
Math. Proc. Camb. Phil. Soc. (2024), 177, 185–218 185
doi:10.1017/S0305004124000197

First published online 19 September 2024

The Failure of Galois Descent for p-Selmer Groups
of Elliptic Curves

BY ROSS PATERSON
School of Mathematics and Statistics, University of Glasgow, University Place, Glasgow,

G12 8QQ.
e-mail: rosspatersonmath@gmail.com

(Received 07 February 2022; accepted 01 May 2024)

Abstract

We show that if F is Q or a multiquadratic number field, p ∈ {2, 3, 5}, and K/F is a Galois
extension of degree a power of p, then for elliptic curves E/Q ordered by height, the average
dimension of the p-Selmer groups of E/K is bounded. In particular, this provides a bound
for the average K-rank of elliptic curves E/Q for such K. Additionally, we give bounds for
certain representation–theoretic invariants of Mordell–Weil groups over Galois extensions
of such F.

The central result is that: for each finite Galois extension K/F of number fields and prime
number p, as E/Q varies, the difference in dimension between the Galois fixed space in the
p-Selmer group of E/K and the p-Selmer group of E/F has bounded average.

2020 Mathematics Subject Classification: 11G05 (Primary); 11G07, 11N45,
14H52 (Secondary)

1. Introduction

As E varies amongst elliptic curves over the rational numbers (ordered by height),
Bhargava and Shankar [BS15a] were the first to show that the average rank of the Mordell–
Weil group E(Q) is bounded. It is then natural to ask: for a fixed number field K, is the same
true of E(K)? Moreover, what dependence does the average rank of E(K) have on K? For
multiquadratic extensions K/Q, an upper bound for the average rank can be derived from the
work of Bhargava–Shankar. With the exception of these bounds, we provide the first known
results in this direction.

Let

E =
{

(A, B) ∈Z2 : gcd (A3,B2) is 12th−power free,
4A3+27B2 �=0

}
,

which parametrises a set of elliptic curves via the identification (A, B) ↔ EA,B : y2 = x3 +
Ax + B. It is well known, see e.g. [Sil09, III·1], that every elliptic curve defined over the
rational numbers is isomorphic to a unique curve in the set of curves parametrised by E . The
height of (A, B) ∈ E , or equivalently of the curve EA,B, is defined to be H(A, B) = H(EA,B) =
max{4 |A|3 , 27B2}, and for every positive real number X, we write E(X) for the finite subset
of E of pairs which have height at most X. Our main result is then:
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THEOREM 1·1. Let p ∈ {2, 3, 5}, F be either Q or a multiquadratic number field, and K/F
be a Galois p–extension. Then

lim sup
X→∞

∑
(A,B)∈E(X)

rk EA,B(K)

#E(X)

≤
⎧⎨
⎩

[K : F]C2(K/F) + [K : Q]
(

C2(F/Q) + 3
2

)
if p = 2 and F �=Q,

[K : F]
(

Cp(K/F) + p+1
p [F : Q]

)
else,

where Cp(K/F) and Cp(F/Q) are explicit constants (see Section 1·5).

By a multiquadratic number field, we will always mean a number field F which is a finite
Galois extension F/Q with Gal (F/Q) ∼= (Z/2Z)r for some r > 0. For a prime number p we
say that a Galois field extension K/F is a p-extension if Gal (K/F) is a finite p-group.

Remark 1·2. One can obtain stronger bounds in the case that K/Q is multiquadratic. These
are obtained from the results of Bhargava and Shankar by computing the average size of the
5–Selmer group of the Weil restrictions of our E/Q from K (see Proposition 2·14).

Remark 1·3. Conditional on a conjecture of Poonen and Rains [PR12, conjecture 1·1(b)],
the conclusion of Theorem 1·1 holds for every prime number p. In Section 1·4 we discuss
the consequences of this conjecture to our results.

Remark 1·4. This average rank growth compares nicely with Iwasawa–theoretic considera-
tions in Zp–towers above F, as we discuss in Section 1·6.

1·1. Galois descent

Theorem 1·1 arises, as is the fashion, from a detailed study of statistical properties of
Selmer groups (see e.g. [Sil09, X·4]). For a finite Galois extension of number fields K/F
and prime number p, we study the failure of Galois descent from K to F for p-Selmer groups
of elliptic curves E/Q. That is, we examine the difference

dimFp Selp (E/K)G − dimFp Selp (E/F), (1)

where G = Gal (K/F).
In the case that p � #G this difference is 0: the finite cohomology groups Hi(K/F, E(K)[p])

and their local analogues are trivial, so the inflation–restriction exact sequence yields an iso-
morphism Selp (E/F) ∼= Selp (E/K)G (see also Section 2 for a more geometric explanation).
In other words, Galois descent does not fail in the “good characteristic” case.

The interesting case, that of so-called “bad characteristic”, is when p | #G. In this case,
Galois descent can fail to an arbitrary extent. Indeed, consider the congruent number curve,
which has Weierstrass equation y2 = x3 − x, and let K/Q be an arbitrary quadratic field. On
one hand, a recent result of Morgan and the author [MP20, theorems 1·1 and 1·3] implies
that, for any fixed positive real number z, 100% of quadratic twists Ed of E have

dimF2 Sel2 (Ed/K)G = dimF2 Sel2 (Ed/K) > z;
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on the other hand, early work of Heath-Brown [HB93, HB94] shows that more than 99.9%
of quadratic twists Ed of E have

dimF2 Sel2 (Ed/Q) ≤ 6.

In particular, in this latter proportion of twists the difference (1) must be arbitrarily large.

Remark 1·5. There are many more examples of this phenomenon: if E/Q is any ellip-
tic curve with full 2-torsion then the result of Morgan and the author implies the same
behaviour for the groups Sel2 (Ed/K); if additionally E has no rational 4-isogeny then the
same behaviour as above is known to holds for Sel2 (Ed/Q) by work of Kane [Kan13,
theorem 3] and Swinnerton-Dyer [SD08].

The core statistical result in this paper shows that, despite this, the average size of the
failure of Galois descent is bounded as we vary over all elliptic curves over the rational
numbers (ordered by height).

THEOREM 1·6 (Theorem 5·8). Let p be a prime number, F be a number field and K/F be a
finite Galois extension. Writing G = Gal (K/F), we have that

lim sup
X→∞

∑
(A,B)∈E(X)

∣∣dimFp Selp (EA,B/K)G − dimFp Selp (EA,B/F)
∣∣

#E(X)
≤ Cp(K/F),

where Cp(K/F) is an explicit constant (see Section 1·5).

1·2. Selmer ranks

In the case of a Galois p-extension, the p-Selmer group is a modular representation of the
Galois group. Appealing to the theory of such, we use Theorem 1·6 to bound the average
dimension of the full Selmer group.

THEOREM 1·7 (Corollary 6·3). Let p ∈ {2, 3, 5}, F be either Q or a multiquadratic number
field, and K/F be a Galois p–extension. Then

lim sup
X→∞

∑
(A,B)∈E(X)

dimFp Selp (EA,B/K)

#E(X)

≤
⎧⎨
⎩

[K : F]C2(K/F) + [K : Q]
(

C2(F/Q) + 3
2

)
if p = 2 and F �=Q,

[K : F]
(

Cp(K/F) + p+1
p [F : Q]

)
else,

where Cp(K/F) and Cp(F/Q) are explicit constants (see Section 1·5).

It is from this result, and the usual inclusion E(K)/pE(K) ⊆ Selp (E/K), that we obtain
Theorem 1·1.

Example 1·8. The bounds obtained in Theorem 1·7 are typically rather large. Let K/Q
be the splitting field of x10 − 35x6 + 130x4 + 160, so that the Galois group Gal (K/Q) is
isomorphic to D10 the dihedral group of order 10. In this case, F =Q(

√−10) is a multi-
quadratic field contained in K, and K/F is a degree 5 extension, so we can apply Theorem
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1·7 with p = 5. We can compute that C5(K/F) ≤ 8.36. Thus we have that the average dimen-
sion of 5-Selmer groups over K of elliptic curves over Q is less than 54, and in particular the
same bound is true of the average rank of the Mordell–Weil groups E(K).

1·3. Mordell–Weil Lattices

We deduce some representation–theoretic information about the “free part” of Mordell–
Weil groups from Theorem 1·6. Specifically, for an elliptic curve E/Q and number field K
write �(E/K) for the so–called Mordell–Weil lattice, that is, the quotient of the group E(K)
by its torsion subgroup

�(E/K) = E(K)/E(K)tors.

For a finite Galois extension K/F, writing G = Gal (K/F), �(E/K) is a Z-free Z[G]-module,
i.e. a Z[G]-module which is free as an abelian group; we refer to such modules as Z[G]-
lattices.

The integral representation theory of finite groups is more delicate than representation
theory over fields. For example if for some prime number p there is a p–Sylow subgroup of G
which is not cyclic of order at most p2 then there are infinitely many isomorphism classes of
indecomposable Z[G]-lattices [CR81, theorem 33·6]. Moreover, the unique decomposition
of representations, which holds over fields as a result of the Krull–Schmidt–Azumaya theo-
rem [CR81, theorem 6·12], does not generally hold for Z[G]–lattices, so the naïve notion of
multiplicity of indecomposable sublattices need not be well defined.

We begin by providing a suitable notion of “multiplicity” for a Z[G]–lattice � (see
Definition 7·2) inside of �(E/K), which we denote by e�(K/F; E). We then provide a bound
for the average of e�(K/F; E), so long as � satisfies a local condition somewhere and F is
a contained in a multiquadratic field.

