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Abstract

A classical result due to Paley and Wiener characterizes the existence of a nonzero function in L2(R),
supported on a half-line, in terms of the decay of its Fourier transform. In this paper, we prove an
analogue of this result for Damek–Ricci spaces.
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1. Introduction

For f ∈ L1(Rd) we define the Fourier transform f̂ by the standard formula

f̂ (ξ) =

∫
Rd

f (x)e−ix·ξdx, ξ ∈ Rd,

where dx denotes the d-dimensional Lebesgue measure and x · ξ denotes the Euclidean
inner product of the vectors x and ξ. It is a well-known fact in harmonic analysis that
if the Fourier transform of an integrable function defined on the real line decays very
rapidly at infinity then the function cannot vanish on a ‘large set’ unless it vanishes
identically. A manifestation of this fact is the following: if f is a compactly supported
integrable function defined on R and its Fourier transform satisfies the estimate

| f̂ (ξ)| ≤ Ce−|ξ|, for all ξ ∈ R,

then f extends as a holomorphic function to a strip in the complex plane containing
the real line and hence f is identically zero. This initial observation motivates one to
endeavour to find a more optimal decay of the Fourier transform for such a conclusion.
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For instance we may ask: Does there exist a nonzero integrable, compactly supported
function f on R with its Fourier transform satisfying the estimate

| f̂ (ξ)| ≤ Ce−(|ξ|/ log |ξ|), for large |ξ|?

The answer to the above question is in the negative and follows from a classical result
due to Paley and Wiener ([16, page 16, Theorem XII]; [17, Theorem II]). There is a
whole body of literature [12–14, 16] devoted to the study of the trade-off between the
nature of the set on which a function vanishes and the allowable decay of its Fourier
transform. The result due to Paley and Wiener gives the following characterization of
the existence of a nonzero function supported on a half-line whose Fourier transform
satisfies such an estimate.

Theorem 1.1. Let θ be a nonnegative locally integrable even function on R. There
exists a nonzero f ∈ L2(R) with supp f ⊂ (−∞, x0] for some x0 ∈ R such that

| f̂ (ξ)| ≤ Ce−θ(ξ), for almost every ξ ∈ R,

if and only if ∫
R

θ(ξ)
1 + ξ2 dξ <∞.

Though the result of Paley and Wiener is not available in the exact form given above
it can be easily deduced from the following version proved by Paley and Wiener [4,
Theorem 1.1].

Theorem 1.2 [17, Theorem II]. Let φ be a nonnegative, nonzero function in L2(R).
There exists f ∈ L2(R) vanishing for x ≥ x0 for some x0 ∈ R such that | f̂ | = φ if and
only if ∫

R

|log φ(ξ)|
1 + ξ2 dξ <∞.

Paley and Wiener proved Theorem 1.2 using complex analytic techniques via
a holomorphic extension of the Fourier transform in the upper half-plane. This
complex analytic technique motivated us to prove an analogue of Theorem 1.1 for
compactly supported smooth functions on the Euclidean motion group and connected,
noncompact, semisimple Lie groups with finite center [4, 5].

Since for a noncompact, semisimple Lie group G there is no natural way of defining
functions supported on a half-space, in [4, 5] we have worked under the assumption
that f ∈ C∞c (G). However, the situation changes if we talk about functions defined on
X = G/K, where K is a maximal compact subgroup of G. To explain this point let us
consider the Iwasawa decomposition G = NAK where A = exp a with dim a = 1. Then
functions on G/K can be viewed as functions on NA. For fixed τ ∈ R, the horosphere

Hτ = {naτ | n ∈ N},

is an analogue of a hyperplane in Rd. We then consider functions f supported on the
set

Eτ = {nat | n ∈ N, t ≥ τ}.
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This can be thought of as a natural generalization of functions on Rd which are
supported on {x ∈ Rd | x · η ≥ t0}, for fixed η ∈ S d−1, t0 ∈ R. We observe that for d = 1
and η = 1 the support of the function becomes [t0,∞). Clearly the boundary of Eτ is
the horocycle Hτ. For example, for the non-Euclidean disk D = {z ∈ C : |z| < 1} with
the Riemannian metric ds2 = (1 − x2 − y2)−2(dx2 + dy2) the circles in D tangential to
the boundary B = {z ∈ C : |z| = 1} are the horocycles. In this case, Eτ is the closure of
the set inside the circle tangential to the boundary at the point one and passing through
the point tanh τ. We note that the sets of type Hτ do not exhaust all horocycles in G/K.
In disk picture they are all those horocycles tangential to the boundary only at the point
one. If a function f is supported on Eτ then for its usual Fourier transform f̃ (λ, b) (as
defined in [10]) one cannot hope to gain analytic extension in the variable λ if b is not
the normal to the horocycle. On the other hand, the proof of Theorem 2.1 suggests
that to have an analogue of Theorem 1.1 it is desirable that the Fourier transform is
written using ‘Cartesian coordinates’ instead of f̃ (λ, b) which corresponds to ‘polar
coordinates’. This is the point of view we are going to adopt in proving an analogue
of Theorem 1.1. This technique was already employed in [2, 3, 9] to prove results of
similar nature.

