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An analytical model for the slip velocity
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Predicting the magnitude of the slip velocity of non-tracer particles with respect to
the surrounding fluid is crucial to address both fundamental and practical questions
involving dispersed turbulent flows. Here we derive an analytical model to predict the
slip velocity of spherical particles in homogeneous isotropic turbulence. We modulate
the particle equation of motion according to the inertial filtering framework, and obtain
closed-form expressions for the mean slip velocity magnitude as a function of the
governing parameters. These are compared against laboratory measurements and direct
numerical simulations, demonstrating close agreement for both light and heavy particles,
both smaller and larger than the Kolmogorov scales. The predictive value of the model
and its implications are discussed, as well as the range of validity of the underlying
assumptions.
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1. Introduction

Predicting the motion of small particles in a turbulent flow stands among the most
fundamental questions in fluid dynamics. The instances in which the problem is relevant
are uncountable, from atmospheric precipitation to pollutant dispersion, from chemical
reactors to dust storms, from marine litter to planetesimal formation. The class of particles
that can be considered as tracers, i.e. behaving as fluid parcels, is very limited: their size
and response time must be small compared with the characteristic spatial and temporal
scales of the flow, respectively; their density must approximate the one of the carrier
phase; and their dilution must be sufficient to prevent collective effects (Brandt & Coletti
2022). In all other situations, the particle trajectories are expected to depart from fluid
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pathlines, as quantified by the slip velocity us = u − v between the particle velocity v and
the fluid velocity at the particle location u. This quantity profoundly impacts the spatial
distribution, spreading rate, collision probability and gravitational drift of the dispersed
phase (Balachandar & Eaton 2010; Pumir & Wilkinson 2016; Mathai, Lohse & Sun 2020;
Bec, Gustavsson & Mehlig 2024). Moreover, us contributes to defining the flow regime
around the particles, features in the formulation of surface forces exerted on them by the
fluid and is key for turbulence modification (Bellani & Variano 2012; Ling, Parmar &
Balachandar 2013; Maxey 2017; Oka & Goto 2022; Balachandar, Peng & Wang 2024).
In the context of numerical simulations, us is also a primary parameter to select the
appropriate computational approach (Balachandar 2009; Tenneti & Subramaniam 2014).
It is therefore highly desirable to accurately estimate the slip velocity a priori from the
governing parameters. Only scaling arguments are available (see, e.g., Balachandar 2009)
which, while insightful, can only provide order-of-magnitude estimates.

Here we present an analytical model to predict the mean slip velocity magnitude of
spherical particles in homogeneous isotropic turbulence. This is built on the framework
of inertial filtering and rooted in the classic work of Csanady (1963) which we recently
extended in Berk & Coletti (2021). In § 2, we obtain closed-form expressions of the
slip velocity based on the non-dimensional governing parameters. In § 3, we demonstrate
agreement with experiments and direct numerical simulations over a vast range of particle
properties and flow regimes. We draw conclusions and provide an outlook in § 4.

2. Definitions and model derivation

We consider spherical particles of diameter dp and density ρp in a fluid of density
ρf and kinematic viscosity ν. The flow follows the canons of homogeneous isotropic
turbulence, with Kolmogorov length, time and velocity scales η, τη and uη, respectively,
the corresponding integral scales being L, T and U. The Reynolds numbers characterising
the flow around the particle and the turbulence are Rep = 〈|us|〉dp/ν and Reλ = Uλ/ν,
respectively, where λ is the Taylor microscale. Here and in the following, angle brackets
indicate statistical averaging.

The force balance on each particle is expressed according to (Gatignol 1983; Maxey &
Riley 1983):

ρp
πd3

p

6
dv

dt
= F d + F g + F b + F am + F sg, (2.1)

where the right-hand side includes drag, gravity, buoyancy, added mass and stress gradient
forces, respectively. They are expressed as

F d = 3πρf νdpusφ(Rep), (2.2a)

F g = −πd3
p

6
ρpg, (2.2b)

F b = πd3
p

6
ρf g, (2.2c)

F am = πd3
p

6
ρf CM

(
Du
Dt

− dv

dt

)
, (2.2d)

F sg = πd3
p

6
ρf

Du
Dt

, (2.2e)
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Model for the slip velocity of particles in turbulence

where g is the gravitational acceleration, CM is the added mass coefficient, φ(Rep)
incorporates finite-Rep effects in the Stokes’ drag coefficient, CD = (24/Rep)φ(Rep).
We use the Schiller and Naumann expression φ(Rep) = 1 + 0.15Re0.687

p (Clift, Grace &
Weber 2005).

