
LMS J. Comput. Math. 15 (2012) 231–256 Ce2012 Author
doi:10.1112/S1461157012001064

PyCox: computing with (finite) Coxeter groups and
Iwahori–Hecke algebras

Meinolf Geck

Dedicated to the memory of Professor H. Pahlings

Abstract

We introduce the computer algebra package PyCox, written entirely in the Python language. It
implements a set of algorithms, in a spirit similar to the older CHEVIE system, for working with
Coxeter groups and Hecke algebras. This includes a new variation of the traditional algorithm
for computing Kazhdan–Lusztig cells and W -graphs, which works efficiently for all finite groups
of rank 68 (except E8). We also discuss the computation of Lusztig’s leading coefficients of
character values and distinguished involutions (which works for E8 as well). Our experiments
suggest a re-definition of Lusztig’s ‘special’ representations which, conjecturally, should also
apply to the unequal parameter case.

Supplementary materials are available with this article.

1. Introduction

The computer algebra system CHEVIE [13] has been designed to facilitate computations with
various combinatorial structures arising in Lie theory, like finite Coxeter groups and Hecke
algebras. It was initiated about 20 years ago and has been further developed ever since; see [11]
for a discussion of some recent applications of this system. However, there are some limitations
to its use due to its dependence on GAP3 [30] which is still available, but no longer supported
(the last release of GAP3 was in 1997). Therefore, it seemed desirable to implement a core set of
algorithms around Coxeter groups and Hecke algebras in a more modern and widely available
environment. The success of Sage [31] suggested the use of the Python language [29]. This led
to the development of PyCox, which we present in this note.

Although in some areas of algebraic manipulations (like permutations, algebraic numbers)
the performance is inferior to that of GAP3, some of the advantages of the new system are:
it works on every computer where Python is installed; we can now run jobs which use main
memory well over 4 GB; and we can just import PyCox as a module into Sage, whereby we
have immediate access to all the further functionality of Sage (including the Sage notebook
and the interfaces to GAP4 and, even, GAP3).

In Section 2, we briefly describe the basic design features of PyCox and give some examples
of how to use it; more details are available through the online help within PyCox.

We shall then discuss some concrete applications of our programs to questions related to
the theory of Kazhdan–Lusztig cells and the associated W -graphs. (The basic definitions will
be recalled in Section 3.) The problem of computing such cells has been addressed by several
authors, most notably by Alvis [1] and DuCloux [4–6]. In Section 4, we present a variation
of the known algorithm where the new ingredient is the use of ‘relative’ Kazhdan–Lusztig
polynomials, as defined in [7, 16]. (Neither CHEVIE nor DuCloux’s Coxeter [5] contains an
implementation of these.) As may be expected, the systematic use of these relative polynomials
instead of the ordinary Kazhdan–Lusztig polynomials leads to a significant efficiency

Received 3 February 2012.

2000 Mathematics Subject Classification 20C40 (primary), 20C08, 20F55 (secondary).

https://doi.org/10.1112/S1461157012001064 Published online by Cambridge University Press

http://www.lms.ac.uk/jcm
http://www.ams.org/mathscinet/msc/msc.html
https://doi.org/10.1112/S1461157012001064

232 M. GECK

gain for the determination of left cells. (This idea was essentially already formulated by
DuCloux [4, Section 5.3]; Howlett and Yin [18] constructed W -graphs affording irreducible
representations in this way.) While Howlett and Yin [16] only considered the equal parameter
case, we shall describe recursion formulae in the general case of unequal parameters.

Within PyCox, it is now possible to deal with left cells and the corresponding W -graphs
for finite Coxeter groups of rank up to around 8, including types H4, E6 and E7 but, not
surprisingly, with the exception of type E8. There are also programs for computing Lusztig’s
leading coefficients of character values [26] and distinguished involutions [25]; these do work
for type E8 as well. As far as we are aware, this is the first general program which is capable
of dealing with this level of information for a group of size like that of type E7 or E8. As
an example of an application we just mention that it is now straightforward to verify that
Kottwitz’s conjecture [20] on the intersections of left cells with conjugacy classes of involutions,
holds for type E7, following the general methods explained by Casselman [2]. (Abbie Halls, at
the University of Aberdeen, is currently working on type E8, where more specialised methods
and programming are required.) We also stress the fact that our programs only use results
concerning cells which are generally known to hold by elementary arguments; in particular, we
do not rely on any ‘positivity’ results or facts concerning Lusztig’s a-function [24].

Finally, in Section 5, we consider the problem of computing the character tables of certain
symmetric algebras which have been associated by Lusztig [26] with the various left cells of
a finite Coxeter group. In PyCox, these tables can be determined by an automatic procedure
for all groups of rank up to around 7. In Lusztig’s work [26], the non-crystallographic types
I2(m), H3 and H4 have been excluded from the discussion. Here, we complete the picture by
treating these cases as well. This will allow us to formulate in full generality an alternative
characterisation of ‘special’ representations, which were originally defined by Lusztig [21].
This characterisation should also make sense in the general case of unequal parameters; see
Conjecture 5.11. We discuss some examples to support this conjecture.

2. Design of PyCox

The whole PyCox system is contained in one file accompanying this article; it is freely available
for download, under the GPL licence. (The file is called chv1r61.py, it has 13441 lines and the
size is roughly 525 KB; updates will also be made available at the author’s homepage.) So, in
order to use PyCox on your computer, all you need to do (once you have downloaded the file)
is to launch Python (2.6 or higher) and import the file as a module, for example, by typing the
following.

>>> from chv1r61 import *

(You should then see a welcome banner.) Similarly, if Sage (version 4.7 or higher) is installed
on your computer, you can import PyCox as a module into Sage.

sage: from chv1r61 import *

A good place to start is to type ’help(coxeter)’ or ’allfunctions()’.
We shall now discuss some of the basic principles of the system and show some concrete

examples. As in CHEVIE, the basic object from which everything is built up is that of a Cartan
matrix. Let S be a finite non-empty index set and C = (cst)s,t∈S be a matrix with entries in R.
Following [15, Section 1.1], we say that C is a Cartan matrix if the following conditions are
satisfied.
(C1) For s 6= t we have cst 6 0; furthermore, cst 6= 0 if and only if cts 6= 0.
(C2) We have css = 2 and, for s 6= t, we have cstcts = 4 cos2(π/mst), where mst > 2 is an

integer or mst =∞.

https://doi.org/10.1112/S1461157012001064 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157012001064

PYCOX 233

Let C = (cst)s,t∈S be a Cartan matrix and V be an R-vector space of dimension |S|, with a
fixed basis {αs | s ∈ S}. For each s ∈ S, we define a linear map on V as follows:

ṡ : V → V, αt 7→ αt − cstαs (t ∈ S).