The purpose of this paper is to prove an analogue of Theorem 1.1 in the context
of Damek–Ricci spaces. Damek–Ricci spaces are solvable Lie groups endowed with
a Riemannian structure that makes them harmonic manifolds. These solvable groups
were introduced in [7] and are semidirect products of the multiplicative group (0,∞)
with two-step nilpotent Lie groups N of Heisenberg type. Here the action of (0,∞)
on N is by anisotropic dilations. Damek and Ricci [8] proved that NA endowed
with a suitable left-invariant Riemannian metric is a harmonic manifold. It is well
known that Damek–Ricci spaces include all Riemannian symmetric spaces G/K of
noncompact type with rank one via the Iwasawa decomposition G = NAK (see [6]).
However, despite being the most distinguishable prototypes, the rank-one Riemannian
symmetric spaces, which sit inside the class of Damek–Ricci spaces as Iwasawa NA
groups, form a rather small subclass (see [1]).

The following is the main result of this paper which can be viewed as an analogue
of the theorem of Paley and Wiener (Theorem 1.1). We refer the reader to Section 3
for the symbols used in the theorem below.

Theorem 1.3. Let ψ : [0,∞)→ [0,∞) be a locally integrable function and we set

I =

∫ ∞

0

ψ(r)
1 + r2 dr.

(a) Suppose f ∈ S(NA) with supp f ⊆ Eτ, for some real number τ and satisfies the
estimate ∫

R

| f̃ (λ, n)|qeqψ(|λ|)

(1 + |λ|)l |c(λ)|−2 dλ <∞, for each n ∈ N, (1.1)

for some q ∈ [1,∞) and some l ≥ 0, or

| f̃ (λ, n)| ≤ Cn (1 + |λ|)le−ψ(|λ|), λ ∈ R, n ∈ N. (1.2)
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If I is infinite then f vanishes identically on NA.
(b) If I is finite and ψ is nondecreasing then there exists a nontrivial f ∈ C∞c (NA)#

satisfying the estimate

| f̃ (λ, n)| ≤ Cn e−ψ(|λ|), λ ∈ R, n ∈ N

or, for some q ∈ [1,∞) and for all n ∈ N∫
R

| f̃ (λ, n)|q eqψ(|λ|)|c(λ)|−2 dλ <∞.

This paper is organized as follows: In Section 2 we prove an analogue of
Theorem 1.1 on Rd, d > 1 and prove necessary complex analytic results. In Section 3
we recall the required preliminaries regarding harmonic NA groups and we prove the
main result of this paper (Theorem 1.3).

We will use the following notation and conventions in the paper: =z denotes the
imaginary part of z, Cc(X) denotes the set of compactly supported continuous functions
on X, C∞c (X) denotes the set of compactly supported smooth functions on X, supp( f )
denotes the support of the function f and C denotes a constant whose value may vary.
For x, y ∈ Rd, we will use ‖x‖ to denote the norm of the vector x and x · y to denote
the Euclidean inner product of the vectors x and y. We will use H = {z ∈ C | =z > 0} to
denote the upper half-plane and H for its closure.

2. Paley–Wiener theorem for Rd

In this section, we will first prove an analogue of Theorem 1.1 for Rd. Next, we
will prove a complex analytic lemma which is crucial for the proof of an analogue of
Theorem 1.1 for Damek–Ricci spaces. We start by briefly recalling some necessary
facts regarding the Radon transform on Rd. We refer the reader to [11] for details.

For ω ∈ S d−1, the unit sphere in Rd and t ∈ R, let

Hω,t = {x ∈ Rd | x · ω = t}.

Then Hw,t is a hyperplane in Rd with normal ω and distance |t| from the origin. It is
clear from the above definition that Hω,t = H−ω,−t. For f ∈ Cc(Rn), the Radon transform
R f of the function f is defined by

R f (ω, t) =

∫
Hω,t

f (x) dm(x),

where dm(x) is the d − 1 dimensional Lebesgue measure of Hω,t. The one-dimensional
Fourier transform of R f and the Fourier transform of f are closely connected by the
slice projection theorem:

f̂ (λω) = F (R f (ω, ·))(λ), (2.1)

where F (R f (ω, ·)) denotes the one-dimensional Fourier transform of the function
t 7→ R f (ω, t). Let C∞c (Rd)0 denote the set of the compactly supported, smooth, radial

https://doi.org/10.1017/S1446788719000077 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788719000077


[5] A result of Paley and Wiener on Damek–Ricci spaces 5

functions on Rd and C∞c (R)e denote the set of compactly supported, smooth, even
functions on R. By Theorem 2.10 of [11] it is known that

R : C∞c (Rd)0 −→ C∞c (R)e (2.2)

is a bijection.
A weaker analogue of Theorem 1.1 has been proved in [4, Theorem 2.3] assuming

that the function is compactly supported. We now state and prove an exact analogue
of Theorem 1.1 for Rd.