In (2.1) we have omitted the history force, whose formulation presents well-known
theoretical and numerical difficulties (Haller 2019). While effective strategies for
its evaluation have been proposed recently (Parmar et al. 2018; Prasath, Vasan
& Govindarajan 2019), the implementation in actual turbulent flows is still under
development. Its omission here does not imply the effect being negligible (as its
significance has been demonstrated in several situations (Olivieri et al. 2014; Daitche
2015)), but rather reflects the lack of a simple scaling for it. The lift force is also omitted,
which is strictly reasonable only if Rep � 1 or if the particle rotation is negligible
(Saffman 1956; Rubinow & Keller 1961). The comparison of the proposed model against
numerical and experimental data will confirm that such omissions are acceptable for the
specific purpose of estimating the magnitude of the slip velocity. This stand is revisited in
§ 4.

The particle response time is defined as τp = d2
p(1 + CM)/(18νβφ(Rep)), where β =

(1 + CM)/(ρ + CM) and ρ = ρp/ρf is the density ratio. For spherical particles, CM =
1/2, such that β = 3/(2ρ + 1) and τp = d2

p/(12νβφ(Rep)). The Stokes number St =
τp/τη and the Froude number Fr = aη/(g|(1 − β)|), where aη = uη/τη, express the
importance of inertia and gravity for the particle motion, respectively.

We aim to estimate the statistical average of the slip velocity magnitude, which
we approximate as 〈|us|〉 ≈ (〈|us,1|〉2 + 〈|us,2|〉2 + 〈|us,3|〉2)1/2. All velocities in the
following derivation are vector components us,i, but for brevity we omit the subscript i.
To expand 〈|us|〉, we assume a Gaussian probability distribution f (us) for each component.
This is consistent with observations of heavy particles in homogeneous turbulence; see,
e.g., measurements by Berk & Coletti (2021) shown in figure 1(a). The intermittency
(observed especially for St � 1) may be incorporated in different forms of f (us), though
this will be shown to be unnecessary for the present purposes. Integration of f (us) leads to

〈|us|〉 = |〈us〉|erf

⎧⎨
⎩
(

1
2

〈us〉2

〈u′
s
2〉

)1/2
⎫⎬
⎭+

(
2
π

)1/2

〈u′
s
2〉1/2 exp

{
−1

2
〈us〉2

〈u′
s
2〉

}
, (2.3)

where the prime denotes fluctuations around the mean. The mean slip velocity 〈us〉 is
typically caused by gravity (or other body forces), whereas the variance of the slip
velocity 〈u′

s
2〉 is a result of turbulent fluctuations. As such, the ratio 〈us〉/〈u′

s
2〉1/2

discriminates between turbulence-dominated and gravity-dominated regimes, with the
transition around 〈us〉/〈u′

s
2〉1/2 ≈ 1. This is illustrated in figure 1(b), where 〈|us|〉/〈us〉

is modelled according to (2.3) and exhibits the scaling 〈|us|〉 ∝ 〈u′
s
2〉1/2 and 〈|us|〉 = 〈us〉

in the respective regimes.

2.1. Heavy particles (ρ � 1)
The model takes two different forms in the limits ρ � 1 and ρ � 1. In the former case, the
unsteady forces Fam and Fsg are at most of order O(FdSt/(ρ − 1)) (Ling et al. 2013). As
such they are expected to be negligible in this limit, and the equation of motion simplifies
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Figure 1. (a) Distribution of horizontal slip velocity component for various cases of heavy particles in
turbulence, compared with a Gaussian distribution as indicated by the red line; inset shows a semi-log
comparison. (b) Result from (2.3), illustrating switching behaviour between the turbulence-driven regime
〈|us|〉 ∝ 〈u′

s
2〉1/2 indicated by the dashed line and the settling-driven regime 〈|us|〉 = 〈us〉 indicated by the

solid line.

to
dv

dt
= us

τp
− g(1 − 1/ρ). (2.4)

The mean and variance of the slip velocity are, respectively,

〈us〉 = τpg(1 − 1/ρ), (2.5)

〈u′
s
2〉 = τ 2

p

〈(
dv′

dt

)2〉
, (2.6)

where we have assumed steady state. The particle acceleration variance can be expressed
as the integral of the acceleration spectrum ω2Ep(ω) (Sawford 1991), where Ep represents
the energy spectrum and ω is the Lagrangian angular frequency:〈(

dv′

dt

)2〉
= 2

π

∫ ∞

0
ω2Ep(ω) dω. (2.7)