We shall act from the right so we use the row convention for matrices of linear maps. Let

W := 〈ṡ | s ∈ S〉 ⊆GL(V).

In what follows, we shall often omit the dot when referring to the maps ṡ : V → V ; in particular,
S will be regarded directly as a subset of GL(V). With this convention, the group W has a
presentation with generators S and defining relations as follows (see [15, Section 1.2.7]):

s2 = 1 for all s ∈ S and (st)mst = 1 for all s 6= t in S with mst <∞.

Thus,W is a Coxeter group and all Coxeter groups arise in this way. The matrixM = (mst)s,t∈S
is called the Coxeter matrix of W .

The set Φ := {αs.w | s ∈ S, w ∈W} is the corresponding root system. There is a well-defined
partition Φ = Φ+ q Φ− where Φ+ is the set of all α ∈ Φ which can be expressed in terms
of the basis {αs | s ∈ S} where all coefficients are non-negative, and Φ− = {−α | α ∈ Φ}; see
[15, Section 1.1.9]. Based on this information alone, we already have an efficient way of
testing if an element w ∈W (given as a word in the generators in S) equals the identity
or not: it suffices to compute the corresponding linear map of V and check if its matrix is the
identity or not. More generally, if w 6= 1, we can efficiently find an s ∈ S such that l(sw)< l(w)
(see [15, Section 1.1.9]):

l(sw) = l(w)− 1 if and only if αs.w ∈ Φ−.

(Here, l(w) denotes the usual length of w ∈W .)
Following the general ideas in CHEVIE, the basic function in PyCox is that of creating a

Coxeter group from a Cartan matrix (as a Python ‘class’).
>>> W=coxeter([[2, -1, -1], [-1, 2, -1], [-1, -1, 2]])

When the function coxeter is called, it computes some basic information directly from the
Cartan matrix, for example, the matrices of the generating reflections and the Coxeter matrix.
These pieces of information are saved as components in the resulting Python class.

>>> W.coxetermat
[[1, 3, 3], [3, 1, 3], [3, 3, 1]]
>>> W.cartantype
[[’U’, [0, 1, 2]]] # ’U’ stands for infinite
>>> W.matgens # matrices of the generators
[((-1, 0, 0), (1, 1, 0), (1, 0, 1)),
((1, 1, 0), (0, -1, 0), (0, 1, 1)),
((1, 0, 1), (0, 1, 1), (0, 0, -1))]

We can now do some basic operations with the elements of W .
>>> m=W.wordtomat([1, 0, 1, 2, 1, 0]); m
((-1, 0, -1), (-2, -2, -1), (4, 3, 3))
>>> W.mattoword(m) # lexicographically smallest
[0, 1, 0, 2, 1, 0] # reduced expression of m
>>> W.leftdescentsetmat(m)
[0, 1]
>>> W.rightdescentsetmat(m)
[0]

When W is finite, the function coxeter also computes, for example, the number of positive
roots and the order of W .

https://doi.org/10.1112/S1461157012001064 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157012001064

234 M. GECK

>>> A=[[2, 0, -1, -ir5, 0], # ir5=(1+sqrt(5))/2;
[0, 2, 0, 0, -1], # see the function
[-1, 0, 2, 0, 0], # zeta5
[-ir5, 0, 0, 2, 0],
[0, -3, 0, 0, 2]]

>>> W=coxeter(A)
>>> W.N; W.order; W.degrees
21 # number of positive roots
1440 # order of the group
[2, 2, 6, 6, 10] # reflection degrees

There are further components, like W.roots (containing a list of all roots), W.permgens (the
permutation action of the generators on the roots) etc.; the list of all components is obtained
by dir(W) (a general Python function). In order to check if W is finite, coxeter uses the known
list of Coxeter matrices of irreducible finite Coxeter groups, encoded in terms of graphs (with
a standard labelling of the vertices) as in Table 1.

Note that, in general, there may be several Cartan matrices which give rise to the same
Coxeter matrix. In PyCox (as in CHEVIE) we have adopted the following conventions.

– If mst is odd, then cst = cts. (This has the consequence that the root system is reduced;
see [15, Section 1.3.6].)

– If mst is even, then cst =−1 or cts =−1.

For example, the following two Cartan matrices both correspond to the Coxeter matrix of type
B3.

>>> cartanmat("B",3)
[[2, -2, 0], [-1, 2, -1], [0, -1, 2]]
>>> cartanmat("C",3)
[[2, -1, 0], [-2, 2, -1], [0, -1, 2]]

See the help for the function cartanmat for a detailed description of the resulting choices of
Cartan matrices for the various finite types.

When coxeter is called, it decomposes the Cartan matrix into its indecomposable
components and checks if the corresponding Coxeter graphs appear in the list in Table 1. If
this is so, it matches the Cartan matrices of the indecomposable components to those returned
by the function cartanmat. This information is kept in the component W.cartantype. In the

Table 1. Coxeter graphs of irreducible finite Coxeter groups.

https://doi.org/10.1112/S1461157012001064 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157012001064

PYCOX 235

above example (where W is defined by a 5× 5 Cartan matrix), we have the following.
>>> W.cartantype
[[’H’, [3, 0, 2]], [’G’, [1, 4]]]

This means that the submatrix of A with rows and columns indexed by 3, 0, 2 (in this order) is
the standard Cartan matrix of type H3, as returned by calling cartanmat(’H’,3); similarly,
the submatrix of A with rows and columns indexed by 1, 4 (in this order) is the standard
Cartan matrix of type G2, as returned by calling cartanmat(’G’,2). In particular, we see
that our group W is of type H3 ×G2.

The type recognition procedure is particularly helpful when dealing with reflection
subgroups.

>>> W=coxeter("F",4) # same as coxeter(cartanmat("F",4))
>>> H=reflectionsubgroup(W,[1,2,6,47])
>>> H.cartantype # subgroup generated
[[’C’, [0, 1, 2]], [’A’, [3]]] # by reflections at
>>> H.cartan # roots no. 1,2,6,47
[[2,-1, 0, 0], [-2, 2,-1, 0], [0,-1, 2, 0], [0, 0, 0, 2]]

Here, H will be a Coxeter group in its own right. The information about the embedding
into W is held in the component H.fusions; every Coxeter group in PyCox has such a
fusion component: it will at least contain the embedding into itself; see the online help of
reflectionsubgroup for further details. In the above example, we have the following.