THEOREM 1·9 (Corollary 7·8). Let p ∈ {2, 3, 5}, F be either Q or a multiquadratic number
field, and K/F be a finite Galois extension. Writing G = Gal (K/F), we have that for every
Z[G]-lattice � such that dimFp (�/p�)G ≥ 1,

lim sup
X→∞

∑
(A,B)∈E(X)

e�(K/F; EA,B)

#E(X)

≤ 1

dimFp (�/p�)G
·
⎧⎨
⎩

C2(K/F) + [F : Q]
(

C2(F/Q) + 3
2

)
if p = 2 and F �=Q,

Cp(K/F) + p+1
p [F : Q] else,

where Cp(K/F) and Cp(F/Q) are explicit constants (see Section 1·5).

For example, if G is a p-group then, by the orbit stabiliser theorem, for every Z[G]-lattice
� we have dimFp (�/p�)G ≥ 1. Of course, in this case these multiplicities can already be
shown to be bounded by applying Theorem 1·1.

Remark 1·10. Many lattice multiplicities can already be bounded using Theorem 1·1, even
when K/Q is not of the correct form for direct application. If K/Q is Galois with group G,
then if one can choose a normal subgroup N ≤ G for which �N �= 0 then we can track the
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multiplicity by passing to the associated subfield. More precisely, in this setting if L = KN

then for each E/Q,

e�(K/Q; E) ≤ rk E(L)

rk �N
.

If the subextension L/Q is of the correct form for Theorem 1·1, i.e. G/N is an extension
of a (possibly trivial) elementary abelian 2-group by a p-group, then we can still bound the
multiplicity with Theorem 1·1.

In light of the above, one may ask whether Theorem 1·9 is a formal consequence of
Theorem 1·1. The following example demonstrates that this is not the case.

Example 1·11. Let K/Q be a finite Galois extension with Galois group G ∼= F5 �F×
5 .

Let p 
Z[ζ5] be the prime ideal lying over 5 in the ring of integers of the 5th cyclotomic
field, upon which F5 acts by multiplication by ζ5 and F×

5 acts as Gal (Q(ζ5)/Q). It is ele-
mentary to check that the actions above induce the structure of a Z[G]–lattice on p. Since
dimF5 (p/5p)G = 1, we can bound the multiplicity using Theorem 1·9.

However, Theorem 1·1 does not bound this multiplicity, even via the sophisticated appli-
cation in Remark 1·10 since the action of every non-trivial normal subgroup N ≤ G on p is
without fixed points.

Our method does not allow us to bound the multiplicity of the lattice Z[ζ5] with the
analogous action of G: this lattice has no G-fixed space, so for every prime number p we
have that

(�/p�)G ∼= H1(G, Z[ζ5])[p],

and one can easily compute that H1(G, Z[ζ5]) = 0. In particular, Theorem 1·9 does not allow
us to bound the average multiplicity of Q(ζ5) as an irreducible subrepresentation inside of
E(K) ⊗Q.

1·4. Interaction with the Poonen–Rains heuristics

Theorems 1·1, 1·7 and 1·9 all depend on p being a small prime. However this is an artefact
of our current state–of–the–art, rather than an indication of special behaviour. The following
is a well known conjecture in the literature.

Conjecture 1 ([PR12, conjecture 1·1(b)]). For each prime number p, the average of
# Selp (E/Q) over all E/Q is p + 1.

Conjecture 1 is known to be true already if p ∈ {2, 3, 5}, via the works of Bhargava
and Shankar [BS15a, BS15b, BS13], and indeed we use this to obtain our unconditional
bounds. More specifically, Conjecture 1 predicts that for every prime number p the average
of dimFp Selp (E/Q) is at most (p + 1)/p.

In fact, for p ∈ {2, 3, 5}, Bhargava and Shankar proved that the conjectural average in
Conjecture 1 is also true in the family of all elliptic curves E/Q satisfying finitely many
congruence conditions (and indeed infinitely many, assuming some technical conditions). In
light of this, we do not think it unreasonable to expect the average in Conjecture 1 to hold
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true for the family of all E/Q which satisfy a fixed finite number of congruence conditions.
We mark this as a hypothesis for using later below:

Hypothesis 1. Let Ẽ ⊆ E be a subset defined by finitely many congruence conditions, and for
every positive real number X write Ẽ(X) = E(X) ∩ Ẽ . For each prime number p, the average
of # Selp (E/Q) for E ∈ Ẽ(X) goes to p + 1 as X → ∞.

THEOREM 1·12 (Corollary 6·3, Corollary 7·8). Assuming Hypothesis 1, the conclusions of
Theorems 1·1, 1·7 and 1·9 hold for every prime number p.

Remark 1·13 In fact, the work in [PR12] predicts an exact summation for the average value
of dimFp Selp (E/F). We have opted to work with the average size and then bound the aver-
age rank by elementary estimates so as to match up with what is currently known. This does
not affect the growth in p of the bounds.

1·5. Bound shape

The bounds in Theorems 1·1, 1·6, 1·7 and 1·9 all depend on the constants Cp(K/F) and
Cp(F/Q). We now comment on their behaviour. Explicitly, for a prime number p and finite
Galois extension of number fields K/F,

Cp(K/F) = 2ωF(6p�K) + [F : Q] + δ2(p)r1(F) + 2
∑

�prime
��6p�K

ωF(�)
2�8 − �7 − 1

�10 − 1
,

where: δ2(p) = 1 if p = 2 and δ2(p) = 0 otherwise; for an integer n, ωF(n) is the number of
prime ideals of F which divide the ideal generated by n over the integers of F; r1(F) is the
number of real embeddings of F; and �K is the discriminant of K.

This implies some asymptotic bounds for the growth in average ranks of elliptic curves
over extension fields. To ease notation somewhat, for each number field K write

Avrk (K) := lim sup
X→∞

1

#E(X)

∑
(A,B)∈E(X)

rk EA,B(K),

for the average rank of the K–points on elliptic curves E/Q. Then for K/F and p as in
Theorem 1·1,

Avrk (K) � [K : Q]ωQ(�K), (2)

where the implied constant is absolute. Moreover, as in Theorem 1·12, under the Poonen–
Rains heuristics the same holds if we allow p to be chosen from the set of all prime numbers.

One example application is the growth of ranks in towers of number fields with restricted
ramification.

Example 1·14. (Fixed base field F). Let F be Q or a fixed multiquadratic number field,
and let F(p) be a pro–p extension of F that ramifies only above rational primes in a fixed
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finite set S. For each finite Galois extension K/F such that K ⊆ F(p), write

Avrk (K) = lim sup
X→∞

1

E(X)

∑
(A,B)∈E(X)

rk E(K).

Then the asymptotic in (2) shows that

Avrk (K) � [K : F],

that is, the average K-rank grows at most linearly in the degree of the extension. In particular
this holds if F(p) is the limit of a ray class field tower, or if F(p) is a Zp–extension.

We can also provide a uniform bound for average ranks over infinitely many extensions.

Example 1·15. Theorem 1·1 implies that there are infinitely many S3 number fields K for
which

Avrk (K) < 65. (3)

Indeed, for each prime number � take K� to be the splitting field of X3 − �. These are cubic
extensions of their shared quadratic subfield F =Q(ζ3), so we compute that if � ≡ 2 mod 3
then C3(K�/F) ≤ 8.44; thus (3) holds with K = K�.

Remark 1·16. Although we can often obtain uniform bounds for average ranks over
infinitely many extensions with Galois group isomorphic to some fixed G, we cannot use
these methods to obtain a bound which works for a positive proportion of such extensions.
Indeed, any sensible ordering of such extensions would see the number of ramified primes
grow, which in turn causes our bound to grow.

1·6. Comparison to Iwasawa theory

Strict rank growth control has been observed and predicted for fixed elliptic curves in a
few cases; we now show some examples of this and discuss the relationship with our results.
For the duration of this section, we fix a prime number p. If p ≥ 7 then we also assume
Hypothesis 1. Recasting Theorem 1·1, as in Example 1·14, we obtain a bound for rank
growth in Zp–extensions.

COROLLARY 1·17. Let F be Q or a multiquadratic number field, and let F∞/F be a Zp–
extension. For each integer n ≥ 1, let Fn be the intermediate field F ⊆ Fn ⊆ F∞ such that
Gal (Fn/F) ∼=Z/pnZ. Then for every integer n ≥ 1

Avrk (Fn) � pn,

where the implied constant is computable and depends only on the choice of base field F.

We now compare this result with some conjectures and results in the literature for fixed
elliptic curves.

Recall that the cyclotomic Zp–extension of a number field F is the unique subfield
Fp−cyc ⊆⋃n≥1 F(ζpn) such that Gal (Fp−cyc/F) ∼=Zp. Work of Kato [Kat04] and Rohrlich
[Roh84] (see also [Gre01, theorem 1·4]) shows the following: for each elliptic curve E/Q,
there is an integer CE such that for all subfields K ⊆Qp−cyc we have rk (E(K)) ≤ CE
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The author is not aware of any reason to expect these CE to be uniformly bounded across
all E/Q, in fact there is substantial debate in the area on whether even the ranks of the
rational points E(Q) are even uniformly bounded (see [PPVW19, section 3] for a historical
survey). Moreover, prior to this work it appeared unclear whether, for example, the curves
of height at most X could have CE of order exp exp (X) and typically attain said maximum
at low levels of the tower Qp−cyc/Q. Corollary 1·17 shows that the hypothetical behaviour
of CE above cannot possibly occur.

Fix an imaginary quadratic field F/Q, then for a general Zp–extension F∞/F, there is the
growth conjecture of Mazur [Maz84, section 18], as extended by Lei and Sprung [LS20,
conjecture 1·2], which claims: if E/Q has good reduction at p, and F∞ is not the anticyclo-
tomic extension, then there is an integer CE,F such that for all intermediate fields Fn (as in
Corollary 1·17), we ought to have rk (E(Fn)) ≤ CE,F. As in the Qp−cyc case above, Corollary
1·17 shows that statistically this CE,F cannot behave wildly as E/Q varies. Moreover, this
conjecture only accounts for the E/Q with good reduction at p, which excludes a positive
proportion of elliptic curves. Corollary 1·17 suggests that, at least on average, there should
not be overly fast growth of ranks for the elliptic curves with bad reduction at p.