The acceleration spectrum of the particle is modelled using the inertial filtering framework
proposed by Csanady (1963) and extended in Berk & Coletti (2021). In particular, a
response function links the spectrum associated to the particle fluctuating energy, Ep, to
the spectrum of the fluctuating energy of the fluid at the particle location, E:

Ep(ω) = H2(ω)E(ω). (2.8)

This response function can be derived by Fourier-transform of the particle and fluid
velocities, and for heavy particles we take (Csanady 1963)

H2(ω) = 1
1 + (ωτp)2 . (2.9)

The energy spectrum of the flow, in turn, is the Fourier transform of the velocity
autocorrelation R(τ ). Various expressions exist for the latter; here we use the two-timescale
model proposed by Sawford (1991) with a short timescale T2, which leads to a horizontal
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Model for the slip velocity of particles in turbulence

asymptote R(τ = 0) and curvature proportional to the acceleration variance (Mordant,
Lévêque & Pinton 2004):

R(τ ) = 〈u′2〉TL exp(−τ/TL) − T2 exp(−τ/T2)

TL − T2
. (2.10)

Here TL is the Lagrangian timescale of the flow observed by the particles. The
two-timescale model has the benefit of yielding a finite-valued integral in (2.7), which
is not the case when modelling the velocity autocorrelation using the integral timescale
only (Zhang, Legendre & Zamansky 2019). This leads to

E(ω) = 〈u′2〉 TL + T2

(1 + (ωTL)2)(1 + (ωT2)2)
. (2.11)

Using (2.7)–(2.11), the slip velocity variance in (2.6) is given by

〈u′
s
2〉 = 〈u′2〉 τ 2

p

(TL + τp)(T2 + τp)
. (2.12)

The mean slip velocity can then be expressed substituting (2.5) and (2.12) into (2.3). Upon
normalisation by Kolmogorov units and substituting St and Fr, we have

〈|us|〉
uη

= StFr−1erf

⎧⎨
⎩
(

1
2

〈us〉2

〈u′
s
2〉

)1/2
⎫⎬
⎭

+ St

(
2
π

〈u′2〉
u2
η

1
(TL/τη + St)(T2/τη + St)

)1/2

exp

{
−1

2
〈us〉2

〈u′
s
2〉

}
, (2.13)

with

〈us〉2

〈u′
s
2〉 = u2

η

〈u′2〉Fr−2(TL/τη + St)(T2/τη + St). (2.14)

The time and velocity scales TL, T2 and 〈u′2〉 represent quantities observed by the particles.
These potentially differ from scales observed by tracers, and in Berk & Coletti (2021)
we evaluated them by applying corrections to the unconditional scales (Csanady 1963;
Sawford 1991; Pozorski & Minier 1998). Here we use uncorrected scales, which simplifies
the analysis and is expected to result in negligible quantitative differences (as shown
in Berk & Coletti (2021) and confirmed in the following validation). The timescale
and velocity ratios in (2.13) and (2.14) can be expressed as functions of Reλ, using
established relations for homogeneous isotropic turbulence: 〈u′2〉/u2

η = Reλ/151/2 (Hinze
1975), TL/τη = 2(Reλ + 32)/(151/2C0) (Zaichik, Simonin & Alipchenkov 2003) and
T2/τη = C0/(2a0) (Sawford 1991) where a0 = 5/(1 + 110/Reλ) (Sawford et al. 2003),
C0 = C∞

0 (1 − (0.1Reλ)−1/2) for Reλ > 50 or C0 = 0.07C∞
0 Re1/2

λ for Reλ < 50 (Lien &
D’Asaro 2002) and C∞

0 ≈ 6 ± 0.5 (Ouellette et al. 2006). The lengthy final expression of
〈|us|〉/uη, reported in Appendix A, represents a closed form of the mean slip velocity as a
function of the governing parameters St, Fr and Reλ.

