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ABSTRACT. Various spatial discretizations for the ice sheet are compared for
accuracy against analytical solutions in one and two dimensions. The computational
efficiency of various iterated and non-iterated marching schemes is compared.

The stability properties of different marching schemes, with and without iterations
on the non-linear equations, are compared. Newton-Raphson techniques permit the
largest time steps. A new technique, which is based on the fact that the dynamics of
unstable iterated maps contain information about where the unstable root lies, is
shown to improve substantially the performance of Picard iteration at a negligible

computational cost.

INTRODUCTION

The ice-sheet thickness-evolution equation (where the
mechanics are computed according to the shallow-ice
approximation of Hutter (1983)) is of a highly non-linear
diffusion-reaction type and generally needs to be solved
numerically. The time steps used in the solution of this
equation are limited by the requirements of stability: if
the time steps are too large, then spurious oscillations are
created in the ice-sheet surface. Unlike the linear diffusion
equation, this does not necessarily result in blow-up
because non-linear coupling ol the instability prevents
unbounded growth.

A number of approaches exist for the numerical
solution of this equation. They can be grouped as explicit,
semi-implicit (where there is no sub-time step non-linear
iteration) and fully implicit (where there is full sub-time
step non-linear iteration). The former two schemes are
most often used in operational ice-sheet models. Their
stability characteristics limit the maximum time step used
in most practical applications to 1-10 years. This is
considerably shorter than the natural time-scale of ice
sheets and limits the number of experiments that can be
made with continental ice-sheet models.

Budd and Jenssen (1976) have investigated the
stability ol explicit schemes for solving the ice-sheet
equations. However, since then, considerable progress has
been made in the theory of iterated maps (which is what
numerical solutions are), and there has been widespread
adoption of semi-implicit schemes (e.g. Mahally, 1976;
Huybrechts, 1992), and implicit or Crank-Nicholson
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schemes which iterate to solve the non-linear simulta-
neous equations using Picard or Newton-Raphson
iteration (e.g. Hindmarsh and others, 1987; Hindmarsh
and Hutter, 1988). All of these methods have time-step
limits, which should be contrasted with the linear
diffusion equation where Crank-Nicholson and implicit
schemes are uniformly stable.

In this paper, we will look at the theory and practice
ol time-step limitations for the ice-sheet equation. First,
we set out several of the more commonly used discretiza-
tions of the ice-sheet equation. We then present compar-
isons between these different discretizations in terms of
accuracy, stability and efficiency. This is done in two
idealized experiments for which analytical solutions are
available: the one-dimensional case flow-law exponent
(n) is equal to 3 and the two-dimensional case where the
exponent is equal to 1. Finally, we present the concept of
the iterated map and introduce a method for improving
the stability properties of the time-stepping method used
o solve the ice-sheet equation.

1. BACKGROUND: THE ICE-SHEET EQUATION
AND ITS FINITE-DIFFERENCE DISCRETIZATIONS

The ice-sheet equation is

()H_ vrpn+2 n—1
va-(aq VH|'"'VH) +a (1)

where H is ice thickness (throughout we deal only with a
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flat basal topography) and a is the accumulation rate. C
is related to the flow law parameter A by

24A(pg)"
fii=2
where p is the density of ice, g is acceleration due to
gravity, A is the ice-flow constant, n is its exponent and
the flow relaton between strain rate e and deviator stress
T is given by

e= Ar",

We deal only with constant A (i.e. with isothermal ice).
V is the two-dimensional horizontal gradient operator

ad oo
V=(a~@)

and the magnitude of the gradient of [VH| is computed

by
oH '~’+ IOH\*
dr dy

The non-linear diffusion LEquation (1) is solved hy
discretizing the independent variables as

Il

\VH|

r=iA,i€ (O,N,); y=jA,j€(0,N,)

for the horizontal dimensions x and y over the domain
—diy C w By — Ly S Ly and

for time ¢, where N, and N, are the number of grids in
the x and y directions.

1.1. The horizontal space discretization

T'he discretization of the non-linear diflusion term

v. (CH“'?\VHV'*VH) (2)

calls for some comment. There are many ways of carrying
out a discretization ol this operator. Here we define three
methods that are in common use and which are
schematized in Figure 1. It is convenient to define a
coeflicient D somewhat analogous to the diffusivity of a
thermal medium

D =CH"?|VH|"" (3)

so that Equation (1) becomes

IH
‘af =V -(DVH)+a=-V-q+a. (4)

In method 1, D is evaluated at grid centres which are
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Fig. 1. HMlustrating the different grids used to compute the
coefficient D and the discharge q. The lefthand column
shows which points are used in the computation of the
average value of H and |N H| used in the computation of
D, while the righthand column shows the location of D and
points used in the evaluation of OH/[Ox required (o
compnile .

stageered in both » and y according 1o
taggered in botl ly ling (

, = CH'2

2 i3y

D,

where

[}

Hi = {(Hij+ Hivrj + Higp + Higi )

1
= (ILA._;' il i —

= EEs = iy
it 9A ; f )

i Hr.‘,l-#l i Hi—l.,ﬁ—l - III.J - -“'H—l,j) .