We now consider the case that F∞/F is the anticyclotomic extension, which is charac-
terised by its being dihedral over Q. The growth number proposition [Maz84, section 18]
shows that if E/Q has good ordinary reduction at p, and the Néron fibre of E is geometrically
connected at every place v | p at which the extension F∞/F splits infinitely, then for each
layer Fn (as in Corollary 1·17), we must have

rk (E(Fn)) = a(E, F∞/F)pn + en(E),

where {en(E)}n≥1 is a bounded sequence of integers associated to E, and a(E, F∞/F) is a
fixed growth constant (independent of n).

The growth number conjecture of Mazur ([Maz84, section 18 growth number conjecture])
predicts that (for E/Q as in the growth number proposition):

a(E, F∞/F) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if wE = 1,

1 if wE = −1 and E does not have CM by F,

2 if wE = −1 and E has CM by F.

Note that the condition wE = −1 is conjectured to hold for 50% of E/Q, and is known to
hold for at least 27.5% of E/Q by [BS13, theorem 6]. The additional stipulations on E and
its Néron model should again be positive proportion (and for large p this proportion tends
towards 100%). In particular a(E, F∞/F) > 0 is expected to hold for a positive proportion
of E/Q, and so we should expect from this conjecture that there is at least linear growth of
average ranks in the degree of the extension. That is, if F∞/F is the anticyclotomic extension
and for each n ≥ 1, Fn is the nth layer of F∞/F as in Corollary 1·17, we should expect

Avrk (Fn) � pn.

Corollary 1·17 shows that, in fact, this is not just a lower bound but is the best possible
asymptotic behaviour.
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1·7. Outline

In Section 2 we review some well known properties of the Weil restriction of scalars. We
then use these properties to obtain bounds for average dimensions of Selmer groups in “good
characteristic” over multiquadratic fields.

In Section 3 we compute local norm indices for elliptic curves over unramified extensions,
extending work of Kramer [Kra81], which may be of independent interest.

In Section 4 we recall and extend certain results and definitions from [MP20] to the
setting of interest, and define the genus theory invariant of an elliptic curve with respect to
a Galois extension and prime number p, which will represent an upper bound for the size of
the obstruction to Galois descent. We then use this in Section 5 to obtain Theorem 1·6.

Following this, in Section 6 and Section 7 respectively, we use Theorem 1·6 to prove
Theorem 1·7 and Theorem 1·9 At the end of Section 7 we also provide a family of examples
which generalise Example 1·11.

1·8. Limitations and extensions

Whilst our family of curves is that of all elliptic curves over Q, one should be able to use
these methods to obtain similar results for similar sets of elliptic curves over a fixed number
field ordered by height. We have opted not to do this here, since to do so requires choosing
a way to extend the definition of the set E from Q to a number field. If the ideal class group
of this number field is non-trivial then there can be more than one such parametrisation, so
the question of how to parametrise “all elliptic curves” is nuanced.

1·9. Notation and conventions

For a field F of characteristic 0, we write F̄ for a (fixed once and for all) algebraic closure
of F, and denote its absolute Galois group by GF = Gal (F̄/F). By a GF-module M we mean
a discrete abelian group M on which GF acts continuously, and for each i ≥ 0 we write
Hi(F, M) as a shorthand for the continuous cohomology groups Hi(GF, M). If moreover M
is p-torsion for some prime number p then we say that M is an Fp[GF]-module, and for
V ⊆ Hi(F, M) we write dim V for the Fp-dimension of V . For such M, we define the dual of
M to be

M∗ := Hom (M, µp),

where µp is the GF-module of pth roots of unity in F̄. This is an Fp[GF]-module with action
given as follows: for σ ∈ GF, φ ∈ M∗ and m ∈ M,

σφ(m) = σφ(σ−1m).

For i ≥ 0, if L/F is a finite extension we denote the corresponding restriction and corestric-
tion maps by

resL/F : Hi(F, M) → Hi(L, M)

and

corL/F : Hi(L, M) → Hi(F, M),

respectively.
For a number field F, we write 
F for the set of places of F and for each v ∈ 
F we write

Fv for the completion of F at v. For each v ∈ 
F we fix (once and for all) an embedding
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F̄ ↪→ F̄v, and so an inclusion GFv ⊆ GF. Thus each GF-module M is naturally a GFv-module
and moreover when v is non-archimedean (finite), we denote by Fnr

v the maximal unramified
extension of Fv, and write

H1
nr(Fv, M) = ker

(
H1(Fv, M)

res−→ H1(Fnr
v , M)

)
for the subgroup of unramified classes.

For a number field F, an elliptic curve E/F and a finite place v ∈ 
F, when we describe
the reduction type of E at v we are implicitly referring to the type of E in the Kodaira–Néron
classification (see e.g. [Sil94, IV theorem 8·2]).

By an arithmetic function, we mean a function f : Z→C such that for each n ∈Z we have
f ( − n) = f (n). We denote by μ the Möbius function and by gcd the greatest common divisor
function, each extended from N to Z by composition with the archimedean absolute value.
For arithmetic functions f and g, we denote by f ∗ g the Dirichlet convolution of the two, i.e.
for each n ∈Z

(f ∗ g)(n) :=
∑
d|n

f (d)g(n/d),

where the sum is over positive divisors of n. We say that an arithmetic function f is
multiplicative if for coprime integers m, n ∈Z we have that f (mn) = f (m)f (n).

For each prime number � we write v� for the normalised valuation on Q�, i.e. the unique
valuation such that v�(�) = 1.

2. Good characteristic: Weil restriction

For the duration of this section, fix a finite Galois extension of number fields K/F and
an elliptic curve E/Q, and write G = Gal (K/F). We begin in Section 2·1 with expository
material on twists of elliptic curves and the Weil restriction. In Section 2·2 we then go on to
survey some results on p-Selmer groups in extensions of degree coprime to p. This material
is closely related to, and inspired by, that appearing in [MR07, section 3]. Finally, in Section
2·3, we explain how this material allows us to extend the results of Bhargava and Shankar
bhargava3Sel,bhargava5Sel on the average dimension of 3- and 5-Selmer groups over Q to a
bound for the average dimension of 3- and 5-Selmer groups over any multiquadratic number
field.

2·1. Twists of elliptic curves

As in Milne [Mil72, section 2] (see also [MRS07]), there is a general construction of
twists of powers of an elliptic curve, which we now recall.

Definition 2·1. Let n ≥ 1. To each matrix M = (mi,j) in Matn(Z) we can associate an
endomorphism of En given by

(P1, ..., Pn) �−→
( n∑

j=1

m1,jPj, ...,
n∑

j=1

mn,jPj

)
.

In this way we view GLn(Z) as a subgroup of AutF(En). Now suppose that � is a free
rank-n Z-module equipped with a continuous GF-action. Choosing a basis for � gives rise
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to a homomorphism

ρ� : GF −→ GLn(Z),

which we view as a 1-cocycle valued in AutF̄(En). The class of ρ� in H1(F, AutF̄(En))
does not depend on the choice of basis. Associated to this cocycle class is a twist of En,
which we denote � ⊗ E. This is an abelian variety over F of dimension n, equipped with a
F̄-isomorphism ϕ� : En → � ⊗ E satisfying ϕ−1

� ϕσ
� = ρ�(σ ) for all σ ∈ GF.

The Weil restriction of E can now be defined as a specific example of such a twist.

Definition 2·2. The Weil restriction of E from K to F is the abelian variety

ResK/F E =Z[G] ⊗ E.

Remark 2·3. The Weil restriction ResK/FE is classically defined as the unique scheme over
F representing the functor on F-schemes

T �−→ E(T ×F K).

As in [MRS07, theorem 4·1], this is equivalent to the construction given above.

2·2. Selmer groups in good characteristic

Here we remark on the structure of n-Selmer groups in the case that n is coprime to #G,
the case of so–called “good characteristic”. In this case, the n-Selmer group splits as a sum
over twists of E. This can be viewed as a finite-level explication of the results in [MR07,
section 3], where similar results are shown for Pontrjagin dual p∞–Selmer vector spaces
without our restriction on p.

LEMMA 2·4. For every positive integer n, not necessarily coprime to #G,

(i) there is a natural isomorphism of Z[GF]–modules

ResK/F E[n] ∼=Z[G] ⊗Z E[n],

where σ ∈ GF acts on the right-hand side diagonally;

(ii) the above isomorphism induces an isomorphism of Z[G]–modules

Seln ( ResK/F E/F) ∼= Seln (E/K),

where the action of G on the left-hand side is induced by the action of G on Z[G] by
left multiplication.

Proof. (i) is found in [MRS07, theorem 2·2(ii)], see also [Mil72, section 1(a)]. For (ii),
we give an analogous argument to that in [MR07, proof of proposition 3·1(iii)], see also
[Mil72, proof of theorem 1] for a similar result for Shafarevich–Tate groups. Indeed, by (i),
Shapiro’s lemma (see, e.g. [Neu13, theorem 4·9]) provides a Z[G] isomorphism

H1(F, ( ResK/F E)[n]) ∼= H1(K, E[n]),
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where the action of G on the left-hand side is induced by left multiplication on Z[G] in the
isomorphism of (i). It is then elementary to check that this isomorphism commutes with
the corresponding isomorphisms at the local extensions, and thus restricts to one of Selmer
groups.

Definition 2·5. Let ρ be an irreducible finite dimensional Q[G]–module. As in [MRS07,
definition 4·3] we define the twist of E by ρ to be

Eρ = (Q[G]ρ ∩Z[G]) ⊗ E,

where Q[G]ρ is the ρ-isotypic component of Q[G], that is, the sum of all left ideals of Q[G]
isomorphic to ρ.