Theorem 2.1. Let ψ : [0,∞)→ [0,∞) be a locally integrable function and

I =

∫ ∞

1

ψ(t)
t2 dt.

(a) Let f ∈ Lp(Rd), p ∈ [1, 2], be such that

supp f ⊆ {x ∈ Rd | x · η ≤ s},

for some η ∈ S d−1 and s ∈ R and f̂ satisfies the estimate∫
Rd

| f̂ (ξ)|q eqψ(|ξ·η|)

(1 + ‖ξ‖)N dξ <∞ (2.3)

for some q ∈ [1,∞) and some N ≥ 0, or

| f̂ (ξ)| ≤ C (1 + ‖ξ‖)N e−ψ(|ξ·η|), (2.4)

for almost every ξ ∈ Rd. If the integral I is infinite then f is the zero function.
(b) If ψ is nondecreasing and I is finite then there exists a nontrivial f ∈ Cc(Rd)

satisfying the estimate (2.3), for some q ∈ [1,∞) and all η ∈ S d−1 or (2.4), for
q =∞ and all η ∈ S d−1.

Proof. We shall first prove (a) for the case p = 2. We now show that it suffices to prove
the case q = 1,N = 0. Suppose f ∈ L2(Rd) with

supp f ⊆ {x ∈ Rd | x · η ≤ s},

for some η ∈ S d−1 and s ∈ R and f̂ satisfies the estimate (2.3) for some q > 1 and
N ∈ N. If we choose φ ∈ C∞c (Rd) supported in B(0, l) then it is easy to show that

supp ( f ∗ φ) ⊆ {x ∈ Rd | x · η < s + l}.

Using Hölder’s inequality,∫
Rd
|̂( f ∗ φ)(ξ)| eψ(|ξ·η|) dξ

≤

( ∫
Rd

| f̂ (ξ)|qeqψ(|ξ·η|)

(1 + ‖ξ‖)N

)1/q
‖(1 + ‖ξ‖)N φ̂(ξ)‖Lq′ (Rd)

<∞,
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as N/q is smaller than N. Here q′ satisfies the relation

1
q

+
1
q′

= 1.

Hence, by the case q = 1, N = 0 it follows that f ∗ φ vanishes identically. As φ ∈
C∞c (Rd) we have that φ̂ is nonzero almost everywhere. This implies that f̂ vanishes
almost everywhere and so does f . The same technique can be applied to reduce the
case q = 1 and N ∈ N to the case q = 1 and N = 0 by using Hölder’s inequality. For the
case q =∞, we get from (2.4) that∫

Rd
| f̂ ∗ φ(ξ)| eψ(|ξ·η|) dξ ≤

∫
Rd

(1 + ‖ξ‖)N |̂φ(ξ)| dξ <∞.

Hence we suppose that q = 1 and N = 0. Now, rotating the function f , we can
assume without loss of generality that η = e1 = (1, 0, . . . , 0). Then, by writing ξ =

(ξ1, ξ2, . . . , ξd) the hypothesis (2.3) becomes∫
Rd
| f̂ (ξ)| eψ(|ξ1 |) dξ <∞. (2.5)

For y ∈ Rd−1 we define
gy(x) = Fd−1 f (x, y),

for almost every x ∈ R. Here Fd−1 f denotes the (d − 1)-dimensional Fourier transform
of the Function f (x, ·). It then follows that for almost every y ∈ Rd−1, gy ∈ L2(R) with

supp gy ⊆ {x ∈ R | x ≤ s},

and by (2.5) ∫
R

|ĝy(t)| eψ(|t|) dt <∞. (2.6)

As y varies over a set of full (d − 1)-dimensional Lebesgue measure, we just need to
prove that gy is the zero function. By Theorem 1.2 it suffices to show that∫

R

|log(|ĝy(t)|)|
1 + t2 dt =∞.