24, |

The z-direction flux ¢ is then evaluated at z-midway
points according to

b

and similarly for 4;_1 ;.
The y-direcion flux ¢” is evaluated at y-midway
points according to
) Hij1 — Hij
2
4,

- .l

and similarly for 9 ;1.
For method 2,
midway points which are staggered in the direction of

D is evaluated at r-midway and y-

~
o
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flow only

o n—1
Dyyy; = CHEE|(VH),
where
H ;= 3(Hij + Hij1,)
and
il
(VH);+5._;: Z_I (Hi+1.j *Hr‘.,i)
if
< TAU (H; j+1 +Hisi 1 —Hija —Hiy1j-1) .

The z-direction flux ¢” is then evaluated at the same
xr-midway points according to

,. Beng— B
(L_é" — 7Di If,‘ 12 ‘ .

and similarly for ¢, .
The y-direction flux ¢ is evaluated at y-midway
points according to

H;jv1 — Hij

Y
: Yy

Bijd =

and similarly for ‘Jj-l,- . This scheme derives from Mahally
(1977). "

In method 3, D is evaluated at the grid points

1Sl

themselves

D= CHn+2 =
LV F 1

(VH),;
where

1
(VH);_Jz ﬁ- (Hf—l._,' —H; |.j) (Hi._j+l - H,.,;—i) 3

1
+
24,

The z-direction flux ¢" is then evaluated at the
staggered x-midway points according to

o= Devrg +Dea [ Hiergi—Hiy
L‘*%""‘ B 2 A.r

% ” . oA
and similarly for 4_1 ;.
The y-direction flux ¢” is evaluated at y-midway
points according to

vy _ _(Digr1+ Dig\ (Hiji — Hij
Tt = 2 A,

and similarly for qf-"__,;;}. This scheme derives rom Oerle-
mans and Van der Veen (1984) (in one dimension) and
Huybrechts (1992) (in two dimensions).

In all three methods, the flux divergence in Equation
(4) is computed according to

B v
Tivdg q;-g.,,'+(1i._j+:', 9

A.r Ay

el

(V- q),= (6)

All these methods are conservative because the
thickness calculations at two adjacent grid points (3, j)
and (i + 1,j) both use exactly the same formulation for
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q,i'

el

adjacent grid points, except of course at the boundary.

;. All the material leaving one grid point arrives at

However, while methods | and 2 have a 9 point
computational molecule (for computing the flux gradi-
ent), method 3 has a 13 point computational molecule.
This is a very important feature of method 3 and can be
interpreted as incorporating an additional, artificial
diffusion (or smoothing).

The accuracy of the method 1 and 2 spatial
discretizations is not uniform: in the interior of the ice
sheet it is second-order. but the singular margins imply
that the ice-sheet surface is not analytic and thus that
Taylor series do not constitute a valid approximation at
these points. Numerical results indicate that the scheme is
something like first-order accurate in space.

1.2. The time discretization

We now turn to the discretization of Equation (4) in time,
which we denote by
ol gt R
i - b _(v . q).‘.—n‘i.f--—u,_'_ﬂ}.{ﬂ (7)
t

ij

where the superscripts refer the time at which the term is
calculated. In particular, the two superscripts on the flux
q refer to the time at which the two [actors (D0 and
(VH)Y ) of q are calculated.

We define three time-stepping schemes. When w = 0,
# = 0 we have an explicit scheme. When w =1, 8 =0 we
have the so-called semi-implicit scheme, which is prob-
ably the most widely used scheme in glaciology. When
w=1,8 =1 we have a fully implicit scheme. In addition
to these first-order time discretizations, there is the
second-order accurate Crank Nicholson scheme where
w=1/2and §= 112,

The semi-implicit and implicit schemes imply a linear
iteration (e.g. a relaxation or a conjugate-gradient
method) or a direct matrix-inversion technique (e.g.
Gaussian elimination) to solve the linear matrix equation
implied by Equation (7). The implicit scheme implies a
further, non-linear iteration to cope with the non-linear
nature of ). This non-linear iteration may be accom-
plished by either Picard or Newton Raphson iteration.
These are both well-established techniques which are
described in texts on numerical analysis (e.g. Johnson and
Riess 1982; Ekman 1987).

We will return to the subject of time stepping in a later
section, where the concept of the iterated map will be
introduced and used to analyse the stability properties of
these time-stepping methods. We now turn to the
comparison of the different discretization methods in
space and time.