Example 2·6. If K/F is multiquadratic then these twists are extremely concrete. Since
G is an elementary abelian 2 group, its irreducible representations are order 2 characters
induced by the quadratic subextensions. Let � ∈ F be an element such that F(

√
�) ⊆ K,

and let χ� be the corresponding at–most–quadratic character of GF. Identifying χ� with its
corresponding one dimensional Q[G]-module, this construction gives rise to all irreducible
finite-dimensional Q[G]-modules. Moreover, it is clear that Q[G]χ� ∩Z[G] is a rank one
free abelian group with action of σ ∈ G given by multiplication by χ�(σ ). In particular, by
[MRS07, theorem 2·2(i)] we obtain that Eχ� = E(�) is just the usual quadratic twist of E
by �.

We can then split the n-Selmer group of the Weil restriction into those of these twists. This
result is analogous to [MR07, corollary 3·7], where they study the Pontrjagin dual Selmer
vector spaces.

PROPOSITION 2·7. If n is an integer which is coprime to #G, then we have an isomorphism
of Z[G]-modules

Seln (E/K) ∼=
⊕

ρ

Seln (Eρ/F),

where the sum is over isomorphism classes of irreducible finite dimensional Q[G]-modules
and the action of G on the summands on the right hand side is induced by the action of G on
Q[G]ρ ∩Z[G] via the isomorphism in Lemma 2·4(i).

Proof. By Lemma 2·4 we need only show that Seln ( ResK/F E/F) splits in this way. The
natural map

f :
⊕

ρ

(
Z[G] ∩Q[G]ρ

)→Z[G],

is injective with finite cokernel, so by [MRS07, theorem 4·5, see also lemma 2·4] induces
an F–isogeny

fE :
⊕

ρ

Eρ → ResK/F E.

Moreover, since the cokernel of f is #G–torsion, the degree of the isogeny fE must be a divi-
sor of some power of #G [MRS07, proof of lemma 2·4] and so coprime to n. In particular,
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fE induces an isomorphism of n–Selmer groups, and moreover since fE is an F–isogeny the
isomorphism is one of Z[G]–modules.

Remark 2·8. In [MR07, corollary 3·7] the authors do not need to make assumptions about
coprimality, since the error that occurs when p | #G contributes an additional torsion module
to the p∞-Selmer groups. This in turn vanishes when taking the tensor product with Qp to
form the Pontrjagin dual Selmer vector space Hom ( Selp∞ (E/K), Qp/Zp) ⊗Qp.

2·3. Average selmer ranks in good characteristic over multiquadratic fields

In this subsection, we will restrict our interest to multiquadratic number fields. We use the
Weil restriction as in Section 2 to give a bound for Selmer ranks in good characteristic using
results of Bhargava and Shankar [BS15b, BS13]. First, we adapt the results of Bhargava–
Shankar for quadratic twists.

PROPOSITION 2·9. For each squarefree integer D and p ∈ {2, 3, 5}, we have

lim
X→∞

∑
(A,B)∈E(X) # Selp (E(D)

A,B/Q)

#E(X)
= (p + 1).

Moreover, assuming Hypothesis 1 the conclusion holds for every prime number p.

Remark 2·10. For p ∈ {2, 3, 5} this can be seen directly from the methods of Bhargava–
Shankar [BS15a], since the quadratic twist E(D)

A,B has a (possibly not minimal)Weierstrass

equation given by EAD2,BD3 : y2 = x3 + AD2x + BD3, and their proofs never make use of
the minimality condition and work with finitely many congruence conditions. However, for
completeness (and when p > 5) we provide a proof below.

Proof. Fix a squarefree integer D. Since the quadratic twist E(D)
A,B has a (possibly not

minimal) Weierstrass equation given by EAD2,BD3 : y2 = x3 + AD2x + BD3. Thus there is a

bijection between
{

E(D)
A,B : (A, B) ∈ E(X)

}
and the set

ED(X) =

⎧⎪⎪⎨
⎪⎪⎩(A, B) ∈Z2 :

4|A|3,27B2≤D6X;
D2|A, D3|B;

4A3+27B2 �=0;
∀��D prime, if �4|A then �6�B;
∀�|D prime, if �6|A then �9�B

⎫⎪⎪⎬
⎪⎪⎭ ,

given by identifying (A, B) ∈ ED(X) with the curve EA,B. We now partition ED(X) into
parts, so as to identify with minimal Weierstrass models. For each pair (d1, d2) of positive
squarefree integers such that D = ±d1d2, we define

Ed1,d2(X) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(A, B) ∈ E(D6X) :

4|A|3,27B2≤
(

d1
d2

)6
X;

4A3+27B2 �=0;
∀��d1d2 prime, if �4|A then �6�B;

∀�|d1 prime: �2|A, �3|B, and if �4|A then �6�B;
∀�|d2 prime: if �2|A then �3�B.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.
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Note that Ed1,d2(X) ⊆ E (((d1)/d2)6X
)
, and moreover Ed1,d2(X) parametrises a large family

of elliptic curves ordered by naïve height in the sense of Bhargava–Shankar [BS15a, BS15b,
BS13]. Further, we have that

ED(X) =
⊔

D=±d1d2

{
(d4

2A, d6
2B) : (A, B) ∈ Ed1,d2(X)

}
,

where the disjoint union is over pairs of squarefree positive integers d1, d2 satisfying D =
±d1d2.

Note that for any fixed pair of squarefree positive integers d1, d2 we have by [BS15a,
theorem 3·17] that

lim
X→∞

#Ed1,d2(X)

#E(X)
=

⎛
⎜⎜⎝∏

�|d1
prime

(�2 − 1)�3 + (�3 − 1)

�10 − 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝∏

�|d2
prime

�2(�2 − 1)�6 + �2(�3 − 1)�3

�10 − 1

⎞
⎟⎟⎠

= d5
2

⎛
⎜⎜⎝∏

�|D
prime

�5 − 1

�10 − 1

⎞
⎟⎟⎠ .

Thus,

lim
X→∞

1

#E(X)

∑
(A,B)∈E(X)

# Selp (E(D)
A,B/Q)

= lim
X→∞

1

#E(X)

∑
(A,B)∈ED(X)

# Selp (EA,B/Q)

= lim
X→∞

1

#E(X)

∑
D=±d1d2

∑
(A,B)∈Ed1,d2 (X)

# Selp (EA,B/Q)

= (p + 1)

⎛
⎜⎜⎝∏

�|D
prime

�5 − 1

�10 − 1

⎞
⎟⎟⎠∑

d|D
d5

= (p + 1),

where the penultimate equality follows from the large family average Selmer group sizes in
[BS15a, BS15b, BS13] and the computation above, and the final follows from an elementary
identity for power-of-divisor sums.

Assuming Hypothesis 1, since the families Ed1,d2(X) are defined by finitely many
congruence conditions, the argument above holds for all prime numbers p.
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We can then relate this to our ordering via elementary estimates, and similarly obtain a
bound for the average Selmer rank.

PROPOSITION 2·11. For each squarefree integer D and p ∈ {2, 3, 5}, we have

lim sup
X→∞

∑
(A,B)∈E(X) dim Selp (E(D)

A,B/Q)

#E(X)
≤ (p + 1)

p
.

Moreover, assuming Hypothesis 1 the same is true for every prime number p.

Proof. For each r ≥ 0 we use the inequality pr ≥ pr, so for each E/Q we have
dim Selp (E/Q) ≤ # Selp (E/Q)/p. Thus it follows from Proposition 2·9.

Definition 2·12. For a squarefree integer D, we write χD for the quadratic character of GQ

cutting out Q(
√

D), and for an abelian group M we write MχD for the discrete GQ-module
M with action by σ ∈ GQ given by multiplication by χD(σ ) ∈ {±1}.
LEMMA 2·13. Let F be a field contained in a multiquadratic number field, write G =
Gal (F/Q), and let E/Q be an elliptic curve. Then for every odd prime number p there
is an isomorphism of Z[G]-modules

Selp (E/F) ∼=
⊕

D∈Q(F)

Selp (E(D)/Q)χD ,

where Q(F) is the set of squarefree integers D such that Q(
√

D) ⊆ F and E(D) is the
quadratic twist of E by D.

Proof. This follows by applying Proposition 2·7 to multiquadratic extensions as in
Example 2·6.

Now we can state an easy statistical consequence of the decomposition in Lemma 2·13.

PROPOSITION 2·14. Let F be either Q or a multiquadratic number field. Then for p ∈ {3, 5},

lim sup
X→∞

∑
(A,B)∈E(X)

dim Selp (EA,B/F)

#E(X)
≤ p + 1

p
[F : Q],

Moreover, assuming Hypothesis 1 the same holds for all odd prime numbers p.

Proof. Let p be an odd prime number. Using the decomposition in Lemma 2·13,

dim Selp (E/F) =
∑

D∈Q(F)

dim Selp (E(D)/Q),

where E(D) is the quadratic twist of E by D and Q(F) is the set of squarefree integers D such
that Q(

√
D) ⊆ F. The result now follows from Proposition 2·11, noting that the size of Q(F)

is precisely [F : Q].
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3. Local computations

In this section, let F, OF, v be a finite extension of Q� for some prime number �, its ring
of integers and normalised valuation, respectively and let E/F be an elliptic curve with mul-
tiplicative reduction. Moreover, let K/F be an unramified extension, let n be its degree and
write NK/F =∑g∈Gal (K/F) g ∈Z[ Gal (K/F)] for the usual norm element. We perform some
local computations, extending results of Kramer [Kra81] in the case n = 2. Specifically,
we determine the norm index for such E using the Tate parametrisation (see e.g. [Sil94, V
sections 3-5]), the properties of which we recall below.

Recall from [Sil94, V Thms 3·1 and 5·3] that there is a unique element q ∈OF with
v(q) > 0 such that E is isomorphic over F̄ to Gm/qZ. We call q the Tate parameter associated
to E, and fix such an isomorphism and call it the Tate parametrisation. Moreover, if E has
split multiplicative reduction, then we may assume that the Tate parametrisation is defined
over F.