996 A1-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

62
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.620


T. Berk and F. Coletti

2.2. Light particles (ρ � 1)
For particles much lighter than the fluid, the unsteady forces shall be retained and the
equation of motion reads

dv

dt
= us

τp
+ β

Du
Dt

− g(1 − β). (2.15)

From (2.15), the mean and variance of the slip velocity are, respectively,

〈us〉 = τpg(1 − β), (2.16)

〈u′
s
2〉 = τ 2

p

〈(
dv′

dt

)2〉
+ τ 2

p β2
〈(

Du′

Dt

)2〉
− 2τ 2

p β

〈
dv′

dt
Du′

Dt

〉
. (2.17)

The variance of the particle acceleration is again modelled using the inertial filtering
framework, albeit with a modified response function valid for light particles (Zhang et al.
2019):

H2(ω) = 1 + (βωτp)
2

1 + (ωτp)2 . (2.18)

When ρ � 1 (hence, β � 1), (2.18) simplifies to (2.9), thus (2.18) applies to both
heavy and light particles. Combining (2.18) with (2.7)–(2.11), the variance of the particle
acceleration is given by〈(

dv′

dt

)2〉
= 〈u′2〉

(
β2

TLT2
+ 1

(TL + τp)(T2 + τp)
(1 − β2)

)
. (2.19)

The second term on the right-hand side of (2.17) contains the acceleration variance of the
fluid velocity along the particle trajectory. This is obtained by integrating over the energy
spectrum (2.11): 〈(

Du′

Dt

)2〉
= 2

π

∫ ∞

0
ω2E(ω) dω = 〈u′2〉

TLT2
. (2.20)

The final term in (2.17) contains the covariance of the particle and fluid accelerations,
〈(dv′/dt)(Du′/Dt)〉. Using the particle equation of motion (2.15), this is expressed as〈

dv′

dt
Du′

Dt

〉
= τ−1

p

〈
u′

s
Du′

Dt

〉
+ β

〈(
Du′

Dt

)2〉
, (2.21)

such that

〈u′
s
2〉 = τ 2

p

〈(
dv′

dt

)2〉
− τ 2

p β2 〈u′2〉
TLT2

− 2τpβ

〈
u′

s
Du′

Dt

〉
. (2.22)

The covariance 〈u′
s(Du′/Dt)〉 can be modelled using the equilibrium Eulerian

approximation proposed by Ferry & Balachandar (2001), expressed as

Du′

Dt
≈ u′

s

τp(1 − β)
. (2.23)

This is equivalent to setting the particle acceleration equal to the fluid acceleration in
(2.15), which is tenable for small particles with St � 1 (Ferry & Balachandar 2001).
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Multiplying (2.23) by the slip velocity and subsequently averaging leads to〈
u′

s
Du′

Dt

〉
= 〈u′

s
2〉

τp(1 − β)
. (2.24)

Substituting (2.19) and (2.24) into (2.22) gives

〈u′
s
2〉 = 〈u′2〉 τ 2

p

(TL + τp)(T2 + τp)
(β − 1)2. (2.25)

Finally, substituting (2.16) and (2.25) into (2.3) and normalising by Kolmogorov units,

〈|us|〉
uη

= StFr−1erf
{(

1
2

〈us〉2

〈u′
s
2〉

)1/2}

+ St
(

(β − 1)2 2
π

〈u′2〉
u2
η

1
(TL/τη + St)(T2/τη + St)

)1/2

exp
{

− 1
2

〈us〉2

〈u′
s
2〉

}
,

(2.26)

with
〈us〉2

〈u′
s
2〉 = u2

η

〈u′2〉Fr−2(β − 1)−2(TL/τη + St)(T2/τη + St). (2.27)

Using the above-mentioned expressions for the normalised flow velocities and timescales
in terms of Reλ, we obtain a closed-form expression for 〈|us|〉/uη, reported in Appendix B,
as a function of the governing non-dimensional parameters St, Fr, Reλ and ρ.

The limit ρ � 1 is relevant for bubbles, which however need to remain spherical
for (2.2) to be valid. This requires both the Bond number Bo and Weber number
We, describing buoyancy-induced and turbulence-induced deformations, respectively, to
remain below O(1) (Clift et al. 2005; Salibindla et al. 2020). For air bubbles in water under
terrestrial gravity, Bo < 1 up to diameters of 2–3 mm. The constraint We < 1 implies a
similar limiting diameter for all but the most extreme turbulence levels, the constraints on
dp/η and St depending on the dissipation rate ε. For realistic levels up to ε = O(1 m2 s−3),
the We-constraint is less restrictive than the condition St � 1 implied by invoking the
equilibrium Eulerian approximation.