A comparison exercise

In this section we provide comparisons of the accuracy,
efficiency and stability of the spatial and temporal
discretizations described above. We use two experiments
which have analytical solutions available to investigate


https://doi.org/10.3189/S0260305500013288

Hindmarsh and Payne: Time-step limits for stable solutions

Table 1. Divide thickness found using methods 2 and 5 for various A, in experiment [

Crrid Number of Divide thickness
points in y
Scheme 2 Scheme 3 Scheme 2 Scheme 3

km error x 1074

10 151 3580.0226 3562.8913 L4 3.4
25 61 3587.6580 3546.0067 35 8.1
50 Bl 3600.5068 3520.0102 A | 15.4
79 21 3613.3609 3496. 1669 10.7 28.1

the effects of spatial discretization on the accuracy of the
calculated steady-state ice thickness. We then go on to
assess the stability and efficiency of the various time-
stepping methods.

Description of the experiments and their analyt-
ical solutions

We first describe the two analytical solutions available for
steady-state ice thickness.

Experiment I: one dimension with n = 3

In one dimension with constant a, we have [rom

continuity (Vialov, 1958; Nye, 1959)

n

24
n-+2

n+2

oH
Bl
dy

an=q¥=—

Over the hall~domain y = 0 (divide) to ¥y = L, (margin)
with boundary conditions H(0) = H, and H(L,) =0,
and taking n = 3 we obtain

L,

il 0
(2;4)'(/{('1) / H dH = /(ay)l‘ dy
(1] 5 2
H

o

which can be integrated to

X 20a 3 1 1 4
a0 G-
20a\* (1\°
e ()2
A Py
H\E v\
()=~ ()" -

Expertment 11: two dimensions with n = 1
In this experiment. we consider the ice-sheet equation for
a linear rheology. The flux formula is simply

Aty=10

giving

24pg . .
q=- T”-"H-‘VH
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and the condition for steady state is
Viq=ua

with finite flux-boundary conditions on = = %£L,,
y==L, of H=0. We may write
Apg

q=——2VYH"
G

and by defining a new variable u = H' we see

Apg
q=— ?J Vu
6]
and then obtain
» G
V= —
Apg

which is simply the Poisson equation on a rectangle,
which has an analytical solution (Carslaw and Jaeger,
1988, p.171). One may then write down the solution for
H(x,y). which is

H(w,y) =ui = (6” {(Lf'.- =] 16L?-F}): .

Apg 3 n""
where
e (=1) cos( {2j+1}wa/2L,) cosh({2j+1}ny/2L,)
= (2j+1) cosh({2j+1}nL,/2L,) '

1.3. The accuracy of various spatial discretizations

The first set of experiments aims at assessing the
behaviour of two spatial discretization methods over
various grid resolutions. The discretization methods are
the 9 point molecule method 2 and the 13 point molecule
method 3 defined above.

A constant time step of 10 years was used for method 2
and a time step of 0.1 year was used in method 3. These
time steps assure a stable solution but are not the largest
stable time step for each scheme. Time stepping was fully
implicit with solution of the non-linear algebraic equa-
tions by Newton- Raphson iteration in method 2 and was
explicit in method 3, although the various time-stepping
methods yield the same results for a given spatal
discretization and grid spacing, as we are dealing with
steady solutions.

~1
~1
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Fig. 2. A comparison of the numerical error from margin lo divide using different A, for spatial discretizations 2(a) and

3(b) in experiment 1.

In all experiments, the ice-thickness evolution Equa-
tion (1) was integrated [rom zero ice thickness for
100 kyears, by which time a steady state had been
reached. A constant accumulation rate (a) of 0.3 m year™
was used and the viscosity of ice (A) was set to
10716 Pa~% year™ in experiment I and to 2.1x1077 Pa
year~! in experiment IT (resulting in similar ice thick-
nesses to those of experiment I). In addition, p and g were
taken as 910kgm™ and 9.81 ms~?, respectively. A flat
topography was used throughout.

Experiment I: one dimension with n = 3

This experiment was conducted on a rectangular grid on
which A, = A,. The length of the domain in the y
direction was held constant at 1500km (i.e. 2L,
= 1500 km). At the upper and lower edges of the grid,
thickness was set to zero. Cyclic boundary conditions
were employed on the left and right edges of the domain,
so that information passed freely from one boundary to
the other. The domain was therefore cylindrical. The ice

sheet which evolves should always have symmetry in the y
direction about ¥ = 0 km and will have constant thickness
along x for any given y. The advantage of this set-up is
that, although a two-dimensional problem is solved, the
one-dimensional analytical solution above is available for
comparison with the results.

Table 1 shows the steady-state divide thicknesses for
cach run after 100 kyears. In this table and elsewhere, the
error £ is defined as

}Lnuu(my y) = Hﬂllﬂ(z1 .U)
H}lllil(;nﬂ ?j)

S:

where Hy, is the numerical thickness and H,,, the
analytical one.