Let L/F be the unramified quadratic extension, and for each extension M/F define

I(M) :=
{

x ∈ (M · L)× : N(M·L)/M(x) ∈ qZ
}

,

I0(M) := {x ∈ (M · L)× : N(M·L)/M(x) = 1
}

.

If E has non-split multiplicative reduction, then the quadratic twist of E by L has split multi-
plicative reduction, so we may assume that the Tate parametrisation is defined over any field
containing L. However, for a finite extension M/F which does not contain L, by [Sil94, V
corollary 5·4] the Tate parametrisation over the compositum M · L yields an isomorphism
between E(M) and I(M)/qZ. This isomorphism identifies E0(M), the points of the connected
component of the identity in the Néron model of E, with I0(M)/qZ.

LEMMA 3·1. If E/F has split multiplicative reduction, then the corresponding Tate
parameter q satisfies

v(q) = v(�E),

where �E is a minimal discriminant for E/F.

Proof. By [Sil94, V theorem 3·1(b)] we have �E = q
∏

n≥1 (1 − qn)24, so the result is
immediate.

PROPOSITION 3·2. If E/F has split multiplicative reduction, then

E(F)/NK/FE(K) ∼=Z/ gcd (v(�E), n)Z,

where �E is a minimal discriminant for E/F.

Proof. If E has Tate parameter q ∈OF then, since the Tate parametrisation is defined over
F, we have a commutative square

( ) ×/ Z

( ) ×/ Z,

∼

/ /

∼
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and so

E(F)/NK/F(E(K)) ∼= F×/
(

NK/F(K×) · qZ
)

.

Since the extension K/F is unramified, local class field theory identifies the exact sequence

0
Z

Z∩ ( ×)

×

/ ( ×)

×

( / ( ×) · Z)
0,

with

0 〈 ( )〉 Z/ Z Z/gcd( ( ) )Z 0 .

The result now follows from Lemma 3·1.

PROPOSITION 3·3. If E/F has non-split multiplicative reduction and n ∈ 2Z, then

#
(
E(F)/NK/FE(K)

)=
⎧⎨
⎩

2 if v(�E) ∈ 2Z,

1 else.

Proof. By assumption E has split multiplicative reduction over the unramified quadratic
extension L/F, which is contained in K. Write τ ∈ Gal (K/F) for the Frobenius element,
so that NK/F =∑n−1

k=0 τ k, and L/F is the fixed field of the group generated by τ 2. The Tate
parametrisation of E/K gives a commutative diagram

( ) ×/ Z

( ) ( )/ Z,

/

∼

∼

where since the norm map NK/F factors through the field L over which the Tate parametri-
sation is defined, the rightmost vertical map α is induced by the action of the element∑n−1

k=0 χL(τ k)τ k, where χL is the quadratic character cutting out the extension L/F. Note
that for x ∈ K×/qZ

α(x) =
n/2∏
k=1

τ 2k(x)

τ 2k+1(x)
=

n/2∏
k=1

τ 2k
(

x

τ (x)

)
= NK/L

(
x

τ (x)

)
.

Thus, since by Hilbert’s theorem 90 we have{
x

τ (x)
: x ∈ K×

}
= ker (NK/F : K× → F×),

we obtain that

E(F)/NK/F(E(K)) ∼= I(F)

NK/L( ker (NK/F)) · qZ

∼= NL/F(L×) ∩ qZ

q2Z
,

where since the norm map is surjective on units in unramified extensions, in particular
ker (NL/F) ∩ I(F) ⊆ NK/L( ker (NK/F)), the final isomorphism is just obtained by pushing
through the map NL/F. It is then clear that the size of this norm index is at most 2, and is 2
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precisely when q is a norm from L, which by local class field theory occurs precisely when
v(q) is even. The result then follows from Lemma 3·1.

PROPOSITION 3·4. If E/F has non-split multiplicative reduction, and n is odd then

#
(
E(F)/NK/FE(K)

)= 1.

Proof. Let χL be the character associated to the unramified quadratic extension L/F and
write Gal (K · L/F) = 〈τ : τ 2n = 1

〉
. Letting U denote units, we consider the map f given by

the composition

· 0( ) 0( ),
˜

where for u ∈ UK·L we set f̃ (u) := u/τ n(u) and Q is the Tate parametrisation map. By
Hilbert’s theorem 90 and the fact that the extension K · L/K is unramified, the map f̃ is
surjective and so since Q is also surjective we must have that f is a surjection. Moreover for
each u ∈ UK·L,

f (u) = Q

(
u

τ n(u)

)

= Q(u) − Q
(
τ n(u)

)
= Q(u) − χL(τ n)τ n (Q(u))

= Q(u) + τ n (Q(u))

= NK·L/K(Q(u)).

Identifying NK/F =∑n
k=0 τ 2k, we obtain a commutative square

· 0( )

0( ).

/ /

In particular, the right-hand vertical map is now a surjection since the left is by local class
field theory. This then means that E0(F) = NK/FE0(K) ⊆ NK/FE(F), so in particular we have
a natural surjection

E(F)/E0(F) � E(F)/NK/FE(K).

Since E has non-split multiplicative reduction, so has Tamagawa number 1 or 2, we must
have that E(F)/NK/FE(K), which has odd order as it is a quotient of E(F)/nE(F), is trivial.

Our main application of the above results will be when E/F has reduction type I1.

LEMMA 3·5. If E/F has reduction type I1, then the norm is a surjection

NK/F : E(K) � E(F).

Proof. By Tate’s algorithm (see Lemma 5·1), if E/F has reduction type I1 then v(�E) = 1.
Thus the claim follows from Propositions 3·2, 3·3, and 3·4.

https://doi.org/10.1017/S0305004124000197 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004124000197


The failure of Galois descent for p-Selmer groups of elliptic curves 203

4. The (co)-restriction Selmer groups

We will now review the properties of Selmer structures and their associated Selmer
groups, before going on to extend some definitions and basic results from [MP20,
section 4]. More details on Selmer structures can be found in [Was97, MR04] and the
references therein.

For the duration of this section let F be a number field, K/F be a finite Galois extension
and G be its Galois group. Moreover, let E/F be an elliptic curve and p be a prime number.

Definition 4·1. A Selmer structure L= {Lv}v for a finite Fp[GF]-module M is a collection
of subgroups

Lv ⊆ H1(Fv, M),

one for each v ∈ 
F, such that Lv = H1
nr(Fv, M) for all but finitely many v. The associated

Selmer group SelL (F, M) is defined by the exactness of the sequence

0 → SelL (F, M) → H1(F, M) →
∏

v∈
F

H1(Fv, M)/Lv.

For each v ∈ 
F we write L∗
v for the orthogonal complement of Lv with respect to the local

Tate pairing, so that L∗
v ⊆ H1(Fv, M∗). We then define the dual Selmer structure L∗ for M∗

by taking L∗ = {L∗
v

}
, and refer to {SelL∗} (F, M∗) as the dual Selmer group.

The following theorem describes the difference in dimension between a Selmer group and
its dual.

THEOREM 4·2 (Greenberg–Wiles). Let L= {Lv}v be a Selmer structure for a finite Fp[GF]-
module M. Then we have

dim SelL(F, M) − dim SelL∗(F, M∗) = dim MGF − dim (M∗)GF

+
∑

v∈
F

( dim Lv − dim MGFv ).

Proof. This follows from [Wil95, proposition 5·1(b)]. See also [Was97, theorem 2].

Remark 4·3. Note that E[p] is naturally an Fp[GF]-module and the Weil pairing induces
an Fp[GF]-isomorphism E[p] ∼= E[p]∗. Making this identification, the local Tate pairing at
a place v ∈ 
F becomes an alternating bilinear pairing on H1(Fv, E[p]), and the two global
terms on the right-hand side of Theorem 4·2 cancel.

We firstly define notation for the Selmer structure associated to the usual p-Selmer group.

Definition 4·4. For each finite extension L/F and every place v ∈ 
L, we denote by
Sv(L; E) the image of the coboundary map

δv : E(Lv)/pE(Lv) ↪→ H1(Lv, E[p]),

arising from the short exact sequence of GLv-modules
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0 [ ] 0.

These local groups form a Selmer structure S(L) = S(L; E) = {Sv(L; E)
}

v. Note that the
associated Selmer group is SelS(L) (L, E[p]) = Selp (E/L), the classical p-Selmer group.

Remark 4·5. The local groups Sv(L; E) above are in fact known to be maximal isotropic
subgroups of H1(Lv, E[p]) with respect to the local Tate pairing (see e.g. [PR12, proposition
4·10]). In particular, S(L) is self-dual.

Definition 4·6. For each v ∈ 
F and any w ∈ 
K extending v, let

Fv(K/F; E) := res−1
Kw/Fv

(Sw(K; E)) ≤ H1(Fv, E[p]).

Note that the definition does not depend on the choice of w as our extension is Galois. We
then have a Selmer structure F(K) = F(K/F; E) = {Fv(K/F; E)

}
v for E[p] over F. We

further define the Selmer structure C(K) = C(K/F; E) for E[p] to be the dual of F(K), and
denote the corresponding local groups by Cv(K/F; E).

LEMMA 4·7. We have

SelF(K) (F, E[p]) = res−1
K/F

(
Selp (E/K)

)
.

Proof. This follows from the compatibility of local and global restriction maps.

LEMMA 4·8. For every v ∈ 
F and every place w ∈ 
K extending v, we have

Cv(K/F; E) = corKw/Fv (Sw(K; E)) ≤ H1(Fv, E[p]).

Proof. In the case p = 2 this is already noted by Kramer in the paragraph following equa-
tion 10 in [Kra81], and the proof in this case is explicated in [MP20, proof of lemma 4·3(i)].
The result for general p follows mutatis mutandis. We replicate it here for the reader’s
convenience.