2.3. Marginally buoyant particles (ρ = O(1))
For heavy particles, β � 1 such that (β − 1)2 ≈ 1 and one may use (2.26) for both
ρ � 1 and ρ � 1. This approach, however, cannot be considered general as it does not
apply to the case ρ = O(1) or β ≈ 1 (marginally buoyant particles). That is because the
equilibrium Eulerian approximation we used to derive (2.26) is only valid if the particles
are small. If dp � η and ρ = O(1), the particles are effectively tracers, hence the slip
velocity is trivially zero. The case of interest is rather the one of finite-size particles with
density similar to the fluid, which have been shown to significantly lag the fluid (Homann
& Bec 2010; Bellani & Variano 2012). The equilibrium Eulerian approximation is not
applicable to those particles. The case of finite-size marginally buoyant particles, therefore,
poses a challenge to the present framework, in that no modelling framework exists for the
covariance term in (2.22). Yet, we will show that the model developed for heavy particles
(which neglects unsteady forces) predicts the mean slip velocity also for such finite-size
marginally buoyant particles.
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Figure 2. Trends for the acceleration variance described by the inertial filtering model (2.7)–(2.11) (left axis)
and slip velocity variance given by (2.6) (right axis), both in arbitrary units. Black dashed and dash-dotted lines
indicate T2 and TL, respectively.

3. Results and validation of the model

In the following, we illustrate the influence of these parameters in different regimes.

3.1. Heavy particles in the absence of gravity
In the absence of gravity (Fr = ∞) there is no mean drift, 〈us〉 = 0, and consequently
〈|us|〉 ∝ 〈u′

s
2〉1/2, see (2.3) and figure 1(b). Therefore, the problem of estimating the mean

slip velocity magnitude reduces to that of estimating its root-mean-square fluctuation.
When ρ � 1, the slip velocity variance 〈u′

s
2〉 is proportional to the particle acceleration

variance 〈(dv′/dt)2〉, see (2.6). Figure 2 plots 〈u′
s
2〉 and 〈(dv′/dt)2〉 as functions of τp in

this condition, according to the analysis in § 2.1. Three distinct regimes can be identified.
For particles of small inertia, τp � T2, the response function in (2.9) does not filter out a
significant amount of the flow fluctuating energy; hence, the particle acceleration variance
is independent of τp and 〈u′

s
2〉 = τ 2

p 〈(dv′/dt)2〉 ∝ τ 2
p . In contrast, for particles of massive

inertia, τp � TL, the response function modulates all relevant flow scales and the particle
acceleration variance is reduced at a rate τ−2

p , see (2.9); consequently, 〈u′
s
2〉 is independent

of τp. In the intermediate range of particle inertia, T2 � τp � TL, the range of scales that
is unaffected by the response function shrinks as τ−1

p ; as a result, 〈(dv′/dt)2〉 ∝ τ−1
p and

〈u′
s
2〉 ∝ τp.

It follows that, in the turbulence-dominated regime under study, the scaling 〈|us|〉 ∝
〈u′

s
2〉1/2 in the three regimes discussed previously implies

〈|us|〉/uη ∝ St for St � T2/τη, (3.1a)

〈|us|〉/uη ∝ St1/2 for T2/τη � St � TL/τη, (3.1b)

〈|us|〉/uη = constant for St � TL/τη. (3.1c)

Equivalent relations were proposed by Balachandar (2009) based on scaling arguments,
whereas here they descend from the assumptions behind the analytical model.

Figure 3(a) illustrates the modelled variation of 〈|us|〉/uη as a function of St for the
case Fr = ∞, Reλ = 500 and ρ = 1000, indicating the power-law scaling dependencies
discussed previously. While the scaling in the intermediate regime seems unconvincing,
we show in the following that this is merely a result of the limited extent of the
inertial range for Reλ = 500. In figure 3(b), 〈|us|〉/uη is plotted as a function of the
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Figure 3. Variation with Stokes number modelled using (2.13) for Reλ = 500, Fr = ∞ and ρ = 1000.
Dashed and dash-dotted lines indicate T2/τη and TL/τη, respectively.

non-dimensional particle diameter dp/η, whereas in figures 3(c) and 3(d), Rep is plotted
as a function of St and dp/η, respectively. These are obtained straightforwardly from
the transformations dp/η = (18Stφ(Rep)/ρ)1/2 and Rep = (〈|us|〉/uη)(dp/η), resulting in
scaling dependencies highlighted in each regime (whose boundaries in terms of dp/η
depend on Rep and ρ). To first order, in regimes where 〈|us|〉/uη ∝ Stα , the changes
of variables imply 〈|us|〉/uη ∝ (dp/η)2α , Rep ∝ Stα+1/2 and Rep ∝ (dp/η)2α+1. When
expressing Rep as a function of St, the scaling exponent in the range Rep � 1 deviates
from α + 1/2 due to the correction φ(Rep).