The analytical solution for the steady-state divide
thickness is 3575.058 m. A linear regression on the four
runs for method 2 yielded

Hyum = 3574.862 + 0.5134,

Table 2. Divide thickness found using methods 2 and 3 for various Ay, in experiment Il

Grid Number of
points in x|y
Scheme 2

Divide thickness

Scheme 3 Scheme 2 Scheme 3

km error x 107

10 151 3575.0527 3538.8643 6.5 —3.7
25 61 3607.5904 3519.8241 15.7 -9.0
50 31 3656.7418 3488.8749 29.5 —17.7
Tei 21 3700.6105 3458.7609 41.9 -26.2
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Fig. 3. A comparison of the numerical errar from margin to divide using different A, . for spatial discretizations 2(a) and

3(b) in experiment 1.

where A, is the grid spacing in kilometres. This relation
has a correlation coellicient of 1.0. The intercept is within
5.5 x 107" (0.196 m) of the analytical solution.

The steady-state divide thicknesses obtained in the
method 3 experiments are also shown in Table 1. A linear
regression on the four runs yielded

Huum =:3572.263 — 1.025A,

with a correlation coeflicient of ~1.0. The intercept for
method 3 is within 7.8 x 10~ (2.795 m) of the analytical
solution.

The very high correlation coellicients indicate that
both spatial discretization methods are first-order accu-
rate and have a linear convergence to the analytical
solution as the grid spacing goes to zero. Method 2 is
particularly accurate.

Figure 2a and b shows the variation of error from the
margin to the divide in each of the experiments using,
respectively, methods 2 and 3. The relationship between
the two schemes’™ error remains fairly constant from
margin to divide and varies between x 2 and x 3. In all
cases, the error grows dramatically towards the margin.

Experiment 11: two dimensions with n = 1

This experiment was conducted on a rectangular grid on
which A, = A,. The length of the domain in the x and y
directions was held constant at 1500 km. Ice thickness was
set to zero along all four edges of the grid.

Table 2 shows the steady-state divide thicknesses for
each run after 100kyears. The analytical solution for
divide thickness 1s 3551.862 m. A linear regression on the
four runs for method 2 yielded

Hyum = 3557.883 + 1.928.4_‘-_9..

This relation has a correlation coellicient of 1.0. The
intercept is within 1.7 x 1079 (6.021 m) of the analytical
solution.

The steady-state divide thickness obtained in the
method 3 experiments are also shown in Table 2. A linear
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regression on the four runs yielded

Hyu = 3550.852 — 1.232A,.,

with a correlation coeflicient of —1.0. The intercept for
method 3 is within 2.8 x 107" (1.010 m) of the analytical
solution.

Again, the high correlation coeflicients indicate that
convergence to the analytical solution is almost linear.
However, method 3 is now the more accurate.

I'igure 3a and b shows the variation of error from the
margin (z = 750 km, y = 750km) to the divide (z =0
km, y="750km) in each of the experiments using,
respectively, methods 2 and 3.

Both experiments indicate that the accuracy of the
spatial discretizations is approximately linear with A, .
The 9 point molecule discretization (method 2) over-
estimates steady-state ice thickness mainly because of
error in the arca of steep surface slopes near the margin,
This is particularly true in the n = 1 experiment, where
the near-margin surface slopes are much larger than those
in the n=3 experiment. The 13 point
discretization (method 3) consistently underpredicts

molecule

Table 5. Divide thickness found using methods 2 and 3 _for
various Ay, in experiment 111

Grid Number of Divide thickness
spacing points in x|y

km Scheme 2 Scheme 3
m m

10 151 3401.9364  3385.4924

25 61 3409.1807  3369.0222

50 31 3420.5050  3342.6250

75 21 3430.6165 3317.1001
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Table 4. Comparison of spatial discretization and time-stepping methods for A, , =75 km

Spatial discrel- Time-stepping Time ste Number of — Number of lmear  Number of non- Normal

tonary method method i years time steps tlerations lLinear iterations CPU time
2 Implicit 10000 10 5% 36 1.0
2 Implicit 100 1000 6989 1238 24.0
2 Semi-implicit 112 892 1840 = 7.0
2 Explicit 23 4347 14.0
) Semi-implicit 621 161 1262 = 2.0
3 Lxplicit il 1960 3.0
Table 5. Comparison of spatial discretization and time-stepping methods for A, , = 50 km
Spatial discrel- Time-stepping Time step Number of Number of linear  Number of non- Normal

ionary method method n _years lime stepis ilerations linear iterations CPU time
2 Implicit 10 000 10 870 41 1.0
2 Implicit 100 1000 9119 12355 13.4
2 Semi-implicit 45 2222 4059 8.0
2 Explicit 10 10000 - — 15.2
3 Semi-implicit 351 302 1618 1.8
3 Explicit 21 4761 — = 3.2
Table 6. Comparison of spatial discretization and time-stepping methods for Ay, = 25 km
Spatial diseret- Time-stepfing Time step Number of  Number of linear — Number of non- Normal

wonary method method in years lime steps ilerations linear iterations CPU time
2 Implicit 10000 10 1907 37 1.0
2 Implicit 100 1000 14 968 1239 9.2
; Semi-implicit 10 10000 15662 15.1
2 Explicit 2 50000 = 30.2
. Semi-implicit 96 1041 SB35 = 2.0
3 Explicit 3 20000 = 5.4

each run after 100 kyears. A linear regression on the four
runs for method 2 yielded

H}llllu — 339791‘—1 - 0-1--11_&,!}

thickness. This is probably because of the apparent
artificial difTfusion introduced in this discretization (dis-
cussed above). In the n =1 experiment, this diflusion
leads to a better overall estimation of steady-state ice
with a correlation coefficient of 1.0, The linear regression
for method 3 yielded

thickness.