If ∫
R

|log(|ĝy(t)|eψ(|t|))|
1 + t2 dt <∞ (2.7)

then ∫
R

|log(|ĝy(t)|)|
1 + t2 dt =

∫
R

|log(|ĝy(t)|eψ(|t|)) − ψ(|t|)|
1 + t2 dt

≥

∫
R

ψ(|t|)
1 + t2 dt −

∫
R

|log(|ĝy(t)|eψ(|t|))|
1 + t2 dt.
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As I is infinite, it follows from (2.7) that∫
R

|log(|ĝy(t)|)|
1 + t2 dt

is divergent. Hence, by Theorem 1.2 it follows that gy is the zero function. Now,
suppose ∫

R

|log(|ĝy(t)|eψ(|t|))|
1 + t2 dt =∞. (2.8)

For a measurable function F on Rd, we define

log+ |F(x)| = max{log |F(x)|, 0}
log− |F(x)| = −min{log |F(x)|, 0},

and hence
log |F(x)| = log+ |F(x)| + log− |F(x)|.

As log+ |F(x)| is always smaller than |F(x)| we get from (2.6) that∫
R

log+(|ĝy(t)|eψ(|t|))
1 + t2 dt ≤

∫
R

|ĝy(t)|eψ(|t|)

1 + t2 dt <∞.

From (2.8) we now conclude that∫
R

log−(|ĝy(t)|eψ(|t|))
1 + t2 dt =∞.

But ∫
R

log−(|ĝy(t)|eψ(|t|))
1 + t2 dt =

∫{
t∈R |ĝy(t)|eψ(|t|)≤1

} log−(|ĝy(t)|eψ(|t|))
1 + t2 dt

≤

∫
R

log− |ĝy(t)|
1 + t2 dt,

as on the set {t ∈ R |ĝy(t)|eψ(|t|) ≤ 1} we have

|ĝy(t)| ≤ |ĝy(t)|eψ(|t|) ≤ 1,

and hence
log−(|ĝy(t)|) ≥ log−(|ĝy(t)|eψ(|t|)).

Therefore the integral ∫
R

log−(|ĝy(t)|)
1 + t2 dt

is divergent. Hence, the integral ∫
R

|log(|ĝy(t)|)|
1 + t2 dt
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is divergent. By Theorem 1.2 it now follows that gy is the zero function. This
completes the proof of part (a) for p = 2. Now, if f ∈ Lp(Rd), for p ∈ [1, 2) then for
any φ ∈ Cc(Rd) we have f ∗ φ ∈ Lp(Rd) ∩ L∞(Rd) and hence in L2(Rd). Moreover, if
we choose φ such that supp φ ⊆ B(0, r), for some r positive, then as before

supp f ∗ φ ⊆ {x ∈ Rd | x · η ≤ s + r}.

Since f̂ ∗ φ satisfies the hypothesis (2.3) (or, (2.4)) it follows from the case p = 2
proved above that f ∗ φ is zero. This implies that f is the zero function.

We shall now prove part (b). Since ψ is nondecreasing and I is finite it follows from
the converse part of Levinson’s theorem [15, Lemma 4] that there exists a nontrivial
g1 ∈ Cc(R) such that

|ĝ1(ξ)| ≤ Ce−ψ(|ξ|), for all ξ ∈ R.

Let l > 0 be such that supp g1 ⊆ [−l/4, l/4]. By convolving g1 with a φ ∈ C∞c (R),
supp φ ⊆ [−l/4, l/4] we get g ∈ C∞c (R) such that supp g ⊆ [−l/2, l/2] and

|̂g(ξ)| ≤ Ce−ψ(|ξ|), for all ξ ∈ R. (2.9)

If g turns out to be an even function then the function R−1(g) = f0 (well-defined by 2.2)
is a nontrivial function in C∞c (Rd). By the slice projection theorem (2.1), it satisfies the
estimate

| f̂0(ξ)| ≤ Ce−ψ(‖ξ‖) ≤ Ce−ψ(|ξ·η|), for all ξ ∈ Rd, (2.10)

since ψ is nondecreasing. If g is not even then we consider the translate g̃(x) =

g(x + l/2). Then g̃ ∈ C∞c (R) with supp g̃ ⊆ [−l, 0] and hence g̃ cannot be an odd
function. It follows that g̃ has a nontrivial even part given by

g̃e(x) =
g̃(x) + g̃(−x)

2
, x ∈ R,

and ̂̃ge satisfies the estimate (2.9). We can now consider f0 = R−1(g̃e) and argue as
before to show that f̂0 satisfies the estimate (2.10). This, in particular, proves (b), for
the case q =∞.

For q ∈ [1,∞) we choose φ1 ∈ C∞c (Rd) with supp φ1 ⊆ B(0, l/2) and consider the
function f = f0 ∗ φ1. Clearly, support of the function f is contained in B(0, l) and by
(2.10) it follows that∫

Rd

| f̂ (ξ)|q eqψ(|ξ·η|)

(1 + ‖ξ‖)N dξ ≤ C
∫
Rd
|φ̂1(ξ)|q dξ <∞.