The influence of Reλ is illustrated in figure 4, again for ρ = 1000. Because 〈u′2〉/u2
η =

Reλ/151/2, the scaling 〈|us|〉 ∝ 〈u′
s
2〉1/2 implies that the mean slip velocity and Rep both

increase with Reλ. In addition, increasing Reλ extends the inertial range and consequently
the regime where 〈|us|〉 ∝ St1/2 (figure 4a) and Rep ∝ St (figure 4b). The scaling 〈|us|〉 ∝
Stn is illustrated in figure 4(c), where n = d log〈|us|〉/d log St is plotted. This highlights
the presence of a consistent scaling in the intermediate regime at high Reλ for which a
significant separation between T2 and TL exists.

3.2. Heavy particles in the presence of gravity
The influence of gravity on heavy particles is illustrated in figure 5, where the Froude
number is reduced from Fr = ∞ to 0.1, keeping Reλ = 500 and ρ = 1000. According
to the form of the model described in § 2.1, the condition 〈us〉2 � 〈u′

s
2〉 defining the

gravity-dominated regime is realised for Fr−2(TL/τη + St)(T2/τη + St) � 1, see (2.14).
In the limit St � 1, this corresponds to Fr2 � TLT2/τ

2
η , which for the range of practical

interest Reλ = O(10)–O(103) is analogous to Fr � 1. In the limit St � 1, on the other
hand, the gravity-dominated regime corresponds to Fr � St. Both trends are apparent
in figure 5(a): for small St, only at Fr < 1 can one observe significant deviations from
the zero-gravity case; for large St, however, those occur for Fr � St. Irrespective of St,
(2.13) simplifies to 〈|us|〉/uη = StFr−1 in the gravity-dominated regime, leading to the
scaling 〈|us|〉 ∝ St in figure 5(a). Similarly, figure 5(b) highlights the scaling Rep ∝ St2
for Fr � St.

996 A1-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

62
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.620


T. Berk and F. Coletti

102

101

100
〈|u

s|〉
/
u η

Re
p

Re
λ

10–1

10–2 100 102 104 106

104

106

102

100

10–2

105

106

104

103

102

10–2 100 102 104 106

St St

(b)(a)

1.0

0.5

0
10–2 100 102

St
104 106

n 
=

 d
 l

o
g

 〈|
u s

|〉
d
 l

o
g

 S
t

(c)

Figure 4. Influence of Reλ on slip velocity (a) and particle Reynolds number (b), modelled using (2.13) for
Fr = ∞ and ρ = 1000. Coefficient n = d log〈|us|〉/d log St indicating the scaling 〈|us|〉 ∝ Stn (c). Dashed and
dash-dotted lines indicate T2/τη and TL/τη, respectively.
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Figure 5. Influence of Fr on (a) slip velocity and (b) particle Reynolds number, modelled using (2.13) for
Reλ = 500 and ρ = 1000.

3.3. Influence of density ratio
The effect of density ratio ρ is demonstrated in figure 6 for Fr = ∞, using the analysis in
§§ 2.1 and 2.2 for ρ � 1 and ρ � 1, respectively. The results for light particles are shown
up to St = 0.1 only, following the assumption St � 1 implied by invoking the equilibrium
Eulerian approximation (2.23). In such limit, the slip velocity of heavy particles in this
turbulence-dominated regime scales as 〈|us|〉 ∝ St, as discussed above; while for light
particles the inclusion of the unsteady forces leads to 〈|us|〉 ∝ St(β − 1). Therefore, as
β ≈ 3 for ρ � 1, the slip velocity (and Rep) of light particles at a given St increases as
ρ decreases and can be up to a factor of two larger than for heavy particles (figure 6a,c).
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Figure 6. Influence of ρ on (a,b) slip velocity and (c,d) particle Reynolds number, modelled using (2.26) for
Reλ = 500, Fr = ∞.
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Figure 7. Influence of ρ on (a,b) slip velocity and (c,d) particle Reynolds number, modelled using (2.26) for
Reλ = 500, Fr = ∞ and (a,c) St = 0.1 or (b,d) dp/η = 0.1.