>>> W.cartanname # unique string identifying W
’F4c0c1c2c3’
>>> H.fusions[’F4c0c1c2c3’]
{’parabolic’: False, ’subJ’: [1, 2, 3, 23]}

Thus, H is not a parabolic subgroup and the four simple reflections of H correspond to the
reflections with roots indexed by 1, 2, 3, 23 in W.roots. (This design is different from that
in CHEVIE; it appears to be better suited to recursive algorithms involving various reflection
subgroups.)

Let us assume from now on that W is finite. Then, in principle, every piece of information
about W is ultimately computable from the Cartan matrix of W . However, as in CHEVIE, some
very basic and frequently used pieces of information are explicitly stored within the system; this
is particularly relevant for data which are accompanied by some more or less natural labellings
(like partitions of n for the conjugacy classes and irreducible characters of groups of type
An−1). In PyCox, we store explicitly the following pieces of information (with the appropriate
labellings where this applies):

– reflection degrees (see the function degreesdata);
– conjugacy classes (see conjclassdata);
– character tables (see irrchardata and heckeirrdata);
– Schur elements (see schurelmdata).

For classical types An, Bn, Dn, this is done in the form of combinatorial algorithms; for the
remaining exceptional types, explicit tables with the relevant information are stored. Then, for
example, when the function chartable(W) is called, PyCox will build the character table of W
from the explicitly stored data for the irreducible components of W . (Note that W is a direct
product of its irreducible components, and there is a standard procedure to build the character
table of a direct product of finite groups from the character tables of the direct factors.)

Let us now give a concrete example of how to use these programs. We would like to program
a function which returns the list of involutions in W , that is, all the elements w ∈W such
that w2 = 1. To start somewhere, we have a look at the list of all available functions in PyCox;
this is printed by calling allfunctions(). There is a function allelmsproperty which takes
as input a group W and a function f : W →{True, False}; it returns the list of all w ∈W
(as reduced words) such that f(w) = True. This certainly fits our problem: we just need to

https://doi.org/10.1112/S1461157012001064 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157012001064

236 M. GECK

define f such that f(w) = True if w has order 1 or 2, and f(w) = False otherwise. Thus, our
first candidate for the desired function is as follows.

>>> def involutions1(W):
... return allelmsproperty(W,lambda x:W.permorder(W.wordtoperm(x))<=2)
>>> len(involutions1(coxeter("E",6)))
892

This works fine for groups of moderate size but, eventually, we would also like to apply this
to big examples like groups of type E7 and E8; however, when we do this, we notice that a
long time will pass before we see a result. This is because allelmsproperty is an ‘all-purpose’
function which runs through all elements of W , transforms every element into a permutation,
and checks if this has order 1 or 2. For type E8 with its 696,729,600 elements this will simply
take too long. We need to tailor our program more specifically to the problem that we are
dealing with. Now, the set of involutions is invariant under conjugation so it will be a union
of the conjugacy classes of W . The function conjugacyclasses does return some information
about the conjugacy classes of W , including representatives of the classes and the sizes of the
classes. (This uses data stored within the system; see conjclassdata.) So, alternatively to our
first try above, we could just select the class representatives which are involutions and then
compute the corresponding conjugacy classes. In Python, this can in fact be done in one line.

>>> def involutions(W):
... return flatlist([conjugacyclass(W, W.wordtoperm(w))
... for w in conjugacyclasses(W)[’reps’]
... if W.wordtocoxelm(2*w)==tuple(W.rank)])

This even works in type E8 where it returns the list of 199952 involutions in about 1 minute.
(In GAP3, the analogous function would be roughly twice as fast, thanks to the much more
efficient arithmetic for permutations.) It is known that involutions play a special role in the
theory of Kazhdan–Lusztig cells; see Kottwitz [20], Lusztig [25] and Lusztig–Vogan [28]. We
shall come back to this in Section 5.

3. Cells and W -graphs

Let W be a Coxeter group, with generating set S. In this section, we briefly recall some basic
definitions concerning left cells and the corresponding W -graphs, as introduced by Kazhdan
and Lusztig [19, 22]. Roughly speaking, these concepts give rise to a partition

W = C1 q C2 q · · · q Cr

and, for each piece Ci in this partition, a W -module [Ci]1 with a standard basis {bx | x ∈ Ci}
where the action of a generator s ∈ S is described by formulae of a particularly simple form
(encoded in a ‘W -graph’, see Definition 3.3 and Remark 3.5 below). To give more precise
definitions, we need to fix some notation. We shall work in the general multi-parameter
framework of Lusztig [22, 27], which introduces a weight function into the picture on which
all the subsequent constructions depend.

Let Γ be an abelian group (written additively). Let {ps | s ∈ S} ⊆ Γ be a collection of elements
such that ps = pt whenever s, t ∈ S are conjugate in W . This gives rise to a weight function

L : W → Γ

in the sense of Lusztig [27]; we have L(w) = ps1 + · · ·+ psk
where w = s1 . . . sk (si ∈ S) is a

reduced expression for w ∈W . We shall assume that Γ admits a total ordering 6 which is
compatible with the group structure, that is, whenever g, g′ ∈ Γ are such that g 6 g′, we have
g + h6 g′ + h for all h ∈ Γ. We assume throughout that

L(s) > 0 for all s ∈ S.

https://doi.org/10.1112/S1461157012001064 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157012001064

PYCOX 237

(The original ‘equal parameter’ setting of [19] corresponds to the case where Γ = Z with its
natural ordering and ps = 1 for all s ∈ S.)

Furthermore, let R⊆ C be a subring and A=R[Γ] be the free R-module with basis
{εg | g ∈ Γ}. (The basic constructions in this section are independent of the choice of R and
so we could just take R= Z here; the flexibility of choosing R will be useful once we consider
representations of W .) There is a well-defined ring structure on A such that εgεg

′
= εg+g

′
for

all g, g′ ∈ Γ. We write 1 = ε0 ∈A. Let H be the generic Iwahori–Hecke algebra corresponding
to (W, S), with parameters {εL(s) | s ∈ S}. Thus, H has an A-basis {T̃w | w ∈W} and the
multiplication is given by the rule

T̃s T̃w =
{
T̃sw if l(sw)> l(w),
T̃sw + (εL(s) − ε−L(s))T̃w if l(sw)< l(w);

here, l : W → N0 denotes the usual length function on W with respect to S.
Let Γ>0 := {g ∈ Γ | g > 0} and denote by A>0 (or R[Γ]>0) the set of all R-linear combinations

of terms εg where g > 0. The notations A>0, A60, A<0 (or R[Γ>0], R[Γ60], R[Γ<0]) have a
similar meaning.

