
Orb([/,/) = Ufeo / 'W- One can check that/|p6.u>/) is surjective if x e ft(/). For
simplicity we write P(x) instead of PG(x,f), if no confusion rises. The following
simple lemma [2] is useful.

LEMMA 2.1. Let x e Q(f). Then P(x) has only the following three possibili-
ties:

(1) P(x) is a cycle.
(2) P(x) = U"=1 Mi, where each Af, is closed and connected, and f (Mi) = M2,

(3) P(x) = n«>o Mn, where for each n, Mn = U, i i M'n and each M'n is closed and
connected. Furthermore, f (Mx

n) C M^,... , /(M*«) C M\, Mx D M2 D • • • and
kn - • +oo.

For x 6 £2(/) and j e {1, 2, 3}, we say that x is of type (i) if PQc) satisfies
Lemma 2.1 (i). Let M be an invariant subgraph of G and let

E(M,f) = Ix 6 M : for any open subset f/ofMwithx € f/, Orb(C/,/) = Afj.

We say that/ is transitive if there exists x € X such that X = co(x,f). If/ is
transitive, then X = /?(/). We also need the following two lemmas from [2].

LEMMA 2.2. Assume that M is an invariant subgraph of G and E = E(M,f) is
infinite. Then E — d(E) and f |E is transitive.

LEMMA 2.3. Let G be a graph and f : G ->• G be continuous. ThenR(f) c A(f).
Furthermore, ifx € A ( / ) \ R(f), thenx is of type (3).

For a continuous map / of / = [0, 1], it is known that in each component of
I \ R(f) there is at most one point from A(/ ) . It is easy to construct a continuous
map / of S1 (the unit circle) such that there exists a component of Sl\R(f) containing
two points from A(f). Generally, we have the following corollary.

COROLLARY 2.4. Let G be a graph andf : G —> G be a continuous map. Then in
each component C of G\R{f), there are at most c(G) points from fi (f) which are
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of type (3), and hence there are at most c(G) points from A(/) D C, where c(G) is
only dependent on the topology of G. Thus d(A(f)) C R(f) and A(/) is closed.

PROOF. Let C be a connected component of G \ R(f) and x e C n f l ( f ) which
is of type (3). Then P(x) = fjn>i Mn, where for each n, Mn = \J*"=l M'n, and each
Ml

n is closed and connected. Furthermore, /(Mn') c M2
n,... ,/(M*") C M\ and

M\ D M2 D • • • with kn -> oo. Assume by relabeling as necessary that x e Afn' for
eachn > 1. If for some n e H,Ml

n C C, then there exists y e /?(/"*"U,j) C /?(/)DC
as fK{Mx

n) c Mn\ a contradiction. Hence for each n, Mn' contains x and some
point of dC. Let //(*) be the connected component of P(x) containing x. Then
H(x) D {x,x'} for some x' e 3(C). As f'(H(x)) n //(x) = 0 for each / e N,
int(//(JC)) n fi (/") = 0. This implies that if £ is an edge of G, then there are at most
two points from C n £ n f i ( f ) which are of type (3). Consequently, the number of
points in C n f2(/) which are of type (3) is at most c(G), which is only dependent on
the topology of G. By Lemma 2.3, there are at most c(G) points from C D A(/) .

Noting that lim, diam(C,) = Oif Cu C2, . . . are connected components of G\R(f)
and A(f) D /?(/) (Lemma 2.3), we have d(A(f)) C R(f) and A(/) is closed. •

3. The depth of a graph map

In this section we show that the depth of a graph map is at most 3. To this end, first
we prove d(£l(f)) c A(/) and then use the result to get the conclusion. We start with
the following definition. An interval J (a subset of a graph which is homeomorphic
to a connected subset of the real line and with some given orientation) contained in
some edge of G is of increasing type (decreasing type) if J C\ P(f) = 0 and if for
each* e J andn € N,/"(JC) e J implies that/"(JC) > x (f"(x) < x).