This, in particular, proves (b). �

Now we prove the following complex analytic lemma which will be used in the
proof of the main theorem.

Lemma 2.2. Suppose f is a holomorphic function on H which extends continuously to
H. Let ψ be a nonnegative even function on R such that for positive constants τ and C

| f (z)| ≤ Ceτ|=z|, for all z ∈ H, (2.11)
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and ∫
R

| f (x)| eψ(x)

1 + x2 dx <∞. (2.12)

If ∫
R

ψ(x)
1 + x2 dx =∞,

then f vanishes identically on H.

We shall now state a lemma regarding harmonic majoration of subharmonic
functions which is the key point for the proof of the lemma above. A proof of the
following lemma can be found in [13, Ch. III, §G2, page 50] and [4].

Lemma 2.3. Suppose v is a subharmonic function on H which is bounded above. If
limz→t v(z) = v(t) exists for almost every t ∈ R then

v(z) ≤
1
π

∫
R

yv(t)
y2 + (x − t)2 dt,

for all z = x + iy ∈ H.

Proof of Lemma 2.2. We consider the holomorphic function

g(z) =
1
C

eiτz f (z),

on H. Clearly, it extends continuously to H. We want to apply the Phragmén-Lindelöf
theorem ([19], Theorem 3.4, page 124) to show that, for all z ∈ H,

|g(z)| ≤ 1. (2.13)

Let
Q1 = {z = x + iy ∈ C : x > 0, y > 0}.

It follows from the estimate (2.11) that

|g(iy)| =
1
C

e−τy| f (iy)| ≤ e−τyeτy = 1, for all y > 0.

It is immediate from (2.11) that for all x ∈ R

|g(x)| =
1
C
| f (x)| ≤ 1.

Therefore, g is bounded by 1 on the positive real and positive imaginary axes. As g
satisfies the estimate (2.11) we can apply the Phragmén-Lindelöf theorem to the sector
Q1 to obtain (2.13). A similar argument for the quadrant

Q2 = {z = x + iy ∈ C : x < 0, y > 0},

proves the estimate (2.13) for all z ∈ H. Since g is a holomorphic function log |g| is
subharmonic on H and

log |g(z)| ≤ 0, for all z ∈ H.
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Moreover,
lim
z→x

log |g(z)| = log |g(x)|

exists for almost every x ∈ R. Now we use the Lemma 2.3 for the subharmonic function

v(z) = log |g(z)|,

to get

log |g(z)| ≤
1
π

∫
R

y log |g(t)|
y2 + (x − t)2 dt, for all z = x + iy ∈ H. (2.14)

It is easy to see that for fixed x ∈ R and y positive there exist positive constants Cx,y
and cx,y (depending on x and y) such that for all t ∈ R,

cx,y

1 + t2 ≤
y

(x − t)2 + y2 ≤
Cx,y

1 + t2 .

Using the above inequalities it then follows from the estimate (2.14) and the hypothesis
(2.12) that

log |g(x + iy)| ≤
1
π

∫
R

y log | f (t)|
y2 + (x − t)2 dt

≤
1
π

∫
R

y log(| f (t)|eψ(t))
y2 + (x − t)2 dt −

1
π

∫
R

y ψ(t)
y2 + (x − t)2 dt

≤
Cx,y

π

∫
R

log+(| f (t)|eψ(t))
1 + t2 dt −

cx,y

π

∫
R

log−(| f (t)|eψ)
1 + t2 dt −

cx,y

π

∫
R

ψ(t)
1 + t2 dt

= −∞.

Hence, for each x ∈ R and y positive, it follows that g(x + iy) is zero. Since f is a
holomorphic, it follows that f vanishes identically on H.

3. Preliminaries on Damek–Ricci spaces

In this section, we will explain the notation and gather relevant results on Damek–
Ricci spaces. Most of these results can be found in [1, 6]. Relevant results for the
Abel, spherical and Fourier transforms on these spaces can be found in [1–3].

Let n be a two-step real nilpotent Lie algebra equipped with an inner product 〈, 〉.
Let z be the centre of n and v its orthogonal complement. We say that n is an H-type
algebra if for every Z ∈ z the map JZ : v→ v defined by

〈JzX,Y〉 = 〈[X,Y],Z〉, X,Y ∈ v

satisfies the condition J2
Z = −|Z|2Iv, Iv being the identity operator on v. A connected

and simply connected Lie group N is called an H-type group if its Lie algebra is H-
type. Since n is nilpotent, the exponential map is a diffeomorphism and hence we can
parametrize the elements in N = exp n by (X, Z), for X ∈ v, Z ∈ z. It follows from the
Campbell–Baker–Hausdorff formula that the group law in N is given by