Let a 7→ ā be the R-linear involution of A[Γ] which takes g to g−1 for any g ∈ Γ. This extends
to a ring involution H→H, h 7→ h̄, where∑

w∈W
awT̃w =

∑
w∈W

āwT̃
−1
w−1 (aw ∈A for all w ∈W).

We then have a corresponding Kazhdan–Lusztig basis of H, which we denote by {C ′w | w ∈W}
(as in [22]). The basis element C ′w is uniquely determined by the conditions that

C
′
w = C ′w and C ′w =

∑
y∈W

P ∗y,w T̃y

where P ∗w,w = 1 and P ∗y,w ∈ Z[Γ<0] if y 6= w; furthermore, we have P ∗y,w = 0 unless y 6 w, where
6 denotes the Bruhat–Chevalley order on W . For w ∈W and s ∈ S, we have

T̃sC
′
w =


C ′sw if L(s) = 0,
εL(s)C ′w if L(s)> 0, sw < w,

C ′sw − ε−L(s)C ′w +
∑
y∈W

sy<y<w

Ms
y,w C

′
y if L(s)> 0, sw > w,

where Ms
y,w are certain elements of Z[Γ] such that M̄s

y,w =Ms
y,w. As explained in [22, Section 3],

these elements are determined by the inductive condition

Ms
y,w − εL(s)P ∗y,w +

∑
z∈W

sz<z,y<z<w

P ∗y,zM
s
z,w ∈ Z[Γ<0] (M1)

and by the symmetry condition
M

s

y,w =Ms
y,w. (M2)

By applying the anti-involution H→H, T̃w 7→ T̃w−1 , we also obtain ‘right-handed’ versions of
the above formulae (see [22, Section 6]).

Remark 3.1. We set Py,w = εL(w)−L(y)P ∗y,w. Then it is known that Py,w ∈ Z[Γ>0]; see
Lusztig [27, Proposition 5.4]. Furthermore, we have

εL(s)Ms
y,w ∈ Z[Γ>0] where sy < y < w < sw(s ∈ S);

see [27, Proposition 6.4]. Assume now that Γ = Z and L(s) = 1 for all s ∈ S (equal parameter
case, as in [19]). Then A is the ring of Laurent polynomials in the indeterminate ε. Let y, w ∈W
be such that y < w. Let s ∈ S be such that sy < y < w < s. Now P ∗y,w is a polynomial in ε−1.

https://doi.org/10.1112/S1461157012001064 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157012001064

238 M. GECK

Consequently, Py,w is a polynomial in ε of degree at most l(w)− l(y)− 1. In this situation, it
is known that Ms

y,w has the following simple description:

Ms
y,w = coefficient of ε−1 in P ∗y,w

= coefficient of εl(w)−l(y)−1 in Py,w;

see Lusztig [27, Corollary 6.5].

Example 3.2. The determination ofMs
y,w in the case of unequal parameters is considerably

more involved than in the case of equal parameters. For example, assume that there exists some
t ∈ S such that L(t)> 0, ty > y and tw < w. Then P ∗y,w = ε−L(t)P ∗ty,w. In the equal parameter
case, this implies that Ms

y,w = 0 unless ty = w, in which case Ms
y,w = 1. In the general case of

unequal parameters, if ty = w, we have

Ms
y,w =


0 if L(s)< L(t),
1 if L(s) = L(t),

εL(s)−L(t) + εL(t)−L(s) if L(s)> L(t);

see [22, Proposition 5]. Furthermore, if w 6= ty, it can happen that Ms
y,w 6= 0.

Definition 3.3 (Kazhdan–Lusztig [19] (equal parameter case); see [14, 1.4.11] for
general L). A W -graph for H consists of the following data:

(a) a base set X together with a map I which assigns to each x ∈ X a subset I(x)⊆ S;
(b) for each s ∈ S with L(s)> 0, a collection of elements

{ms
x,y | x, y ∈ X where s ∈ I(x), s 6∈ I(y)};

(c) for each s ∈ S with L(s) = 0, a bijection X→ X, x 7→ s.x.
These data are subject to the following requirements. First we require that, for any x, y ∈ X
and s ∈ S where ms

x,y is defined, we have

εL(s)ms
x,y ∈R[Γ>0] and ms

x,y =ms
x,y.

Furthermore, let [X] be a free A-module with a basis {by | y ∈ X}. For s ∈ S, define an A-linear
map ρs : [X]→ [X] by

ρs(by) =


bs.y if L(s) = 0,

−ε−L(s) by if L(s)> 0, s ∈ I(y),

εL(s) by +
∑

x∈X: s∈I(x)

ms
x,y bx if L(s)> 0, s 6∈ I(y).

Then we require that the assignment T̃s 7→ ρs defines a representation of H.

Example 3.4 (Kazhdan–Lusztig [19], Lusztig [22]). Let y, z ∈W . We write z←L y if there
exists some s ∈ S such that C ′z appears with non-zero multiplicity in C ′sC

′
y (when expressed in

the C ′-basis of H). Thus, we have:

z←L y⇔

{
if z = sy for some s ∈ S, where L(s) = 0 or sy > y,

or if Ms
z,y 6= 0 for some s ∈ S, where L(s)> 0 and sz < z < y < sy.

Let 6L be the pre-order relation on W generated by ←L, that is, we have z 6L y if there exist
elements z = y0, y1, . . . , ym = y in W such that yi−1←L yi for 1 6 i6m. Let ∼L denote the
associated equivalence relation; the corresponding equivalence classes are called the left cells
of W .

Let C be a left cell of W (or, more generally, a union of left cells). Then we obtain a
corresponding W -graph as follows. We set I(x) := {s ∈ S | sx < x} for x ∈ C. Furthermore,

https://doi.org/10.1112/S1461157012001064 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157012001064

PYCOX 239

if x, y ∈ C and s ∈ S are such that L(s)> 0, s ∈ I(x) and s 6∈ I(y), we set

ms
x,y :=


1 if y = sx,

−(−1)l(x)+l(y)Ms
x,y if x < y,

0 otherwise.

Finally, if s ∈ S is such that L(s) = 0, then sw ∈ C for all w ∈ C, so we obtain a natural bijection
C→ C by left multiplication. It is known that these data give rise to a W -graph structure on
the set C. (See [22, Section 6].)

Remark 3.5. Let θ : A→R be the unique R-linear ring homomorphism such that θ(εg) = 1
for all g ∈ Γ. Then, regarding R as an A-module via θ, we have R⊗A H∼=R[W], the group
algebra of W over R. Let C be a left cell of W . Then we obtain a representation of W on
[C]1 :=R⊗A [C], called a ‘left cell representation’ of W . If W is a finite Weyl group and R= Q,
the study of these left cell representations is of considerable interest in the representation theory
of reductive algebraic groups over finite fields; see Lusztig [23].