1.4. The stability and efficiency of various time- Hyum = 3395.606 — 1.0514,,,

stepping discretizations

This experiment is a replication of the EISMINT fixed-
margin benchmark, which is two-dimensional and takes
n = 3 (Huybrechts and others, 1996). First, the accuracy
of the two spatial discretizations discussed above is again
compared, however without the opportunity of compar-
ison with an analytical solution.

Table 3 shows the steady-state divide thicknesses for
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with a correlation coeflicient of —1.0. These results are
close to those found in the n =3 one-dimensional
experiment above.

The main purpose of this experiment is to compare the
efficiency of various time-stepping methods. Three
methods are used in combination with spatial discretiza-
tion method 2. These were the explicit, semi-implicit and
implicit methods. In addition, the explicit and semi-
implicit methods were used with spatial discretization
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Fig. 4. Bifurcation maps for the zero-dimensional QDI
madel. Vertical axis is I. horizontal axis is 2;.(a) is an
explicit scheme, (b) ts an implicit scheme, (¢) is a Picard
ieration and (d) is a Newton Raphson scheme. The
points represent successive values of I¥ as k — oo (a and
b) and successive values of I g5 0 — oo (¢ and d).

method 3. No vectorization or parallel techniques were
used in the computations,

The semi-implicit and implicit methods require the
solution of a sparse, linear system because of the two-
dimensional nature of the problem. Here, a conjugate
gradient algorithm from Press and others (1992) was
used. This will be referred to as the linear iteration. In
addition, the implicit method requires the solution of a
non-linear system because of the nature of I in Equation
(4). A Newton-Raphson partial derivative method was
used. This will be called the non-linear iteration. The
implicit method therefore has two nested iterations: an
outer, non-linear one and an inner, linear one.

The maximum stable tume step for each combination
of methods is reported in Tables 4-6 for A, , = 73, 50 and
25 km, respectively. Each maximum stable time step was
checked to the nearest 1year. The implicit method
proved to be very stable and testing was stopped after a
10 kyear time step had been reached. Clearly. this time
step is far longer than that required in most practical
problems. The runs using the implicit scheme were
therefore repeated using 100year time steps, giving a
better impression of the efliciency of this scheme for
practical applications.

The numbers of linear and non-linear iterations, and
the normalized (within each table) CPU requirements
are also reported in the tables. Although the individual
runs lasted for 100kyears, the ice sheet took approxi-
mately 25-27 kyears to reach equilibrium. After this time
the number of linear and non-linear iterations required
fell dramatically.

The onset of instability depends on the method of time
stepping. For explicit and Newton-Raphson implicit
stepping, ice thicknesses grow explosively. However, in
the semi-implicit method, thicknesses slowly develop
oscillations. The criteria for assessing stability was there-
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fore that the divide thickness should not differ by more
than 1 x 107" m from the stable thicknesses given in Table 3.

The use of the method 3 spatial discretization allows
for a 2-10 times increases the in the maximum stable time
step over method 2, which reduces CPU requirement by
3-4 times. The combination of semi-implicit time
stepping with this spatial discretization is particularly
eflicient.

The use of semi-implicit rather than explicit time
stepping increases the maximum stable time step by a
factor of 5 for spatial discretization 2, and 10 for spatial
discretization 3. In terms of CPU requirement, the
method is usually twice as efficient.

The comparison of implicit time stepping with the
other methods is difficult. Clearly, when very large time
steps are taken, it is much more efficient than either semi-
implicit or explicit methods. Much of this advantage is,
however, lost when shorter time steps are used, although
It remains competitive,

2. THE DISCRETIZED ICE-SHEET EQUATION AS
AN ITERATED MAP

2.1. Scaling

We shall now consider the ice-sheet evolution equations in

scaled form. We are still using the equation set (3) and

(4). By choosing scales for the thickness [H], the span [L].

the accumulation rate [a] and [C] for the quantity
C' = 2A(pg)" /(n+ 2) which satisfy the relationship

(CIH

=

we can consider the ice-sheet equation

OH
ot
in dimensionless form. This scaling is that used in the
c.g. Hutter, 1983) and 1s
described in this volume by Hindmarsh (1996). The time

= . ((‘H" *'QNHr"'VH) +a  (10)

shallow-ice approximation

scale 1s given by

_H]
=T -

We will restrict consideration to one dimension and, in
the following section, zero dimensions.