The variations of 〈|us|〉 and Rep with the particle diameter, on the other hand, follow an
opposite trend: while for heavy particles St ∝ (dp/η)2ρ and 〈|us|〉 ∝ (dp/η)2ρ, for light
particles St ∝ (dp/η)2β−1 and 〈|us|〉 ∝ (dp/η)2(1 − β−1) (within finite-Rep corrections).
Therefore, at a given dp/η, 〈|us|〉 and Rep are larger for heavy particles than for light
particles (figure 6b,d). The comparison between heavy and light particles in the presence
of gravity leads to analogous considerations.

The effect of density ratio is isolated in figure 7, which plots the normalised slip
velocity and Rep vs ρ, fixing either St = 0.1 or dp/η = 0.1 to satisfy the assumptions
of the equilibrium Eulerian approximation. The black lines highlight the range ρ < 0.1
and ρ > 10 (as proxies for ρ � 1 and ρ � 1, respectively, for which the analysis in §§ 2.1
and 2.2 strictly applies). As the condition ρ = 1 is approached (grey lines), the model
derived for light particles predicts vanishingly small slip velocities, whereas these remain
finite according to the model derived for heavy particles. This observation suggests that
the assumption of negligible unsteady forces may be more suitable for marginally buoyant
finite-size particles, rather than including them in concert with the equilibrium Eulerian
approximation. This is confirmed in the next section.

3.4. Validation
The proposed analytical model is compared against slip velocity of heavy particles,
neutrally/marginally buoyant finite-size particles, and bubbles in homogeneous or
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Method ρ Fr St dp/η Reλ

Petersen et al. (2019) Exp 2040 1.9 2.0–21 0.1–0.4 500 ◦
Clementi et al. (2024) Exp 7.8 0.001–0.01 0.08–0.4 0.7–1.4 234–445 �
Bellani & Variano (2012) Exp 1 ∞ 12 21 115 ♦
Uhlmann & Chouippe (2017) Num 1.5 ∞ 2.5–11 5.5–11 117–142 ◦
Cisse et al. (2013) Num 1 ∞ 10–73 17–67 160 �
Ma et al. (2020) Num 0.001 0.02 0.5 12 17 ◦
Zhang et al. (2019) Num 0.001 ∞ 0.02–2 0.7–7 216 �

Table 1. Experimental and numerical studies reporting mean slip velocity of particles in homogeneous
turbulence. Petersen, Baker & Coletti (2019), Bellani & Variano (2012) and Clementi, Wedi & Coletti (2024)
used facing random jet arrays to generate homogeneous turbulence. Cisse, Homann & Bec (2013) and Uhlmann
& Chouippe (2017) carried out particle-resolved simulations with an immersed boundary method in forced
homogeneous isotropic turbulence, whereas Zhang et al. (2019) followed a point-particle approach. Ma et al.
(2020) considered the centre-plane region in a vertical channel flow simulated by the immersed boundary
method.

102

100

102

100

102

10–2

100

102

10–2

100

St
10–2 100 102

dp/η
100 102

St
100 102

dp/η
100 102

〈|u
s|〉

/
u η

Re
p

(b)(a) (c) (d )

Figure 8. Validation of model of particle slip velocity in homogeneous turbulence. The various cases from
numerical and experimental data are summarised in table 1. Symbols represent reported values; lines of the
same colour represent model predictions. For comparison with Ma et al. (2020), only the SmFew case is
considered as the model is limited to the one-way coupled regime.

quasi-homogeneous turbulence, as observed in laboratory experiments and direct
numerical simulations listed in table 1. This allows us to validate the analysis across all
practically interesting regions of the parameter space. For marginally buoyant finite-size
particles, we deploy the form of the model derived in § 2.1 which neglects unsteady forces.
The estimate of the fluid velocity at the particle location is discussed in the referenced
works and extensively in other experimental and numerical studies (e.g. Horwitz & Mani
2016; Berk & Coletti 2021). The specific approaches may lead to different instantaneous
values, but the average of the observable is not expected to differ significantly. As shown
in figure 8, the model is in quantitative agreement with the data for all regimes.

4. Conclusions

Building on the framework of inertial filtering, we have developed an analytical
model which captures the slip velocity magnitude of spherical non-tracer particles in
homogeneous turbulence over the wide parameter space spanned by practically relevant
applications, from light to heavy particles, from microscopic to finite size. The model takes
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two forms, derived for particles heavier and lighter than the fluid. The former retains only
drag force and gravity effects, and is shown to be applicable also to marginally buoyant
finite-size particles. The latter includes added mass and stress gradient forces and leverages
the equilibrium Eulerian approximation, which in turn assumes small and weakly inertial
particles.