(X,Z)(X′,Z′) =
(
X + X′,Z + Z′ + 1

2 [X, X′]
)
, X, X′ ∈ v; Z,Z′ ∈ z.
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The group A = R+ acts on an H-type group N by nonisotropic dilation: (X, Z) 7→
(
√

aX, aZ). Let S = NA be the semidirect product of N and A under the above action.
Thus the multiplication in S is given by

(X,Z, a)(X′,Z′, a′) =

(
X +
√

aX′,Z + aZ′ +
√

a
2

[X, X′], aa′
)
,

for X, X′ ∈ v; Z, Z′ ∈ z; a, a′ ∈ R+. Then S is a solvable, connected and simply
connected Lie group having Lie algebra s = v ⊕ z ⊕ R with Lie bracket

[(X,Z, l), (X′,Z′, l′〉)] =
( 1

2 lX′ − 1
2 l′X, lZ′ − lZ + [X, X′], 0

)
.

We write na = (X, Z, a) for the element exp(X + Z)a, X ∈ v, Z ∈ z, a ∈ A. We note
that for any Z ∈ z with |Z| = 1, J2

Z = −Iv; that is, JZ defines a complex structure on
v and hence v is even-dimensional. We suppose dim v = m and dim z = k. Then
Q = (m/2) + k is called the homogenous dimension of S . For convenience we will
use the symbol ρ for Q/2 and d for m + k + 1 = dim s. The group S is equipped with
the left-invariant Riemannian metric induced by

〈(X,Z, l), (X′,Z′, l′)〉 = 〈X, X′〉 + 〈Z,Z′〉 + ll′

on s. The associated left-invariant Haar measure dx on S is given by

dx = a−(Q+1) dX dZ da = a−(Q+1) dn da,

where dX, dZ, da are the Lebesgue measures on v, z and R+ respectively. The geodesic
distance of x = (X,Z, a) from the identity e of S is

σ(x) = d(x, e) = log
1 + r(x)
1 − r(x)

,

where r(x) lies in the interval (0, 1) and is given by

1 − r(x)2 =
4a(

1 + a +
|X|2

4

)2
+ |Z|2

.

The Fourier transform on S requires the notion of the Poisson kernel P(x, n). The
Poisson kernel P : S × N → R is given by

P(nat, n1) = Pat (n
−1
1 n),

where

Pat (n) = Pat (V,Z) = CaQ
t

((
at +

|V |2

4

)2
+ |Z|2

)−Q

and at = et, t ∈ R; n = (V, Z) ∈ N. For the precise value of C we refer to [2], (2.6). For
λ ∈ C, the complex power of the Poisson kernel is defined by

Pλ(x, n) = P(x, n)
1
2−(iλ/Q).

It is known that for every fixed n1 ∈ N, the function Pλ(x, n1) is an eigenfunction of
the Laplace–Beltrami operator L with eigenvalue (λ2 + Q2/4) (see [2]), and Pλ(x, n1)
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is constant on the hypersurface

Hn1,at = {n1r(atn) | n ∈ N},

where r stands for the geodesic inversion (see [18]). In view of this it is natural to
define the Fourier transform of a function f ∈ C∞c (S ) by [2, page 406]

f̃ (λ, n) =

∫
S

f (x)Pλ(x, n) dx, λ ∈ C, n ∈ N.

It is known that for f ∈ C∞c (S ) the following Fourier inversion and the Plancherel
formula holds [2]:

(a) For f ∈ C∞c (S )

f (x) = C1

∫
R×N

f̃ (λ, n)P−λ(x, n) |c(λ)|−2 dλ dn, for all x ∈ S , (3.1)

where

c(λ) =
2Q−2iλΓ(2iλ)Γ( 2m+k+1

2 )

Γ( Q
2 + iλ)Γ( m+1

2 + iλ)
.

(b) The Fourier transform extends from C∞c (S ) to an isometry from L2(S ) onto the
space L2(R+ × N,C2 |c(λ)|−2 dλ dn).

The precise value of the constants C1,C2 are given in [2].

Remark. If f ∈ L1(S ), then for almost every fixed n ∈ N, the map λ 7→ f̃ (λ, n) is
continuous on the strip

S 1 = {λ ∈ C | |=λ| ≤ ρ},

and analytic in the interior of S 1 [18, Theorem 5.4].

We also have the following estimate of the function |c(λ)|−2 (see [18, Lemma 4.8]).