2.2. Theory: iterated maps of zero-dimensional
models

If we make the very crude assumptions that H(x,t) =
I(t)J(x), it is easy to show that a scale or zero-dimen-
sional representation of the ice-sheet evolution equation is
the ordinary differential equation (ODE)

d’

=T lr'._’H-Q
dt

where I(t) represents the ice-sheet thickness, where we
have scaled out the accumulation rate and the rate factor.
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We note here that the steady solution I =1 is easily
shown to be stable. For the record, this equation does
have analytical solutions for particular values of n,
including 3, where the solution is given implicitly by

(arctanh(I(t)) + arctan(I(t)))

+£ln E(t)+ I({t)vV2+1
16\ 2(t) — I()V2 + 1

1
4

e é V2 (arctan (I(t) V2+1)

- arctan(](t)\/i - 1)) =,

A statement of a range of possible integration schemes

[.'H'l e 1£+ (1(¢1F'+l 4 (] _ (f))]’i.')g”'*l

mﬁﬂ&

- (w4 (1

where k is a counting index and the parameters
¢, w € [0,1] control the iterated map. This map can be
written

14+ wD 1+4+wD’
D= A gT* +00 —

[.’Hrl =T

This will be called “the marching scheme”. Note that
schemes with ¢ > 0 involve the solution of a non-linear
algebraic equation through the dependence of D on el
In these schemes. there are two kinds of iterations: the
iteration with counting index k, corresponding to a time
sequence, and another sequence with counting index ¢

where the I*0 represent (we hope), better and better
approximations to I computed from

| 1-(1-wD, 1
Ii+1.!+1 If\
1+ wD¥ 5 14+ wD!

with
2n+1

D' = A(pIMH 4+ (1— @) I*)7 .

We shall call this the “‘non-linear iteration™. The
computation of sequence is terminated when

IA--&—IJH o Ii' b= (1 = W)Dm i 1 < i

1 4+wDm 1 +wDf| —
where 10 < 1 is the convergence criterion of the non-
linear iteration. We shall be considering four iterated
maps, some corresponding to typical ODE integration
schemes, while others are not typically used for ODEs,
but all have been used for partial differential equations
(PDE) and are incorporated for the sake of comparison.

I. Explicit (forward Euler) schemes: w =0, ¢ = 0.
P = IR = 1)+
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2. Implicit (backward Euler) non-iterated schemes
w=1, ¢=0.
1 Ay

A .
D 150

3. Implicit Picard iterated schemes w=1, ¢ =1. A
residual, r, is computed, where

TJ\'+1J' _ _(1 +DI)I.'-‘+1.-"+ Iﬁ' +A;

and used in the iteration as follows:

T"!" +1./0

IA'+]J‘+1 = I&'-y‘-l.f _

14 wDt

4, Implicit Newton—Raphson iterated schemes w = 1,
¢ = 1. The same residual is used but now a Taylor
expansion is used to update the solution:

leLigy, =2
JRHLERT _ pRrLE dr pRHL
N il '

We shall investigate these maps as a [unction of the
time-step parameter A, The results are displayed in
Figure 4. The first two cases (a) and (b) are the solutions
as k— oo as a [unction of the time step. The solution
points where computed once transients had decayed. The
analytical solution, respected for small time steps, s
I = 1. The maps show that for too large time steps the

I T T T T T v
151 . J
geoe0e0s080e0e & & & & = " s & s 8 & 8 8 &

14f i

13r

1.2 L L 1 il L
0 0.5 1 155 2 25 3
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e
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-
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1.6 T T T T T T T T

1.5F M _
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Fig. 5. Bifurcation maps for the iterated maps correspond-
ing to the partial differential equations. Vertical axis is
elevation al the divide, horizontal axis is 2, (a) is non-
iterated schemes; an explicit scheme (cireles) and an
implicit non-iterated scheme (dots ). (b) is Picard schemes
without (cireles) and with (dets) unstable manifold
iteration, and (c) is Newton—Raphson schemes without
(cireles) and with (dots) unstable manifold iteration. The
points represent successive values of H M as k— oo (a)
and successive values of H*' as € — oo (b and c). Note
how the unstable manifold iteration substantially improves
the stability properties of the ilerated schemes, in particular
the Picard iteration.
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system does not necessarily “blow up” as do related linear
equations

but go through a period doubling sequence. This occurs
at a larger dme step for the implicit case than for the
explicit case, but not at a very much greater time step.
The explicit case blows up eventually (points not plotted).
Cases (c) and (d) represent the iterate as ¢ — oco. The
Picard iteration has worse stability properties than the
simple backward Euler scheme on which it is based, while
the Newton-Raphson scheme looks very stable,

The solution of partial differential equations as
iterated maps

By discretizing in time, we are making a fundamental
change to the dynamics of the system under considera-
tion, changing it from a dynamical system to an iterated
map, i.e. a system of the form

ul.'+l - f(u}.') +a.