The model is in quantitative agreement with experiments and direct numerical
simulations. This has three important implications. First, it demonstrates that, for the
purpose of predicting the magnitude of the mean slip velocity, the assumptions made
are tenable. Those include: (i) Gaussian distribution of the slip velocity; (ii) small
impact of history force and lift force, both neglected in the model; (iii) validity of the
equilibrium Eulerian approximation for small light particles; (iv) negligible importance of
unsteady forces for marginally buoyant particles; and (v) negligible difference between
the flow scales experienced by particles and tracers. The prediction of higher-order
observables, such as higher-order moments and two-point statistics, may require some
of those simplifications to be relaxed. Second, the model is proven to yield valuable
physical insight, capturing the specific influence of individual parameters on the slip
velocity. Isolating the effect of each parameter is crucial for the predictive understanding of
particle-laden turbulence, but is virtually impossible in physical experiments and typically
beyond the reach of numerical simulations. Third, the ample validation warrants that the
proposed model can make accurate predictions of the mean slip velocity purely from the
governing parameters of the system. Therefore, we expect it to be useful for studies in
which the slip velocity is an important parameter, e.g. to determine whether the dispersed
phase is an accurate tracer and whether it is likely to back-react on the carrier fluid.

The model provides a theoretical underpinning for empirical observations which
hitherto have only been qualitatively explained. For example, neutrally buoyant particles
reportedly behave as tracers as long as dp/η � 5 (Qureshi et al. 2007; Volk et al. 2011).
Figure 8 shows how, for Reλ typical of experimental and numerical studies, this is precisely
the size limit beyond which the mean slip velocity is not negligible, 〈|us|〉 > uη. In this
regard, our results are complementary to those of Mathai et al. (2016) who predict how
particle accelerations depart from those of tracers as function of St/Fr. The present model
also makes new predictions yet to be verified, specifically at high Reλ.

Several extensions of the present model are possible. For example, the observed
intermittency in the slip velocity distribution can be incorporated, which may be important
to predict higher-order moments. The history force can be included if an integral
expression is used, such as that proposed in Ling et al. (2013) which however is only
valid in a limited portion of the parameter space. Similarly, the lift force may be added
using scaling dependencies with the governing parameters (Saffman 1956; Rubinow &
Keller 1961). Moreover, the model could be extended to non-homogeneous turbulence,
using expressions for the temporal and velocity scale ratios valid for, e.g., turbulent
boundary layers. Finally, the present framework may be applied to the important case
of non-spherical particles (Voth & Soldati 2017), provided that the equation of motion is
adequately parametrised.
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Appendix A

Using the relations provided at the end of § 2.1, the heavy-particle model given by (2.13)
and (2.14) can be expressed in closed form as

〈|us|〉
uη

= StFr−1erf
{(

1
2

〈us〉2

〈u′
s
2〉

)1/2}

+ St
(

2
π

Reλ
151/2

)1/2 ( Reλ + 32
1351/2(1 − (0.1Reλ)−1/2)

+ St
)−1/2

×
(

6(1 − (0.1Reλ)−1/2)

10(1 + 110Re−1
λ )−1

+ St
)−1/2

exp
{

− 1
2

〈us〉2

〈u′
s
2〉

}
, (A1)

with

〈us〉2

〈u′
s
2〉 = 151/2

Reλ
Fr−2

(
Reλ + 32

1351/2(1 − (0.1Reλ)−1/2)
+ St

)

×
(

6(1 − (0.1Reλ)−1/2)

10(1 + 110Re−1
λ )−1

+ St
)

. (A2)

Appendix B

Using the relations provided at the end of 2.1, the light-particle model given by (2.26) and
(2.27) can be expressed in closed form as

〈|us|〉
uη

= StFr−1erf
{(

1
2

〈us〉2

〈u′
s
2〉

)1/2}

+ St(β − 1)

(
2
π

Reλ
151/2

)1/2 ( Reλ + 32
1351/2(1 − (0.1Reλ)−1/2)

+ St
)−1/2

×
(

6(1 − (0.1Reλ)−1/2)

10(1 + 110Re−1
λ )−1

+ St
)−1/2

exp
{

− 1
2

〈us〉2

〈u′
s
2〉

}
, (B1)

with

〈us〉2

〈u′
s
2〉 = 151/2

Reλ
Fr−2(β − 1)−2

(
Reλ + 32

1351/2(1 − (0.1Reλ)−1/2)
+ St

)

×
(

6(1 − (0.1Reλ)−1/2)

10(1 + 110Re−1
λ )−1

+ St
)

. (B2)
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