Lemma 3.1. |c(λ)|−2 � λ2(1 + |λ|)m+k−2, for all λ ∈ R, that is, there exist two positive
constants C1,C2 such that

C1λ
2(1 + |λ|)m+k−2 ≤ |c(λ)|−2 ≤ C2λ

2(1 + |λ|)m+k−2, for λ ∈ R. (3.2)

Let U be the universal enveloping algebra of S and U, V ∈ U. We will denote
by UL f and by VR f the corresponding left-invariant and right-invariant vector fields
applied to a C∞ function f on S . The Schwartz space S(S ) is then defined as the space
of smooth functions f on S such that

sup
x∈NA

e(Qσ(x)/2)(1 + σ(x))l|(ULVR f )(x)| <∞,

for every positive integer l and for every U, V ∈ U. It can be verified that if f is a
function in S(S ) then its Fourier transform f̃ (λ,n) is given by an absolutely convergent
integral for (λ, n) ∈ R × N. Moreover, the inversion formula (3.1) holds for f in S(S ).

We will now specialize to the case of radial functions on S . A function f : S → C
is said to be radial if, for all x ∈ S , f (x) depends only on the geodesic distance σ(x)
of x from the identity e of S . A spherical function φ on S is a radial eigenfunction of
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the Laplace–Beltrami operator L normalised so that φ(e) = 1. For λ ∈ C, we denote
by φλ the spherical function with eigenvalue −(λ2 + Q2/4). Let f ∈ C∞c (S )# denote
the subspace of radial functions in f ∈ C∞c (S ). The spherical Fourier transform of a
function f ∈ C∞c (S )# is given by

F f (λ) =

∫
NA

f (x) φλ(x) dx, λ ∈ C.

Since φλ(x) = φ−λ(x), it follows that F f is an even function on R. If f is radial
then, unlike the case of Riemannian symmetric spaces, the Helgason Fourier transform
does not boil down to its spherical Fourier transform; indeed, they are related as [18,
Equation (2.9)]

f̃ (λ, n) = Pλ(e, n)F f (λ). (3.3)

We also have the following convolution relation.

Lemma 3.2 [2, Proposition 3.2]. If f ∈ C∞c (S ) and φ ∈ C∞c (S )#, then

˜( f ∗ φ)(λ, n) = f̃ (λ, n)F φ(λ), for λ ∈ R, n ∈ N.

Remark. It can be easily seen that the same result continues to be true for f ∈ S(S )
[2].

We also need the notion of Abel transform on S . For a suitable radial function f on
S , the Abel transform is defined by

A f (t) = e−(Qt/2)
∫

N
f (nat) dn, where at = et.

It is not hard to see thatA f is an even function in t [1].

Lemma 3.3 [1]. Abel transform satisfies the following properties:

(a) If f ∈ C∞c (S ) is radial then

(̂A f )(λ) = F f (λ), λ ∈ R.

(b) The mapA : C∞c (S )# → C∞c (R)e is a bijection, where

C∞c (R)e = { f ∈ C∞c (R) : f is even}.

In this paper our main concern are the functions with support contained in sets of
the type

Eτ = {na ∈ S | a ≥ eτ}, τ ∈ R.

We note that the boundary of Eτ is a horocycle in S . To prove the main result of this
paper we use the following result proved in [3].

Lemma 3.4. Let f be in S(S ) and τ be a real number. The support of f is contained in
the set

Eτ = {na ∈ S : a ≥ eτ}

if and only if the following conditions hold:

(i) For each fixed n ∈ N, the function λ 7→ f̃ (λ,n) is holomorphic in {λ ∈ C : =λ > 0};
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(ii) The map (λ, n) 7→ f̃ (λ, n) is C∞ on ({λ ∈ C : =λ ≥ 0} × N);
(iii) for every positive integer l and for 1 < p ≤ ∞,

sup
=λ≥0
‖ f̃ (λ, ·)‖Lp(N)(1 + |λ|)leτ=λ <∞.

We are now in a position to prove Theorem 1.3.

Proof of Theorem 1.3. For part (a), we first show that it suffices to prove the case
q = 1, l = 0. Suppose f ∈ S(S ) is supported on the set Eτ, for some real number τ
and satisfies (1.1), for some q > 1 and l ∈ N. We choose φ ∈ C∞c (S )# supported on a
compact subset of the set {na ∈ NA | a > eη}, for some positive real number η. Then
f ∗ φ is supported on the set E(τ+η). In fact, since f is supported in Eτ

f ∗ φ(n′a′) =

∫
Eτ

f (na) φ((na)−1n′a′)a−(Q+1) dn da.

Since A normalizes N, the A-component of (na)−1n′a′ is a−1a′. If a′ < eτ+η, then for
all a ∈ Eτ

a−1a′ < eη,

and hence f ∗ φ(n′a′) is zero. By Lemma 3.2, it follows that

˜( f ∗ φ)(λ, n) = f̃ (λ, n)F φ(λ), for λ ∈ R, n ∈ N.