The issue of the stability of numerical schemes is based on
establishing some kind of equivalence between the
dynamics implied by the iterated map and that of the
differential equation which is being investigated.

In solving partial differential equations, we typically
arrive at a scheme

Dl(u."\‘+u.')..‘)uk+l.f-v-] — DE(uk*@.l’)uk +a

where the first superscript represents the time step and the
second the iterate; this equation is solved repeatedly for
increasing £ until the residual

r :DE(U"“*"-"-{)“;" 4a— D](uk—'(,’).()uk«i»llf

is small in some suitable sense. Certain schemes are not
iterated; these can be incorporated in this scheme by
considering any residual to be sufficiently small. Cer-
tainly, if’ one maintains a time step short enough to
preserve stahility and accuracy, the residual will be small.
In one dimension, the operators Dy, D are tri-diagonal
matrices with rows given by

(1 o W)Af D:u'+('i.f

[Dei-1i Dgjii Dggvig] = 2 =4y
ko ¢ k+o.f b+ b
A1 fw)(D,._J’_f +D;] ) (1 tw)A,D,.:%-
- AZ A?

o 5
where DJ.':,L'" etc. are evaluated according to, for exam-
2 e . - .
ple, Equation (5) and the superscript refers to the time
level k + ¢ and iteration £ of the vector H;. In this case we

P T T kgl o
may identify u***¢ with H, "', Similarly,

Arh}D?‘j—f‘r
[Bresi Drig Drigsi] = —Tl
A (DI + DERY) AwDle
i 3 - 3 _ : 2
A7 A
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Zero margin-elevation boundary conditions simply re-
quire that the diagonal entry in the matrix be one.
Then, we can write down the following iterated maps:

1. Explicit schemes

uf+t = Du(u"’)u’" +a.

2. Implicit non-iterated schemes

Dl(l.l'k.)l.lﬁ.’I = Dpj(ll"-)ll". + a.
3. Implicit Picard iterated schemes

D1 (uA~-o.l)ui.-+l.t+l = DE (u;” m.!)uk dm

which can also be written

ul.‘+].l+l — Dfl (ukfr,mf) (DF:(uk'+().I)uA‘ ! a)

or

qul.(+l s u.'.-u:-l.( ET D]—l (u"“ r::..') (Dl‘:(uﬁwm.i)uﬁ-
A D[(UHO"‘)UHU) )

4. Implicit Newton-Raphson iterated schemes

uﬁ-+l.r+1 - uk-; 1.4 i J—l (u."-'+r_').-") (Dﬁ(ukﬁ—a.l)uk
R DI (ul\'+cf:,( ) ul'+ 1./ )

where

B(DE(UA‘-'_O'[)U.I; ol Dl(uh-c:.#)uk-v—l.l)
Huk+lL ¢

There is an important distinction between the first two
cases, where the index in the iterated map is the time step,
and the latter two cases, where the index in the iterated
map 1s the iteration number. We are going to analyse
these iterations as a function of 4A; in order to find the
time steps where the map becomes unstable.

i) (u.‘.'+{;h.! ) =

2.3. Stability maps for some finite-difference
schemes

We consider some experiments in one dimension,
symmetrical about the divide and with a Vialov- Nye
fixed margin. The initial elevations are set to be 0.98 (an
arbitrary number) times the elevations required for
steady state for the discretization under consideration.
The schemes are run for various time steps, iterating
either as a marching scheme (explicit and semi-implicit
schemes) or as non-linear iteration schemes (Picard or
Newton-Raphson). For each time step and each scheme,
a sequence in k (explicit and semi-implicit) or £ was
computed for 1024 steps, and the last 256 entries plotted.

Clearly, if the steady-state solution is reached or the
iteration converges, all these points will be coincident. IT
the iteration fails to converge or the stepping is not stable,
then for a given time step there will be several points,
often reflecting decay on to a periodic or chaotic
attractor. We emphasize that these are manifestations of
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numerical instability and have no physical meaning.
Linecarized theory (Hindmarsh, unpublished) predicts
exponential decay on to the analytical solution.

The results are plotted in Figure 5. Figure da shows
the results from non-iterated schemes. The explicit
scheme gives a maximum time step three times smaller
than the maximum time step permissible for the non-
iterated scheme, which is indicated by the break in slope.
This occurs at time step of around 2x 107 for some-
where like Greenland, where [t] = 10000 a; this corre-
sponds to a time step of around 20 years. The explicit
scheme blows up for too large a time step.

If we turn now to the iterated schemes (Fig. 5b and ¢)
the corresponding cases are for when there is “no unstable
manifold correction”. This term will be explained in the
next section. The Picard iteration is unstable for the
whole range of the graph, while the Newton Raphson
iteration shows a stable time step up to around 0.07,
corresponding to 700 years in Greenland and 7000 years
in East Antarctica.

Note that, for both Picard iteration and Newton-
Raphson iteration, the first manifestation of instahility is a
Hopl bifurcation to an oscillatory steady state with
(implied) an unstable steady state.