THEOREM 3.1. Let G be a graph and f : G —> G be a continuous map. Then

PROOF. Let Cu C2,... be connected components of G \ R(f). As G is a finite
graph we have lim, diam(C,) = 0. Since R(f) C A(f), to prove d(S2(f)) C A(/)
it suffices to show that if [xn : n e N} C Q, D Q(f) and limn xn = x e Ck n Q(f)
for some i0 e N, then x e A(f).

Let Vx be a small connected closed neighbourhood of x contained in C,o such that
Vx n«(T) C {^}. Without loss of generality we assume that for all n e M, xn 6 b\,
where bx is one of the connected components of Vx \ {x}. Give an orientation of bx

such that x' < xi < x2 < • • • < limn xn = x, where x' is an endpoint of by. By
Corollary 2.4, there are finitely many points (of {xn : n e N}) which are of type (3).
Thus we assume each xn is of type (2). Hence for each n, P(xn) = (J*li M'n

 s u c n
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that each M'n is connected, closed and/ (Mn') — M\,... , f {Mkn) = Ml
n. As before,

we assume that xn e M\. As M\ <£ Ck and xn e M\, we have [xuxn] c Mx
n or

[xn,x]cMl U

CLAIM 1. There is no subsequence {xni}f of'{xn}f such that P(xnj) D {xn. : i 6 N)
for each j e N.

PROOF OF CLAIM 1. Assume on the contrary that there is a subsequence {xni}f of
{xn}™ such that P(xnj) D {*„, : i e N} for eachy e N. Note that if yu y2 e G are
such that P(y\) contains a neighbourhood of y2 and P(y2) contains a neighbourhood
of yj, then P(y\) = P{y2). Hence there exist a subgraph M of G and infinitely many
points {yi}f from [xn, : / e M} D M (say, {*„,, : / e N}) such that PM(yhf\M) = M
for each / e N. By Lemma 2.2, d(E) = E and/1£ is transitive, where E = E(M,f).
Hence y,- e i?(/1£) C R(f) for each i > 1, a contradiction. This ends the proof of
Claim 1. •

By Claim 1, without loss of generality we may assume (by taking a subsequence)
that either

(a) for each j e N, xq g P(XJ ) for each q > j + 1 or
(b) for each j e N, xq g P(xj+i) for each 1 < q < j .

CLAIM 2. (a) is impossible.

PROOF OF CLAIM 2. Assume that (a) holds. As Ml
n <t Ck we have that A// c

Ml... and kn+l \kn for each n e N . Thus without loss of generality we suppose that
k = kx - k2 = • • •.

Let M = (J~, Mj. Then fk(M) = M and/*(M) = A?. Let Nx = ~M \ M and
Â2 be the set of points q of M with the property that for each n € N there exists a
neighbourhood V of g (in A/) such that V C\M <£ Mt for each i > n. As G is a finite
graph, Â i is finite. Since in each edge E of G there are at most two points from N2,
N2 is also finite.

Let z G Nt. Then there exists z' € Af such that /*(z') = z. It is obvious that
z' ^ M. Hence z' e A ,̂. This implies that/*(#,) = N{ and //, <zP{fk) = P(f).

Now let z £ N2. Then without loss of generality we may assume that for each n
there exists an endpoint zn of Mn with zn -* z and zn & A/n-i- Hence for each n
there exists z'n € Afn \ Afn_] such that/*(z^) = zn. Without loss of generality assume
that z'n -> z'. As /*(iV,) = AT, we have that z' ^ Nu If z' € M \ N2, then there
exists some n0 such that z' e Afno and ẑ , e A/no for each n > «i with nt e N, a
contradiction. Hence z' e ^2. As fk(z') = z, this implies that fk(N2) — N2 and
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It is obvious that x € N\ U N2 C P(f), a contradiction. This ends the proof of
Claim 2. •

Hence we have situation (b). It is easy to see that P(xn) D P(xn+l) and kn\kn+i for
each n > 1. Let g = f> and K = M\. Then x, eQ(fk2) = Q(g) and g(K) = K
for each i > 3.

CLAIM 3. [x2, x] is of increasing type for g.