Using Hölder’s inequality∫
R

|˜( f ∗ φ)(λ, n)|eψ(|λ|) |c(λ)|−2 dλ

≤

( ∫
R

| f̃ (λ, n)|qeqψ(|λ|)

(1 + |λ|)l |c(λ)|−2 dλ
)1/q
‖(1 + | · |)lF φ(·)‖Lq′ (R, |c(λ)|−2dλ)

<∞,

as l/q is smaller than l. Here q′ satisfies the relation

1
q

+
1
q′

= 1.

Hence, by the case q = 1, N = 0 it follows that f ∗ φ vanishes identically. As φ ∈
C∞c (S ), it follows from Remark 3 that F φ is nonzero almost everywhere. This implies
that f̃ vanishes almost everywhere and so does f . The same technique can be applied to
reduce the case q = 1 and l ∈ N to the case q = 1 and l = 0 by using Hölder’s inequality.
For the case q =∞, we get from (1.2) that∫

R

| f̃ ∗ φ(λ, n)| eψ(|λ|)|c(λ)|−2 dλ ≤
∫
R

(1 + |λ|)l |̂φ(λ)||c(λ)|−2 dλ <∞.

So, without loss of generality, we assume that f ∈ S(S ) is such that f̃ satisfies the
condition ∫

R

| f̃ (λ, n)|eψ(|λ|)|c(λ)|−2 dλ <∞. (3.4)
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Since f ∈ S(S ) and its support is contained in Eτ, for some real number τ, it follows
from Lemma 3.4 that for each n ∈ N, the function Fn defined by

Fn(λ) = f̃ (λ, n),

is holomorphic on the upper half-plane H which extends continuously to H. Moreover,
by Lemma 3.4, iii) the function Fn satisfies the estimate

|Fn(λ)| ≤ Cn
e|τ||=λ|

1 + |λ|l
, λ ∈ H,

for some positive integer l. Now, using the estimate of |c(λ)|−2 given in (3.2) and the
hypothesis (3.4), it follows that∫

R

|Fn(λ)| eψ(|λ|)

1 + λ2 dλ

≤
1

C1

∫
|λ|≥1

|Fn(λ)|eψ(|λ|)

(1 + λ2)
|c(λ)|−2

λ2(1 + |λ|)m+k−2 dλ +

∫
|λ|<1

|Fn(λ)|eψ(|λ|)

1 + λ2 dλ

≤
1

C1

∫
|λ|≥1
| f̃ (λ, n)| eψ(|λ|)|c(λ)|−2 dλ + C

<∞.

Therefore, by Lemma 2.2, it follows that Fn vanishes identically on R. Since this is
true for every n ∈ N, therefore f̃ and hence f vanish identically on S . This completes
the proof of part (a).

Now we shall prove (b). Since I is finite and ψ is nondecreasing, by Theorem 2.1,
(b) there exists a nontrivial even function f0 ∈ C∞c (R) satisfying the estimate

| f̂0(λ)| ≤ Ce−ψ(|λ|), λ ∈ R. (3.5)

By Lemma 3.3, there exists f ∈ C∞c (S ) such that A f = f0 with F f (λ) = f̂0(λ), for all
λ ∈ R. Therefore, by (3.5) it follows that

|F f (λ)| ≤ Ce−ψ(|λ|), λ ∈ R.

Since |Pλ(e, n)| is independent of λ it follows from the relation (3.3) and the above
equation that

| f̃ (λ, n)| ≤ Cn e−ψ(|λ|), λ ∈ R, n ∈ N.

This in particular proves part (b) for the case q =∞. For q ∈ [1,∞) we choose a radial
function φ ∈ Cc(S ) and consider the nontrivial function f1 = f ∗ φ. It is easy to show
that f̃1 satisfies the estimate (1.1). This completes the proof. �
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[6] M. Cowling, A. Dooley, A. Korányi and F. Ricci, ‘An approach to symmetric spaces of rank one

via groups of Heisenberg type’, J. Geom. Anal. 8(2) (1998), 199–237.
[7] E. Damek, ‘Curvature of a semidirect extension of a Heisenberg type nilpotent group’, Colloq.

Math. 53(2) (1987), 249–253.
[8] E. Damek and F. Ricci, ‘A class of nonsymmetric harmonic Riemannian spaces’, Bull. Amer. Math.

Soc. (N.S.) 27(1) (1992), 139–142.
[9] J. Faraut, ‘Un thorme de Paley–Wiener pour la transformation de Fourier sur un espace

Riemannien symtrique de rang un’, J. Funct. Anal. 49(2) (1982), 230–268.
[10] S. Helgason, Geometric Analysis on Symmetric Spaces, Mathematical Surveys and Monographs,

39 (American Mathematical Society, Providence, RI, 1994).
[11] S. Helgason, The Radon Transform, 2nd edn, Progress in Mathematics, 5 (Birkhäuser, Boston,
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