For v ∈ 
F and w ∈ 
K extending v, it follows from [Neu13, I·5·4] and [Neu13, II propo-
sition 1·4(c) and theorem 5·6] that resKw/Fv and corKw/Fv are adjoints with respect to the local
Tate pairings. By [PR12, proposition 4·10], Sv(F; E) and Sw(K; E) are maximal isotropic
subspaces of the corresponding cohomology groups with respect to the Tate pairings. Thus
we have inclusions

corKw/Fv (Sw(K; E)) ⊆ Fv(K/F; E)∗

and

resKw/Fv

(
corKw/Fv (Sw(K; E))∗

)⊆ Sw(K; E)∗ = Sw(K; E).

The result then follows.
We now relate the Selmer structures SelF(K) (F, E[p]) and SelC(K) (F, E[p]) to specific

representation theoretic invariants of the Fp[G]-module Selp (E/F).
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LEMMA 4·9. Let NK/F := ∑g∈G g ∈Z[G] be the norm element. We have that:

(i) dim
(
NK/F · Selp (E/K)

)≤ dim SelC(K) (F, E[p]);

(ii) dim
(
Selp (E/K)G

)= dim SelF(K) (F, E[p]) − dim H1(K/F, E(K)[p]) + dim (im (τ )),

where τ : H1(K, E[p]) → H2(K/F, E(K)[p]) is the transgression map.

Proof. (i) is given by naturality of the corestriction map, which is induced by action of
NK/F. By Lemma 4·7, the inflation-restriction sequence yields an exact sequence

0 H1(K/F,E(K )[p]) SelF (K ) (F,E[p])

Selp (E/K )G H2(K/F,E(K )[p]).

inf

res
τ

Thus (ii) holds.

We now introduce the function that will bound the failure Galois descent in our statistical
results.

Definition 4·10. We define the genus theory invariant of the p-Selmer group of E arising
from the extension K/F to be

gp(K/F; E) :=
∑

v∈
F

dim E(Fv)/
(
NKw/FvE(Kw) + pE(Fv)

)
,

where, in each summand, w ∈ 
K is any place of K lying over v.

LEMMA 4·11. We have

dim SelF(K) (F, E[p]) − dim SelC(K) (F, E[p]) = gp(K/F; E),

and moreover,

0 ≤ dim SelF(K) (F, E[p]) − dim Selp (E/F) ≤ gp(K/F; E).

Proof. For each v ∈ 
F, the groups Cv = Cv(K/F; E) and Fv = Fv(K/F; E) are orthog-
onal complements under the local Tate pairing, so we have dim Fv = dim H1(Fv, E[p]) −
dim Cv. Moreover, since Sv(F; E) is maximal isotropic, we have dim H1(Fv, E[p]) =
2 dim E(Fv)/pE(Fv). Combining this with Lemma 4·8, we obtain

dim Fv = 2 dim E(Fv)/pE(Fv) − dim Cv

= 2 dim E(Fv)/pE(Fv) − dim
(
NKw/FvE(Kw)/

(
pE(Fv) ∩ NKw/FvE(Kw)

))
= dim E(Fv)/pE(Fv) + dim E(Fv)/

(
NKw/FvE(Kw) + pE(Fv)

)
.

It then follows from Theorem 4·2 that

dim SelF(K) (F, E[p]) − dim SelC(K) (F, E[p])

=
∑

v∈
F

dim E(Fv)/
(
NKw/FvE(Kw) + pE(Fv)

)
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+
∑

v∈
F

(dim E(Fv)/pE(Fv) − dim E(Fv)[p])

= gp(K/F; E),

where the last equality is obtained by applying Theorem 4·2 to the self-dual Selmer structure
S(E/F), so the first equation in the lemma statement holds.

The second equation follows from the inclusions

SelC(K) (F, E[p]) ⊆ Selp (E/F) ⊆ SelF(K) (F, E[p]).

5. Galois Descent for p-Selmer groups

We will now use the algebraic results of Sections 3 and 4 to obtain our statistical results.
This will culminate in a proof of Theorem 1·6 which tells us that, for a finite Galois extension
of number fields K/F and a prime number p, as we vary over the E parametrised by E(X),
the average value of ∣∣∣dim Selp (E/K)Gal (K/F) − dim Selp (E/F)

∣∣∣ ,
which we refer to as the failure of Galois descent, is bounded as X → ∞. We use Lemma
4·9(ii) to relate the Selmer group SelF(K) (F, E[p]) to the Galois fixed space, which allows
us to use Lemma 4·11 to bound this failure of Galois descent by the genus theory invariant
gp(K/F; E). The remainder of the proof is then showing that the function gp(K/F; E) has
bounded average as E varies in E .

5·1. Preliminary counting lemmas

We begin by recalling the description, afforded by Tate’s algorithm, of the reduction type
of the curves EA,B in terms of the pair (A, B) ∈ E at almost all places.

LEMMA 5·1. For a prime number � ≥ 5 and (A, B) ∈ E , the reduction type of EA,B/Q� is:

(i) In for n > 0 if and only if v�(4A3 + 27B2) = n and v�(AB) = 0;

(ii) additive if and only if v�( gcd (A, B)) > 0,

where v� is the normalised valuation on Q�.

Proof. This is a consequence of Tate’s algorithm [Sil09, IV·9·4].

PROPOSITION 5·2. There exists a constant C > 0 such that for all real numbers X ∈R>0,

∑
(A,B)∈E(X)

#
{
� ≥ log (X) : � is prime;

EA,B/Q� has bad reduction of type different from I1.

}
≤ C

(
X5/6

log (X)

)
.

Proof. We split the summand into counts of additive and multiplicative primes.

By Lemma 5·1, primes of additive reduction for EA,B divide gcd (A, B), so are bounded
by the absolute values of A and B. Therefore, we have
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(A,B)∈E(X)

#
{
� ≥ log (X) : � is prime;

EA,B/Q� has additive reduction.

}

≤
∑

log (X)≤�≤X1/3

prime

∑
|A|≤(X/4)1/3

�|A

∑
|B|≤(X/27)1/2

�|B

1

�
∑

log (X)≤�≤X1/3

prime

(
4X5/6

�2
+ O

(
X1/2

�

))

�
(

X5/6
∫ X1/3

log (X)

1

y2
dy

)
+ X1/2 log log (X)

� X5/6

log (X)
,

where the penultimate inequality uses an integral estimate for the main term, that the sum
of reciprocals of prime numbers has order log log (X) and the prime number theorem for the
error term.

For the multiplicative primes: Lemma 5·1 shows that if � is multiplicative of type different
from I1 for EA,B then �2 | (4A3 + 27B2) but � � AB. Hence we have

∑
(A,B)∈E(X)

#
{
� ≥ log (X) : � is prime;

EA,B/Q� has multiplicative reduction of type different from I1.

}

≤
∑

log (X)≤�≤√
31X

prime

∑
|A|≤(X/4)1/3

��A

∑
|B|≤(X/27)1/2

�2|4A3+27B2

1

�
∑

log (X)≤�≤√
31X

prime

(
X5/6

�2
+ O

(
X1/3
))

� X5/6

log (X)
.

The result follows.

5·2. Bounding the genus theory invariant

We begin by noting some elementary bounds on the norm indices which occur as
summands in the genus theory invariant (as in Definition 4·10).

LEMMA 5·3. Let F be a number field, K/F be a finite extension, p be a prime number and
E/F be an elliptic curve.
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dim E(Fv)/pE(Fv) ≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2 + [Fv : Qp] if v | p,

2 if v is a finite place and v � p,

1 if v is a real place and p = 2,

0 otherwise.

(4)

In particular, for every v ∈ 
F and each w ∈ 
K extending v, the same bound holds for
dim E(Fv)/

(
NKw/FvE(Kw) + pE(Fv)

)
.

Proof. For each finite place p ∈ 
F and each E/Q, there is a finite index subgroup, arising
from the filtration by formal groups, of E(Fp) which is isomorphic to the additive group
of integers Op of Fp (see e.g. [Sil09, VII proposition 6·3]). Thus these norm indices are
bounded by

#E(Fp)/pE(Fp) = (#E(Fp)[p])(#Op/pOp) ≤
⎧⎨
⎩

p2+[Fp : Qp] p | p,

p2 else.
(5)

Moreover, for archimedean places v ∈ 
F, if p is odd or v is complex then we have
dim E(Fv)/pE(Fv) ≤ dim H1(Fv, E[p]) = 0. If, on the other hand, p = 2 and v is real then
elementary computations show that the dimension of the quotient at v is at most 1.

We are now mathematically ready to bound the average of the genus theory invariant, but
first we require a small amount of notation.

Notation 5·4. For a number field F, we define the function ωF on the set of ideals of the
integers of F to send the ideal I to

ωF(I) := # {p ∈ 
F : p | I} .

We also define r1(F) to be the number of real embeddings of F. Moreover, δ2 is the function
which takes each prime number p to 1 if p = 2 and 0 otherwise.

We now bound the average of the genus theory invariant.

PROPOSITION 5·5. For every number field F, finite Galois extension K/F, prime number p
and real number X ∈R>0 we have

∑
(A,B)∈E(X)

gp(K/F; EA,B)

#E(X)
≤ Cp(K/F) + O

(
[F : Q]

log (X)

)
,

where

Cp(K/F) = 2ωF(6p�K) + [F : Q] + δ2(p)r1(F) + 2
∑

�prime
��6p�K

ωF(�)
2�8 − �7 − 1

�10 − 1
.
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Proof. For each elliptic curve E/Q, number field F, and finite Galois extension K/F,
define

g(0)
p (K/F; E) =

∑
v∈
F

v|6p∞�K

dim E(Fv)/
(
NKw/FvE(Kw) + pE(Fv)

)
,

g(1)
p (K/F; E) =

∑
p∈
F

p�6p∞�K
p|N(E/F)

dim E(Fp)/
(
NKP/FpE(KP) + pE(Fp)

)
,

where in each summand, w (resp. P) is a place of K above v (resp. p), and N(E/F) is
the conductor of E/F. By [Maz72, corollary 4·4], the norm map is surjective at primes of
good reduction which are unramified in K/F, so the norm indices at such primes are trivial.
Thus

gp(K/F; E) = g(0)
p (K/F; E) + g(1)

p (K/F; E),

so we bound the average of g(i)
p (K/F; E) for i ∈ {0, 1}.