PROOF OF CLAIM 3. Let a = min{y € M\ : y € b\). If [a, x] is not of increasing
type, then there exist m e N and b e (a, x] such that gm(b) < b. As gm(a) > a, there
exists y e (a, b) such that y is a fixed point of gm (as g : K —• £) . That is, y is a
periodic point of/, a contradiction. •

For each n > 3, as xn e ft(g), there are pn e N and yn € (xn_i, Jtn+i) such that
gp"(yn) € (jrn_i, JCB+I). Then we have gp"([yn,x]) D [gp"(yn),x] for each n e N as
[J:2, •«] is of increasing type and gp" (x) ^ [x2, x). Take yn such that yn and ^p" (yn) are
closed to xn with yn, g

p"{yn) < yn+x. Let

where wt = Yl)=3 Pi • ^1 S e a s y t o s e e m a t e a ch Ft is closed and nonempty, and

Fo D F, D F 2 . . . .

Hence F = f|~ i ^ / 0- For each z € F, we have

g""(z)e[y,-+1,x], « = 3,4

That is, *
Now we are ready to prove the following theorem.

THEOREM 3.2. Let G be a graph and f : G -*• G be continuous. ThenQj = R(f).
That is, the depth of f is at most three.

PROOF. AS R(f) C Q, ( /) we know that £23 D R(f). If there exists x e
then there exists a connected component C of G\R(f) such that x € C and there are
Xi € C with JCJ € d(£2(/)) and limx, = JC. By Theorem 3.1, JC, € A(f) for / 6 N.
That is, there are infinitely many elements of A(f) n C, contradicting Corollary 2.4.
Hence ^ 3 c Wfj- T h u s ^3 = R(f)- D
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REMARK 3.3. In fact we can prove that Q2 C (b(G) n A(/)) U R(f).

Using Theorem 3.1 we can also prove the following results.

THEOREM 3.4. Let G be a graph and f : G -> G be continuous. ThenQ.(f)\R(f)
is countable and nowhere dense.

PROOF. Let Cu C2,.. . be the connected components of G \ R(f). To show
\ R(f) is countable and nowhere dense we only need to show that if x 6

Cj nQ(f), then either JC is isolated in £2(/), or x is not isolated and there is a
nonempty connected subset A of C, such that x e A \ A and A r\£2(f) = 0.

Assume that x is not isolated. Then by Theorem 3.1, x € A(f). According
to Lemma 2.3, x is of type (3). Let H(x) be a connected component of P(x)
containing x. Then int(H(x)) D Q(f) = 0 and x e H(x). Thus A = int(H(x)) is
the set we need. •

THEOREM 3.5. Let G be a graph and f : G -> G be continuous. Then in each
connected component ofG\R(j) there are only finitely many non-wandering points
with infinite orbits.

PROOF. Let C be a connected component of G \ R(f). Assume that ( x , , n e N ) c
C DQ (f) with infinite orbits and limn xn = x e C.

Let K be a small connected closed neighbourhood of x contained in C such that
Vx C\v(T) c {x}. Without loss of generality we assume that xn 6 bu n e N, where
bx is one of the connected components of Vx \ {x}. Give an orientation of by such that
x' < x\ < x2 < • • • < limn xn = x, where x' is an endpoint of b\.

According to the proof of Theorem 3.1 (before the statement of Claim 2) we may
assume each xt is of type (2). Moreover, either (a) or (b) holds:

(a) For each j € N, xq & P(Xj) for each q > j + I.
(b) For each; e N,x, ^ P(xj+l) for each 1 < q <j.

For each n € N suppose P(xn) = [J*^, M'n such that each M'n is connected, closed
and / (Ml) = Ml, ... ,f (Af *") = M\. Furthermore, we assume that xn e Mn'.

Let K = M\ and g =• fk\ In case (a), some point in [x3, x4) is an endpoint of
K and X\,x2 € Q(g). In case (b), some point in (JC2,X3] is an endpoint of K and
xi e Q(g) for each i > 4. Using the same proof as in the interval case (see [12]) one
readily shows that x2 has finite orbit in case (a) and x4 has finite orbit in case (b), a
contradiction. •

https://doi.org/10.1017/S1446788700002135 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700002135


150 Xiangdong Ye [8]

4. The depths of piecewise monotone and zero entropy graph maps

In this section we shall show that for piecewise monotone and zero entropy graph
maps the depths of them are at most two.