Definition 3.6. Assume we are given two W -graphs with underlying base sets X and X′.
Then we say that these two W -graphs are equivalent if there exists a bijection X→ X′, x 7→ x′,
such that the map

[X]→ [X′], bx 7→ bx′ ,

is an H-module isomorphism. Similarly, if C, C′ are left cells of W , we write C≈ C′ if the
W -graphs associated with C and C′ are equivalent.

Example 3.7 (Kazhdan–Lusztig [19, Section 4]). Assume that we are in the equal
parameter case where Γ = Z and L(s) = 1 for all s ∈ S. Let s, t ∈ S be such that st has order 3.
Let

DR(s, t) = {w ∈W | either ws < w, wt > w or ws > w, wt < w}.

If w ∈DR(s, t), then exactly one of the two elements ws, wt belongs to DR(s, t); we denote it
w∗. Thus, we obtain an involution

DR(s, t)→DR(s, t), w 7→ w∗.

If C is a left cell of W , then it is known that either C is contained in DR(s, t) or does not meet
DR(s, t) at all; see [19, Proposition 2.4]. This also shows that y−1w 6∈ 〈s, t〉 for all y 6= w in C.
Now, if C⊆DR(s, t), then

C∗ = {w∗ | w ∈ C} ⊆DR(s, t)

also is a left cell of W (see [19, Corollary 4.4(ii)]); furthermore, the W -graphs corresponding
to C and C∗ yield identical matrix representations of H (see [19, Theorem 4.2(iii)]). Thus, we
have C≈ C∗ in the sense of Definition 3.6, where the bijection is given by w 7→ w∗ (w ∈ C).

Definition 3.8 (cf. Lusztig [25], [27, 14.2]). Let w ∈W and assume that P ∗1,w 6= 0.
We define an element ∆(w) ∈ Γ>0 and an integer 0 6= nw ∈ Z by the condition ε∆(w) P ∗1,w ≡
nw mod Z[Γ<0]. Then we say that w is distinguished (with respect to L) if ∆(w)<∆(y) for
any y 6= w such that P ∗1,y 6= 0 and y, w belong to the same left cell of W . We set

D := {w ∈W | w distinguished}.

Thus, if w ∈ D and C is the left cell containing w, then the function

{y ∈ C | P ∗1,y 6= 0}→ Γ, y 7→∆(y),

https://doi.org/10.1112/S1461157012001064 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157012001064

240 M. GECK

reaches its minimum at w and w is uniquely determined by this property. (It is known that
every left cell contains at least one element y such that P ∗1,y 6= 0; see, for example, [14, 2.4.7].)

In the equal parameter case where Γ = Z and L(s) = 1 for all s ∈ S (and assuming that W is
finite) it is known that w2 = 1 and nw = 1 for all w ∈ D; furthermore, every left cell contains a
(unique) distinguished element. (See Lusztig [25]; see [6] for W of non-crystallographic type.)
Hence, in particular, D is a canonical set of representatives for the left cells of W . If W is of
type A, then D consists precisely of all involutions in W ; in general, D is strictly contained in
the set of involutions of W .

We shall now be interested in determining the above data explicitly, especially for groups of
exceptional type. Thus, the computational tasks are:

– given W, L, determine the partition of W into left cells;
– for each left cell C, determine the numbers {Ms

x,y};
– determine the set D of distinguished elements (or the related set D̃ in Conjecture 5.2

below).
The crucial ingredient in these tasks is the computation of the polynomials P ∗y,w. This is usually
done using some known recursion formulae. In the next section, we discuss a variation of this
recursion.

4. Relative Kazhdan–Lusztig polynomials

We keep the general setting of the previous section. In addition, we shall now fix a subset
S′ ⊆ S and consider the corresponding standard parabolic subgroup W ′ = 〈S′〉. Let X ⊆W
be the set of distinguished left coset representatives of W ′ in W . Every element w ∈W can
be written uniquely in the form w = xu where x ∈X, u ∈W and l(w) = l(x) + l(u); see [15,
Section 2.1]. We shall frequently use the following fact, due to Deodhar (see [15, 2.1.2]). Let
x ∈X and s ∈ S. Then we are in exactly one of the following three cases:

(1) sx < x and sx ∈X;
(2) sx > x and sx ∈X;
(3) sx > x and sx 6∈X, in which case sx= xt where t ∈ S′.

We have a corresponding parabolic subalgebra H′ = 〈T̃w | w ∈W ′〉A ⊆H. It is known that, for
w ∈W ′, the basis element C ′w lies in H′, and it is the Kazhdan–Lusztig basis element in H′.

Let y ∈X and v ∈W ′. By [7, Proposition 3.3], we have a unique expression

C ′yv =
∑

x∈X,u∈W ′
p∗xu,yvT̃xC

′
u

where p∗yv,yv = 1 and p∗xu,yv ∈A<0 if xu 6= yv; furthermore, p∗xu,yv = 0 unless xu= yv or x < y.
In the proof of [7, Proposition 3.3], we have also seen that

P ∗xu,yv =


P ∗u,v if x= y,

p∗xu,yv +
∑
w∈W ′
u<w

P ∗u,wp
∗
xw,yv if x < y.

Thus, if we have an efficient algorithm for computing the polynomials p∗xu,yv, then we can also
determine P ∗xu,yv and, hence, the elements {Ms

xu,yv}.

Proposition 4.1. We have the following recursion formulae for p∗xu,yv.

(a) If y = 1, then

p∗xu,v =

{
1 if x= 1 and u= v,

0 otherwise.

https://doi.org/10.1112/S1461157012001064 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157012001064

PYCOX 241

(b) Now assume that y 6= 1 and let s ∈ S be such that sy < y. If L(s) = 0, then

p∗xu,yv =

{
p∗sxu,syv if sx ∈X,
p∗xtu,syv if sx 6∈X,

where t= x−1sx ∈ S′ (if sx 6∈X). If L(s)> 0, then

p∗xu,yv =



p∗sxu,syv + εL(s)p∗xu,syv − p̃sxu,yv if sx < x,

ε−L(s)p∗sxu,yv if sx > x, sx ∈X,
0 if sx 6∈X, tu > u,

(εL(s) + ε−L(s))p∗xu,syv − p̃sxu,yv
+ p∗xtu,syv +

∑
w∈W ′
u<w<tw

M t
u,wp

∗
xw,syv if sx 6∈X, tu < u,

where t= x−1sx ∈ S′ (if sx 6∈X) and

p̃sxu,yv :=
∑

z∈X,w∈W ′
x6z6sz and szw<zw<syv

p∗xu,zw M
s
zw,syv.