If i = 0 then by Lemma 5·3,

∑
(A,B)∈E(X)

g(0)
p (K/F; EA,B) ≤ (2# {p ∈ 
F : p | 6p�K} + [F : Q] + δ2(p)r1(F)) #E(X).

We now deal with the case that i = 1. By Lemma 3·5, the norm index at primes of reduc-
tion type I1 is trivial. Thus, for each elliptic curve E/Q, the sum g(1)

p (K/F; E) is the sum of
norm indices at unramified primes of bad reduction of type different from I1 over F. By the
methods of [CJ20, theorem 1·4], which work identically for our height as for theirs, for each
prime number � ∈ [5, X1/6] one has

#
{

(A, B) ∈ E(X) : EA,B/Q� has bad reduction
of type different from I1

}
= #E(X)

2�8 − �7 − 1

�10 − 1
+ O

(
�X1/2

)
. (6)

Since we are looking at unramified local extensions Fp/Q�, curves with bad reduction of
type different from I1 over Fp must satisfy the same condition over Q�. We then have

∑
(A,B)∈E(X)

g(1)
p (K/F; EA,B)

≤ 2
∑

5≤�≤31X
prime
��p�K

∑
p∈
F
p|�

#
{

(A, B) ∈ E(X) : EA,B has bad reduction
of type different from I1at�

}

≤ 2
∑

5≤�≤log (X)
prime
��p�K

∑
p∈
F
p|�

(
#E(X)

2�8 − �7 − 1

�10 − 1
+ O

(
�X1/2

))
+ O

(
X5/6[F : Q]

log (X)

)
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≤ 2#E(X)
∑

� prime
��6p�K

# {p ∈ 
F : p | �} 2�8 − �7 − 1

�10 − 1
+ O

(
X5/6[F : Q]

log (X)

)
,

where in the first inequality we bound the norm index by Lemma 5·3, and in the second
we discount large primes using Proposition 5·2 and then apply (6). The bound then follows
from the well known fact that #E(X) ∼ cX5/6 for some c > 0.

5·3. Proof of Theorem 1·6
We first use the Selmer structures of Section 4 to approximate the dimension of the cor-

responding fixed space. To begin, almost no elliptic curves defined over Q have nontrivial
n-torsion over a fixed number field K. The proof of this is obtained verbatim from the argu-
ment of Duke [Duk97, lemma 5] in the case K =Q, applying the relevant sieve conditions
only at totally split primes as performed by Zywina [Zyw10, proposition 5·7].

LEMMA 5·6. Let n be a positive integer and let K/Q be a finite extension. Then

#
{
(A, B) ∈ E(X) : EA,B(K)[n]is nontrivial

}
#E(X)

�n,K
log (X)

X1/6
.

Using this result, we can prove the following.

LEMMA 5·7. Let p be a prime number, F be a number field and K/F be a finite Galois
extension. We have that∑

(A,B)∈E(X)

∣∣dim Selp (EA,B/K)G − dim SelF(K) (F, E[p])
∣∣

#E(X)
�K,p

log (X)

X1/6
,

where G = Gal (K/F) is the Galois group.

Proof. Let Dp(G) be a positive integer such that, for every Fp[G]-module M of dimension
at most 2 and every i ∈ {1, 2}, we have

dim Hi(G, M) ≤ Dp(G).

Since there are only finitely many such M, Dp(G) certainly exists. By Lemma 4·9, for every
elliptic curve E/Q we have

∣∣∣dim Selp (EA,B/K)G − dim SelF(K) (F, E[p])
∣∣∣≤
⎧⎨
⎩

0 if E(K)[p] is trivial,

Dp(G) else.

The result then follows from Lemma 5·6.

We now combine this with Proposition 5·5 to prove Theorem 1·6, namely that the average
failure of Galois descent is bounded.
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THEOREM 5·8. Let p be a prime number, F be a number field and K/F be a finite Galois
extension. Writing G = Gal (K/F), we have that

lim sup
X→∞

∑
(A,B)∈E(X)

∣∣dim Selp (EA,B/K)G − dim Selp (EA,B/F)
∣∣

#E(X)
≤ Cp(K/F),

where Cp(K/F) is as in Section 1·5.

Proof. By Lemma 5·7, we immediately have

lim sup
X→∞

∑
(A,B)∈E(X)

∣∣dim Selp (EA,B/K)G − dim Selp (EA,B/F)
∣∣

#E(X)

≤ lim sup
X→∞

∑
(A,B)∈E(X)

∣∣dim SelF(K) (F, EA,B[p]) − dim Selp (EA,B/F)
∣∣

#E(X)
.

Since by Lemma 4·11 this average is bounded by that of the genus theory invariant, the
result follows from Proposition 5·5.

From this we derive an immediate consequence.

COROLLARY 5·9. Let p ∈ {2, 3, 5} and let K/Q be a finite Galois extension. Then, writing
G = Gal (K/Q), we have

lim sup
X→∞

∑
(A,B)∈E(X)

dim Selp (EA,B/K)G

#E(X)
≤ Cp(K/Q) + p + 1

p
,

where Cp(K/Q) is as in Section 1·5. Assuming Hypothesis 1 the same is true if p is any prime
number.

Proof. This follows from Theorem 5·8 and Proposition 2·11.

Example 5·10. Consider the splitting field K/Q of x3 − 2, which is a degree 6 extension
with Galois group G ∼= S3.

If p = 2, it follows from Corollary 5·9 that the average dimension of Sel2 (E/K)G is at
most C2(K/Q) + 3

2 . The primes dividing 6p�K are 2 and 3, so that

C2(K/Q) = 6 + 2
∑
��=2,3
prime

2�8 − �7 − 1

�10 − 1
≈ 6.339.

Thus, the average of dim Sel2 (E/K)G is less than 7.839.
Similarly, if p = 3, the average of dim Sel3 (E/K)G is less than 6.672.
For every prime number p different from 2 and 3, and every elliptic curve E/Q, we have

that Selp (E/K)G ∼= Selp (E/Q) by Proposition 2·7 (one can also note this by the vanishing of
the finite group cohomology in the inflation restriction sequence). In particular, for p = 5 the
average of the dimension of this fixed space is at most 6/5 by [BS13], and for the remaining
p is predicted by the Poonen–Rains heuristics.
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6. Boundedness of Selmer ranks

In this section we use the modular representation theory of p–groups to leverage the result
of Theorem 5·8 to obtain a bound for the average dimension of the entire p–Selmer group,
not just that of the fixed space. Combining this with estimates for p–Selmer groups over
multiquadratic extensions from Proposition 2·14 we then prove explicit upper bounds for
average p–Selmer ranks over Galois p–extensions of Q and of multiquadratic number fields.

6·1. p-Selmer ranks for p-extensions

The modular representation theory of groups of prime order is well known, we recall it
below.

LEMMA 6·1. Let p be a prime number, and G be a cyclic group of order p. The isomorphism
classes of finitely generated indecomposable Fp[G]-modules are represented precisely by
{Mk}p

k=1, where M1 is the 1-dimensional vector space Fp with trivial G-action and Mk is a
non-split extension of Mk−1 by M1. Moreover, every Fp[G]-module is isomorphic to a unique
direct sum of these indecomposable modules.

Proof. By the orbit-stabiliser theorem we have that there is precisely one simple Fp[G]-
module, the trivial module M1. The result then follows from the Krull–Schmidt theorem and
the existence of Jordan normal form (see, for example, [Alp86, page 24]).

This will be sufficient to extend the boundedness result to the full p-Selmer group.

THEOREM 6·2. Let p be a prime number, F be a number field and K/F be a Galois
p–extension. Then

lim sup
X→∞

∑
(A,B)∈E(X)

dim Selp (EA,B/K)

#E(X)

≤ [K : F]

⎛
⎜⎝Cp(K/F) + lim sup

X→∞

∑
(A,B)∈E(X)

dim Selp (EA,B/F)

#E(X)

⎞
⎟⎠ ,

where Cp(K/F) is as in Section 1·5.

Proof. Write [K : F] = pk for some integer k > 0. As G is soluble, we let F = L0 ⊆
L1 ⊆ · · · ⊆ Lk = K be intermediate subfields such that for each i ∈ {1, . . . , k} we have
Gal (Li/Li−1) ∼=Z/pZ. We have for each such i that by Lemma 6·1 there are precisely p
indecomposable Fp[ Gal (Li/Li−1)]-modules, each of which is given by mapping a genera-
tor to a Jordan block of length between 1 and p. Hence, for every elliptic curve E/Q, we
have an inequality

dim Selp (E/K) ≤ p dim Selp (E/K)Gal (K/Lk−1).

Moreover, since Selp (E/K)Gal (K/Lk−1) is an Fp[Gal (Lk−1/Lk−2)]-module we again obtain

dim Selp (E/K)Gal (K/Lk−1) ≤ p dim
(

Selp (E/K)Gal (K/Lk−1)
)Gal (Lk−1/Lk−2)
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= p dim Selp (E/K)Gal (K/Lk−2).

Continuing, we obtain

dim Selp (E/K) ≤ pk dim Selp (E/K)Gal (K/F),

so the result follows from Theorem 5·8.

We can then combine the bound in Theorem 6·2 with the bound already established in
Proposition 2·14 to obtain the full statement of Theorem 1·7 and so Theorem 1·1 via the
inclusion E(K)/pE(K) ⊆ Selp (E/K).