THEOREM 4.1. Let G be a graph and f : G —>• G be continuous and piecewise
monotone. Then A(f) = R(f) andQ(f \a(f)) = R(f).

PROOF. Assume the contrary. That is, there is x € A(f)\R(f). By Lemma 2.3,
x is of type (3). Hence P(x) = P|n>0 Mn, where for each n, Mn = (J*!, M'n and each
M'n is closed and connected. Furthermore, /(Afn') C M*,... ,/(Af*") C M* and
M, D M2 D ••• with kn -> +oo. As G is a finite graph and kn -*• oo there exist
n € N and 1 < A: < kn such that M* is homeomorphic to [0, 1]. It is easy to see that
x € A(/ \MJ as x has infinite orbit.

As / ( A ( / U . ) ) = A ( / U J , there existj_£ i < *„ and x, e A</UJ_n M*
such that / ' (*,) = x. Since ^ € A(f) \ R(f), we have x, € A(/) \ /?(/). As
/*"|*/i is piecewise monotone, by [1, page 81] we have xt e /?(/*"!«»)• Thus
x 6 R(fk"\Mj;) C /?(/), a contradiction.

Hence by Theorem 3.1 it is easy to see that £2(/|n(/)) = ^ ( / ) - •

To prove the next theorem we need a lemma from [6].

LEMMA 4.2 ([6]). Let T be a tree and f : T -> T be continuous. Then h(f) = O
if and only if for each x e Q(f)\P(f),co(x,f)C[P(f) = 0.

By Lemma 4.2 we know that if a continuous map / : T —> T of a tree T has zero
topological entropy, then for each x e Q (f) \ P (f), the orbit of x is infinite.

THEOREM 4.3. Let G be a graph and f : G —> G be continuous with zero topo-
logical entropy. Then in each component ofG\R(f) there exist at most finitely many
non-wandering points. Consequently, fi(/|n</)) = R(f)-

PROOF. Assume that there is a connected component C of G \ R(f) such that
CD Q(f) is infinite. Then there are distinct xux2,... 6 C C\ £2(/) and* e C such
that lim; xt = x and an edge B of G with *, x, € B. Give an orientation of B such
that*! < JC2 < • • • < x.

As the proof of Theorem 3.1 (before the statement of Claim 2) is valid in our
situation, we may assume each x, is of type (2). Moreover, we have the following two
cases

(a) for eachy e N, xq & P(XJ) for each q > j + 1; or
(b) for each j e H, xq g P(xJ+i) for each 1 < q < j .
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[9] The depth of a graph map 151

For each n e N suppose P(xn) = U^L, M'n such that each M'n is connected, closed
and/(Mn') = M2

n,... , / (M*") = M\. Furthermore, we assume that*,, € M\.
In case (a), it is clear that kn+l \kn for each n € N. As M\ is a proper subset of Ml

n+X

for each n € N and G is a finite graph, we see that there exists n0 € N such that Mn'
is homeomorphic to Mn'+2 for each n > n0- Collapsing M\ in Afn' +2 we get a star 5.
Let gi = fk"o+2\M< +2,P'- H!o+2 ^- S be the projection and g : S -> 5 be the induced
map of gi.

In case (b), it is clear that kn\kn+i for each n e N. As A/n'+1 is a proper subset of
M\ for each n 6 N and G is a finite graph, we see that there exists n0 e N such that
Ml is homeomorphic to Mn'+2 for each n > «0- Collapsing Mn'o+2 in Mn'o we get a star
5. Let g\ — /*"» |Mj , /? : Mn' —»• 5 be the projection and g : 5 -> 5 be the induced
map of #,.

Hence, in both cases we have p(xn+l) e &(g)\ P(g) andp(xn+l) is an eventually
periodic point of g. By Lemma 4.2, h(g) > 0. Hence

h(f) = *C/**+2) > 7 AC«) > 0

in case (a) and

in case (b), a contradiction. This proves that in each component of G \ R(f) there
are only finitely many points from £2(f). Thus fi(/|n</)) C R(f), and hence
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