Proof. (a) This is contained in [7, Proposition 3.3].
(b) This is essentially the same as the proofs of [16, Theorem 5.1] and [17, Proposition 4.1].

However, because of the different normalisations and conventions, we shall sketch the main
steps. Let y 6= 1 and s ∈ S be such that sy < y. First assume that L(s) = 0. Then C ′s = T̃s and
C ′sC

′
syv = C ′yv. Furthermore,

C ′sC
′
syv =

∑
x∈X,u∈W ′

p∗xu,syvT̃sT̃xC
′
u

=
∑

x∈X,u∈W ′
sx∈X

p∗xu,syvT̃sxC
′
u +

∑
x∈X,u∈W ′
sx6∈X, sx=xt

p∗xu,syvT̃xT̃tC
′
u

=
∑

x∈X,u∈W ′
sx∈X

p∗xu,syvT̃sxC
′
u +

∑
x∈X,u∈W ′
sx6∈X, sx=xt

p∗xu,syvT̃xC
′
tu,

where the last equality holds since L(t) = L(s). This yields the desired formulae.
From now on, assume that L(s)> 0. We begin by considering the identity T̃sC ′yv = εL(s)C ′yv.

The coefficient of T̃xC ′u on the right-hand side is εL(s)p∗xu,yv. Now we compute

T̃sC
′
yv =

∑
x∈X,u∈W ′

p∗xu,yvT̃sT̃xC
′
u

=
∑

x∈X,u∈W ′
sx<x

p∗xu,yvT̃sxC
′
u +

∑
x∈X,u∈W ′

sx<x

p∗xu,yv(ε
L(s) − ε−L(s))T̃xC ′u

+
∑

x∈X,u∈W ′
sx>x,sx∈X

p∗xu,yvT̃sxC
′
u +

∑
x∈X,w∈W ′

sx=xt where t∈S′

p∗xw,yvT̃x(T̃tC ′w)

=
∑

x∈X,u∈W ′
sx>x,sx∈X

p∗sxu,yvT̃xC
′
u +

∑
x∈X,u∈W ′

sx<x

p∗xu,yv(ε
L(s) − ε−L(s))T̃xC ′u

+
∑

x∈X,u∈W ′
sx<x

p∗sxu,yvT̃xC
′
u +

∑
x∈X,w∈W ′

sx=xt where t∈S′

p∗xw,yvT̃x(T̃tC ′w).

https://doi.org/10.1112/S1461157012001064 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157012001064

242 M. GECK

Thus, if sx > x and sx ∈X, then the coefficient of T̃xC ′u in this expression is p∗sxu,yv. Hence,
we obtain p∗sxu,yv = εL(s)p∗xu,yv in this case, as required.

Now assume that sx > x and sx 6∈X. Then, among the various sums in the above expression
for T̃sC ′yv, the term T̃xC

′
u will only appear in the sum∑

x∈X,w∈W ′
sx=xt where t∈S′

p∗xw,yvT̃x(T̃tC ′w).

If tw < w, then T̃tC ′w = εL(t)C ′w. On the other hand, if tw > w, then T̃tC ′w is equal to −ε−L(t)C ′w
plus an A-linear combination of terms C ′w′ where tw′ <w′. Hence, if tu > u, then the coefficient
of T̃xC ′u in T̃sC

′
yv will be −ε−L(t)p∗xu,yv. Thus, we have −ε−L(t)p∗xu,yv = εL(s)p∗xu,yv. Since

L(s) = L(t) and ε2L(s) 6=−1, we deduce that p∗xu,yv = 0, as required.
To obtain the remaining formulae, we now consider the identity

T̃sC
′
syv = C ′yv − ε−L(s)C ′syv +

∑
z∈X,w∈W ′
swz<wz<syv

Ms
zw,syvC

′
zw.

Writing C ′zw =
∑
x∈X,u∈W ′ p

∗
xu,zwT̃xC

′
u, we obtain that∑

z∈X,w∈W ′
swz<wz<syv

Ms
zw,syvC

′
zw =

∑
x∈X,u∈W ′

(∑
z∈X,w∈W ′
swz<wz<syv

p∗xu,zw M
s
zw,syv

)
T̃xC

′
u

=
∑

x∈X,u∈W ′
p̃sxu,yvT̃xC

′
u.

Thus, we have

C ′yv = T̃sC
′
syv + ε−L(s)C ′syv −

∑
x∈X,u∈W ′

p̃sxu,yvT̃xC
′
u

= T̃sC
′
syv +

∑
x∈X,u∈W ′

(ε−L(s)p∗xu,syv − p̃sxu,yv)T̃xC ′u.

By a similar computation as above, we have

T̃sC
′
syv =

∑
x∈X,u∈W ′
sx>x,sx∈X

p∗sxu,syvT̃xC
′
u +

∑
x∈X,u∈W ′

sx<x

p∗xu,syv(ε
L(s) − ε−L(s))T̃xC ′u

+
∑

x∈X,u∈W ′
sx<x

p∗sxu,syvT̃xC
′
u +

∑
x∈X,w∈W ′

sx=xt where t∈S′

p∗xw,syvT̃x(T̃tC ′w).

Now let x ∈X be such that sx < x. Then we conclude that

p∗xu,yv = p∗xu,syv(ε
L(s) − ε−L(s)) + p∗sxu,syv + ε−L(s)p∗xu,syv − p̃sxu,yv

= εL(s)p∗xu,syv + p∗sxu,syv − p̃sxu,yv,

as required. Finally, assume that sx > x, sx 6∈X and tu < u. Then p∗xu,yv will be equal to
ε−L(s)p∗xu,syv − p̃sxu,yv plus the coefficient of T̃xC ′u in∑

x∈X,w∈W ′
sx=xt where t∈S′

p∗xw,syvT̃x(T̃tC ′w).

https://doi.org/10.1112/S1461157012001064 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157012001064

PYCOX 243

If tw < w, then T̃tC
′
w = εL(t)C ′w. On the other hand, if tw > w, then

T̃tC
′
w = C ′tw − ε−L(t)C ′w +

∑
u∈W ′
tu<u<w

M t
u,wC

′
u.

Hence, since L(s) = L(t), we obtain

p∗xu,yv = (εL(s) + ε−L(s))p∗xu,syv − p̃sxu,yv + p∗xtu,syv +
∑
w∈W ′
u<w<tw

M t
u,wp

∗
xw,syv,

as desired. 2

Remark 4.2. Assume that W ′ = {1}. Then X =W and P ∗x,y = p∗x,y for all x, y ∈X. For
any x ∈X and s ∈ S, we have sx ∈X and either sx < x or sx > x. Thus, only the first two out
of the four cases in Proposition 4.1(b) will occur. These two cases yield the known recursion
formulae for the polynomials P ∗x,y.