COROLLARY 6·3. Let p ∈ {2, 3, 5}, F be either Q or a multiquadratic number field, and
K/F be a Galois p–extension. Then

lim sup
X→∞

∑
(A,B)∈E(X)

dim Selp (EA,B/K)

#E(X)

≤
⎧⎨
⎩

[K : F]C2(K/F) + [K : Q]
(

C2(F/Q) + 3
2

)
if p = 2 and F �=Q,

[K : F]
(

Cp(K/F) + p+1
p [F : Q]

)
else,

where Cp(K/F) is the explicit constant in Section 1·5. Moreover, assuming Hypothesis 1 the
same is true if p is any prime number.

Proof. If p is odd, then this is immediate from Theorem 6·2 and Proposition 2·14. If both
p = 2 and F =Q then it is immediate from Theorem 6·2 and Proposition 2·11. If p = 2 and F
is a multiquadratic extension, then we apply Theorem 6·2 twice: first to the extension K/F,
then to F/Q, since both are Galois 2–extensions. The result in this case then follows from
Proposition 2·11.

7. Mordell–Weil lattices over Galois extensions
7·1. Mordell–Weil lattices

Our main object of study here will be the Mordell–Weil lattice, which is the “free part” of
the Mordell–Weil group.

Definition 7·1. For a number field K and an elliptic curve E/K, the Mordell–Weil lattice
is the quotient

�(E/K) := E(K)/E(K)tors.

When K/F is a Galois extension of number fields and E is defined over F, this is evidently
a finitely generated Z[Gal (K/F)]-module which is free as a Z-module. We refer to such
modules as Z[Gal (K/F)]-lattices. We begin by giving a precise notion of “multiplicity” for
indecomposable lattices in Mordell–Weil lattices.

Definition 7·2. Let p be a prime number, K/F be a finite Galois extension of number fields
and E/F be an elliptic curve. For each finitely generated Z[Gal (K/F)] -lattice �, define the
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multiplicity of � in E(K) to be

e�(K/F; E) := max

{
e ∈Z≥0 :

�⊕e is a direct summand of �(E/K)

as Z[Gal (K/F)]−lattices

}
.

Example 7·3. Let K/Q be the splitting field of the polynomial x3 − 3x − 1. Note that
K/Q is Galois and has degree 3, and write G = Gal (K/Q). There are two irreducible Q[G]-
modules: the line Q, with trivial G-action, and the third cyclotomic field Q(ζ3), where a
generator of G acts by multiplication by ζ3. Moreover, Maschke’s theorem tells us that
finite dimensional Q[G]-modules are semisimple, so are isomorphic to direct sums of these
irreducible modules.

Let E/Q be the elliptic curve described by the Weierstrass equation

E : y2 + xy = x3 − x2 − 42x − 19.

The computer algebra program MAGMA [BCP97] can compute that E(K) is torsion–free of
rank 2 and E(Q) is trivial. Since there are no points fixed by the Galois action, eZ = 0 where
Z is the set of integers acted on trivially by G. Moreover, E(K) ⊗Q∼=Q(ζ3), so the Mordell–
Weil group is isomorphic to a Z[ζ3]-stable lattice inside of Q(ζ3). Such lattices are precisely
the fractional ideals, and since scaling such a lattice gives an isomorphic module and the
class group of Q(ζ3) is trivial, �(E/K) = E(K) is isomorphic to Z[ζ3] as Z[G]-lattices. In
particular, eZ[ζ3](E/K) = 1.

We shall give upper bounds for the averages of some of these exponents by considering
the lattice modulo p, and then estimating the various exponents in terms of the fixed space
in the p-Selmer group.

LEMMA 7·4. Let p be a prime number, K/F be a finite Galois extension of number fields,
and E/F be an elliptic curve. Writing G = Gal (K/F), we have that

dim (�(E/K)/p�(E/K))G ≤ dim Selp (E/K)G − dim E(F)[p] + dim H1(G, E(K)[p]).

Proof. Since E(K)[p∞]/pE(K)[p∞] ∼= E(K)[p] as Z[G]–modules, there is a short exact
sequence of Fp[G]-modules

0 ( ) [ ] ( )/ ( ) Λ( / )/ Λ( / ) 0,

so that, taking cohomology over G, we obtain

dim (�(E/K)/p�(E/K))G ≤ dim (E(K)/pE(K))G − dim E(F)[p] + dim H1(G, E(K)[p]).

Moreover, the short exact sequence induced by multiplication by p gives an inclusion of
Fp[G]-modules

δ : E(K)/pE(K) ↪→ Selp (E/K),

completing the result.
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PROPOSITION 7·5. Let p be a prime number, K/F be a finite Galois extension of number
fields, and E/F be an elliptic curve. Writing G = Gal (K/F), then for every Z[G]-lattice �

such that dim (�/p�)G ≥ 1, we have that

e�(K/F; E) ≤ 1

dim (�/p�)G

(
dim Selp (E/K)G − dim E(F)[p] + dim H1(G, E(K)[p])

)
.

Proof. If �⊕e is a direct summand of �(E/K), then(
(�/p�)G

)⊕e ⊆ (�(E/K)/p�(E/K))G ,

so that, since dim �/p�G ≥ 1, we have

e�(K/F; E) ≤ dim (�(E/K)/p�(E/K))G

dim (�/p�)G
. (7)

Thus the result follows from Lemma 7·4.

7·2. Average Multiplicities

We now use Theorem 5·8 to obtain the average multiplicity of certain lattices in Mordell–
Weil lattices of elliptic curves.

THEOREM 7·6. Let K/F be a finite Galois extension of number fields, write G = Gal (K/F)
and let p be a prime number. For every Z[G]-lattice � such that dim (�/p�)G ≥ 1,

lim sup
X→∞

∑
(A,B)∈E(X)

e�(K/F; EA,B)

#E(X)

≤ 1

dim (�/p�)G

⎛
⎜⎝Cp(K/F) + lim sup

X→∞

∑
(A,B)∈E(X)

dim Selp (EA,B/F)

#E(X)

⎞
⎟⎠ ,

where Cp(K/F) is as in Section 1·5.

Proof. Let Dp(G) be an integer such that for every elliptic curve E/Q we have that

dim H1(G, E(K)[p]) − dim E(F)[p] ≤ Dp(G).

Note that this exists, since there are only finitely many Fp[G]-modules of dimension at most
2. Now, by Lemma 5·6∑

(A,B)∈E(X)

(
dim H1(G, E(K)[p]) − dim E(F)[p]

)
#E(X)

�K,p Dp(G)
log (X)

X1/6
,

and the result follows from Proposition 7·5 and Theorem 5·8.

Remark 7·7. The requirement that (�/p�)G is non-trivial for some prime number p is
rather easy to check. If �G �= 0 then already this is non-trivial for every prime number,
and if �G = 0 then via the short exact sequence induced by multiplication by p, (�/p�)G
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is isomorphic to the p-torsion of the finite cohomology group H1(G, �). Computing this
cohomology group in any given instance is a purely mechanical task.

We then immediately obtain Theorem 1·9.

COROLLARY 7·8. Let p ∈ {2, 3, 5}, F be either Q or a multiquadratic number field, and
K/F be a finite Galois extension. Write G = Gal (K/F), then for every Z[G]-lattice � such
that dim (�/p�)G ≥ 1,

lim sup
X→∞

∑
(A,B)∈E(X)

e�(K/F; EA,B)

#E(X)

≤ 1

dim (�/p�)G
·
⎧⎨
⎩

C2(K/F) + [F : Q]
(

C2(F/Q) + 3
2

)
if p = 2 and F �=Q,

Cp(K/F) + p+1
p [F : Q] else,

where Cp(K/F) is the explicit constant in Section 1·5. Moreover, under Hypothesis 1 the
same is true if p is any prime number.

Proof. Applying Theorem 7·6 and Lemma 5·6, it is sufficient to replace the numerator in
the left hand side with dim Selp (EA,B/F) and bound the average appropriately in each case.

If p ∈ {3, 5}, then this follows from Proposition 2·14; if p = 2 and F =Q then it follows
from Proposition 2·11; and finally, if p = 2 and F is a multiquadratic number field then it
follows from Corollary 6·3.

7·3. An example: semidirect products

We conclude by providing a family of examples of lattices which satisfy the hypotheses
of Theorem 7·6 and generalise Example 1·11 from the introduction. Let K/Q be a finite
Galois extension such that G = Gal (K/Q) is an inner semidirect product N � H. Consider
the augmentation ideal � ⊆Z[N], which is defined by the short exact sequence of Z[N]–
modules:

0 Λ Z[ ] Z 0, (8)

where the augmentation map ε is given explicitly by
∑

n∈N an · n �→∑
n∈N an.

Identifying each n ∈ N with the coset nH ∈ G/H provides an isomorphism of Z[N]–
modules Z[N] ∼=Z[G/H]. This identification allows us to induce a G–action on � ⊆
Z[G/H], and to upgrade (8) to a short exact sequence of Z[G]–modules. Taking cohomology
over N we obtain an exact sequence of Z[G/N]–modules

0 Λ Z[ / ] Z
1( Λ) 0. (9)

In particular, as Z[G/H]N =Z · (
∑

n∈N nH) so that ε is injective on the fixed points, we have
that �N = 0. By Remark 7·7, since �G ⊆ �N = 0, we have that for every prime number p

(�/p�)G ∼= H1(G, �)[p].
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It follows from the inflation restriction short exact sequence that H1(G, �) ∼=
H1(N, �)G/N . Again considering (9), we have that H1(N, �) ∼=Z/#NZ with trivial G/N–
action. In particular, for all primes p | #N we have that

(�/p�)G ∼=Z/pZ.

Thus, if #N is divisible by 2,3 or 5 then by Corollary 7·8 we have that the average of
e�(K/Q; E) is bounded as E/Q runs through elliptic curves ordered by height. Moreover,
assuming Hypothesis 1 the same is true for any nontrivial N.
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