Application: the correction vector and sub-space
under-relaxation

It has been seen that during non-linear iterations, using
both the Picard and Newton-Raphson methods, that if
the time step is sufficiently large, a Hopl bifurcation
occurs and a limit cycle emerges. Associated with this is
the fact that if the time step is small enough (presumably
relative to the spatial discretization in some unspecified
way) then the iterative map “spirals” on to the steady
solution. Further increases in the time step result in a
typical Feigenbaum-like bifurcation sequence: period
doubling, possibly a chaotic region, and, finally (not like
a Feigenbaum sequence) blow up.

Detailed investigation not reported here of the
iteration sequences shows that only one mode bifurcates
as the time step is increased. The other modes remain
stable, meaning that after a few (typically two or three
iterations) the correction vector simply moves back and
forth along the same line in correction space, with the
implication that it is overshooting the unstable solution
equivalent to zero errvor. If one assumes that the move-
ment along this correction line is simply proportional to
the error (in eflect, linearizing around the solution), then
it is possible to compute a correction vector of optimal size,
which is moving along the correction line and should, if
these assumptions are correct, reach the solution exactly.
This procedure amounts to a numerical Taylor expansion
of the iteration procedure projected on to the unstable
manifold.

O course there are problems: the decay of the
iteration on to the correction line is not instantancous,
so one has to decide when to start this correction
procedure; also, one infers the correction line from the
correction vectors, so the direction will only be approxi-
mately correct. Nevertheless, the results are very promis-
ing: not only is convergence of the non-linear iteration
accelerated but convergence occurs with this sub-space
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method when the iteration would otherwise have
diverged, hecause the divergence is along the correction
line: the unstable manifold only has dimension one (at
least in the region of the solution) while (locally) the
remainder of the space is a stable manifold.

We shall work in correction space and not refer to
residual space. Let us consider an iterative solution of
some non-linear equation which generates a series of
approximate solutions i e sequence being
updated by a sequence of correction vectors ghal e
such that 2! = zf + ¢, and let the error ef,e/™, ... in
the solution vector o', 2!, ..., refer to that which exists
hefore the correction is made. Our heuristic is simply that
Foel*l ). By the assumption that
the decay is on to a straight line in the correction space,

{C{,("‘{l..-‘J = e

we can also simply state that

Il =

e‘”—c—:’” = (I’H('I” = (r“e’*' — &

= ¢ =],

| = alll

whence we obtain

||c‘+‘ _ (,r”

a = 7
eI

and we compute our modified correction vector according
to

Cn‘rl — Pi’+1 ~ (,n'—l/ﬂ‘

2 = C

All these norms refer to the two norm. Clearly, this
technique will only work if the iteration has converged on
to the sub-space. The direction # between successive
correction vectors is casily computed according to the
normal projection rule
p e
f“““”(nc-“'|i.|~||

and the heuristic of the iteration is to decide when this
angle is near enough 0 or 7 for the sub-space iteration to
be viable. We have only looked at iterations which were
overshooting (thus requiring under-relaxation), and we
went as far as sub-space iterating when 6> 57/6. A
typical iteration sequence, as reflected in the value of 6.
the sub-space angle, consists of this angle decaying on to a
value greater than 57/6 in two or three iterations, at
which point the sub-space iteration is applied. Thereafter,
the angle showed a certain amount of variation but
seemed to have a value around 7/2, which is what one
would expect: the correct magnitude ol o is heing
correctly computed but the angle is wrong because of
incomplete convergence on to the sub-space, resulting in
the solution vector being wrong,.

The results of using the unstable manifold correction
are shown in Figure 5b and c¢. Picard iteration is
stabilized (o a time step of around 0.08, while Newton
Raphson iteration is stable to time steps well beyond 0.2.
The unstable manifold correction permits significantly
enhanced time steps for a small computational invest-
ment. When used with Picard iteration, the programming
complexity is far less than that for Newton Raphson
iteration.
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3. CONCLUSIONS

We have investigated the stability and accuracy of a num-
ber of dilferent discretizations of the ice-sheet equation
[rom an empirical and a theoretical point of view.,

Our analysis of the 9 and 13 point molecule spatial
discretizations indicate that both are first order and that
they have comparable accuracies. It should be stressed
that this finding is true only of the steady-state ice
thickness with constant viscosity. We find that fully
implicit time-stepping methods can increase the max-
imum stable time step very dramatically and that they
also remain competitive when used with shorter time
steps.

The study of a scaled ODE model of the ice-sheet
equation can be used as a (ool [or understanding the
mechanisms behind non-lincar instability. For increas-
ingly large time steps. this instability has the period-
doubling property typical of a Feigenbaum bilurcation
sequence, which eventually (not immediately) leads to
numerical blow up. These findings prompted the devel-
opment of a general technique for enhancing the stability
of iterated maps using the unstable manifold correction.
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