Remark 4.3. Let us set pxu,yv = εL(yv)−L(xu)p∗xu,yv. Then pxu,yv ∈A>0. Indeed, we have
the recursion formulae.

(a) If y = 1, then

pxu,v =
{

1 if x= 1 and u= v,
0 otherwise.

(b) Now assume that y 6= 1 and let s ∈ S be such that sy < y. If L(s) = 0, then

pxu,yv =
{
psxu,syv if sx ∈X,
pxtu,syv if sx 6∈X,

where t= x−1sx ∈ S′ (if sx 6∈X). If L(s)> 0, then

pxu,yv =



psxu,syv + ε2L(s)pxu,syv − p̂sxu,yv if sx < x,
psxu,yv if sx > x, sx ∈X,
0 if sx 6∈X, tu > u,

(ε2L(s)+1)pxu,syv − p̂sxu,yv + ε2L(s)pxtu,syv

+
∑
w∈W ′
u<w<tw

εL(tw)−L(u)M t
u,wpxw,syv if sx 6∈X, tu < u,

where t= x−1sx ∈ S′ (if sx 6∈X) and

p̂sxu,yv =
∑

z∈X,w∈W ′
x6z6sy and szw<zw<syv

εL(syv)−L(zw) pxu,zw (εL(s)Ms
zw,syv).

With this renormalisation, it also follows that

Pxu,yv =


Pu,v if x= y,

pxu,yv +
∑
w∈W ′
u<w

Pu,wpxw,yv if x < y.

Lemma 4.4. Let x, y ∈X, u, v ∈W ′ and s ∈ S be such that L(s)> 0 and sxu < xu < yv <

syv. Let

πsxu,yv :=
∑

z∈X,w∈W ′
x<z6y and szw<zw<yv

p∗xu,zw M
s
zw,yv.

https://doi.org/10.1112/S1461157012001064 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157012001064

244 M. GECK

Then the following hold. If sx < x, then

Ms
xu,yv − εL(s)p∗xu,yv + πsxu,yv ∈A<0; (M1′)

on the other hand, if sx 6∈X and tu < u (where t= x−1sx ∈ S′), then

Ms
xu,yv − εL(s)p∗xu,yv + π∗xu,yv −

∑
w∈W ′
u<w<tw

M t
u,wp

∗
xw,yv ∈A<0. (M1′′)

Note that these conditions, together with the symmetry condition M
s

xu,yv =Ms
xu,yv, determine

Ms
xu,yv inductively.

Proof. We consider the identity

C ′syv = ε−L(s)C ′yv + T̃sC
′
yv −

∑
z∈X,w∈W ′
swz<wz<yv

Ms
zw,yvC

′
zw. (†)

The coefficient of T̃xC ′u on the left-hand side is p∗xu,syv. Assume first that sx < x. Then, arguing
as in the proof of Proposition 4.1, we find that the coefficient of T̃xC ′u on the right-hand side
of (†) is

p∗sxu,yv + εL(s)p∗xu,yv − p̃sxu,syv.

Now we note that

p̃sxu,syv =
∑

z∈X,w∈W ′
szw<zw<yv

p∗xu,zw M
s
zw,yv =Ms

xu,yv + πsxu,yv.

Thus, we conclude that

Ms
xu,yv − εL(s)p∗xu,yv + πsxu,yv = p̃sxu,syv − εL(s)p∗xu,yv = p∗sxu,yv − p∗xu,syv.

This expression lies in A<0; thus, we have shown that (M1′) holds. On the other hand, if sx 6∈X
and tu < u (where t= x−1sx ∈ S′), then the coefficient of T̃xC ′u on the right-hand side of (†) is

(εL(s) + ε−L(s))p∗xu,yv − p̃sxu,syv + p∗xtu,yv +
∑
w∈W ′
u<w<tw

M t
u,wp

∗
xw,yv.

Then a similar argument shows that (M1′′) holds. 2

Example 4.5. Let x, y ∈X, u, v ∈W ′ and s ∈ S be such that L(s)> 0 and sxu <

xu < yv < syv. Assume now that x= y. First of all, this forces that u < v and πsxu,yv = 0.
Furthermore, we must have sx= sy 6∈X. Thus, condition (M1′′) in Lemma 4.4 yields that

Ms
xu,yv − εL(s)p∗xu,xv −

∑
w∈W ′
u<w<tw

M t
u,wp

∗
xw,xv ∈A<0.

Now, recall that for any w ∈W , we have p∗xw,xv = 0 unless w = v. It follows that

Ms
xu,xv =M t

u,v (where t= x−1sx ∈ S′).

(This shows, in particular, that we can have Ms
xu,yv 6= 0 even if p∗xu,yv = 0.)

Remark 4.6. Assume that Γ = Z and L(s) = 1 for all s ∈ S (equal parameter case). Then
A is the ring of Laurent polynomials in the indeterminate ε. Let s ∈ S, x, y ∈X and u, v ∈W ′

https://doi.org/10.1112/S1461157012001064 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157012001064

PYCOX 245

be such that sxu < xu < yv < syv. Then

Ms
xu,yv = coefficient of ε−1 in

{
P ∗u,v if x= y,
p∗xu,yv if x 6= y.

= coefficient of εL(yv)−L(xu)−1 in
{
Pu,v if x= y,
pxu,yv if x 6= y.

This is easily seen using the formulae in Lemma 4.4 and Example 4.5; note also that Remark 3.1
already shows that Ms

xu,yw ∈ Z in this case.

Corollary 4.7. Let C′ be a left cell of W ′. Then we have the following recursion formulae

for p∗xu,yv where x, y ∈X and u, v ∈ C′.

(a) If y = 1, then

p∗xu,v =
{

1 if x= 1 and u= v,
0 otherwise.

(b) Now assume that y 6= 1 and let s ∈ S be such that sy < y. If L(s) = 0, then

p∗xu,yv =
{
p∗sxu,syv if sx ∈X,
p∗xtu,syv if sx 6∈X,

where t= x−1sx ∈ S′ (if sx 6∈X). If L(s)> 0, then

p∗xu,yv =



p∗sxu,syv + εL(s)p∗xu,syv − p̃sxu,yv if sx < x,

ε−L(s)p∗sxu,yv if sx > x, sx ∈X,

0 if sx 6∈X, tu > u,

(εL(s) + ε−L(s))p∗xu,syv − p̃sxu,yv

+ p∗xtu,syv︸ ︷︷ ︸
only if tu ∈ C′

+
∑
w∈C′

u<w<tw

M t
u,wp

∗
xw,syv

if sx 6∈X, tu < u,

where t= x−1sx ∈ S′ (if sx 6∈X) and

p̃sxu,yv :=
∑

z∈X,w∈C′

x6z6sy and zw<zw<syv

p∗xu,zw M
s
zw,syv.

Proof. This immediately follows from Proposition 4.1 and the following facts. Let 6′L be
the Kazhdan–Lusztig left pre-order relation on W ′. By [7, Proposition 3.3], we have p∗xu,yv = 0
unless xu= yv or x < y and u6′L v; furthermore, by [7, Section 4], we have the implication
‘xu6L yv⇒ u6′L v’. 2

Algorithm A. The following inductive procedure produces the partition of W into left
cells and the associated W -graphs.

If W = {1}, then C = {1} is the only left cell and there is a canonical W -graph associated with
it. Now assume that W 6= {1} and let W ′ $W be a proper parabolic subgroup. By induction,
we obtain the partition W ′ = C′1 q · · · q C′k of W ′ into left cells and the associated W -graphs.
Now fix i ∈ {1, . . . , k}. Then, by the main result of [7], the set XC′i is a union of left cells, that
is, we have

XC′i = Ci,1 q Ci,2 q · · · q Ci,ki

where Ci,1, Ci,2 . . . , Ci,ki
are left cells of W and X is the set of distinguished left coset

representatives of W ′ in W . These left cells are determined as follows. By Corollary 4.7 and

https://doi.org/10.1112/S1461157012001064 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157012001064

246 M. GECK

Lemma 4.4, there is a recursive algorithm for simultaneously computing the polynomials

{p∗xu,yv} and {Ms
xu,yv} (x, y ∈X, u, v ∈ C′i).

(The computations will only involve the elements in the fixed set XC′i.) Once this is achieved,
the set XC′i is decomposed into left cells by the procedure in Example 3.4 (that is, by explicitly
working out the transitive closure of the relation ←L); this also yields automatically the
associated W -graphs. By letting i run over all indices in {1, . . . , k} we eventually obtain all
the left cells of W and the associated W -graphs.

In PyCox, the function klcells implements the procedure in Algorithm A. As may be
expected this leads to significant efficiency improvements compared with the use of ordinary
Kazhdan–Lusztig polynomials (where the recursion involves all elements of W). In the equal
parameter case, one can apply some further simplifications to reduce the number of left cells
that have to be ‘induced’ from W ′ to W : first of all, it is sufficient to induce only one left
cell from each pair of left cells which are related by multiplication with the longest element
in W ′. (This follows from Yin [32].) Furthermore, assume that i1, i2 ∈ {1, . . . , k} are such
that C′i1 ≈ C′i2 in the sense of Definition 3.6. Then, by [9, Corollary 3.10], it is known that,
for a suitable labelling, we have ki1 = ki2 and Ci1,j ≈ Ci2,j for all j ∈ {1, . . . , ki1}. Thus, it is
sufficient to induce one left cell from each orbit under the star operations in Example 3.7, and
then to apply the star operations to the resulting cells of W . This leads again to an enormous
gain in efficiency. For example, in the computation of the left cells for type E7, we only need
to induce 34 (instead of a total of 578) left cells from a parabolic subgroup of type D6; see
Table 2. The efficiency also depends on the choice of W ′. For example, in type E7 it is more
efficient to use W ′ of type D6 than of type E6; in all other cases, we have chosen W ′ such
that the index |W :W ′| is as small as possible. Finally note that, if one is only interested in
the partition of the group into left cells, then there are further techniques available; see, for
example, Chen–Shi [3].

One of the main advantages of being able to compute left cells and the corresponding W -
graphs in a language like Python lies in the fact that it provides immediate functionality for
further handling of the data. We shall see a concrete example of this in the next section.

Table 2. Examples of computations of left cells (equal parameters).

W |W | W ′ |X| max{|XC′|} # left cells # (left cells/≈) Time

I2(5) 10 A1 5 5 4 4 0.01 s
H3 120 I2(5) 12 48 22 15 0.2 s
D4 192 A3 8 24 36 12 0.1 s
F4 1 152 B3 24 120 72 29 1 s
D5 1 920 D4 10 140 126 16 0.7 s
H4 14 400 H3 120 960 206 90 370 s
D6 23 040 D5 12 300 578 34 10 s
E6 51 840 D5 27 675 652 21 45 s
D7 322 560 D6 14 1 190 2 416 49 190 s
A8 362 880 A7 9 8̇10 2 620 30 140 s
E7 2 903 040 D6 126 10 710 6 364 56 4 h
D8 5 160 960 D7 16 3 696 11 504 90 4 h
B8 10 321 920 B7 16 8 848 15 304 346 58 h

(B8 requires 9 GB main memory; in all other cases, 4 GB are sufficient.)

https://doi.org/10.1112/S1461157012001064 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157012001064

PYCOX 247

5. Leading coefficients of character values

We keep the general setting of the previous sections; we assume now that W is finite and let
R= R. It is known that this is a splitting field for W (see [15, 6.3.8]). Let Irr(W) denote
the set of simple R[W]-modules (up to isomorphism). Let K be the field of fractions of A
and HK =K ⊗A H. Then it is known that HK is split semisimple and abstractly isomorphic
to K[W] (see [15, 9.3.5]); furthermore, the map εg 7→ 1 (g ∈ Γ) induces a bijection between
Irr(HK) and Irr(W) (see [15, 8.1.7]). Given E ∈ Irr(W), we denote by Eε the corresponding
irreducible representation of HK . It is known that

trace(T̃w, Eε) ∈ R[Γ] for all w ∈W

(see [15, 9.3.5]). Thus, we can define

aE := min{g ∈ Γ>0 | εg trace(T̃w, Eε) ∈ R[Γ>0] for all w ∈W}.

Consequently, there are unique numbers cw,E ∈ R (w ∈W) such that

εaE trace(T̃w, Eε) = (−1)l(w) cw,E + ‘higher terms’,

where ‘higher terms’ means an R-linear combination of terms εg where g > 0. These numbers
are the ‘leading coefficients of character values’, as defined and studied by Lusztig [23, 26, 27].
Since trace(T̃w, Eε) = trace(T̃w−1 , Eε) for all w ∈W (see [15, 8.2.6]), we certainly have

cw,E = cw−1,E for all w ∈W.

Given E, there is at least one w ∈W such that cw,E 6= 0 (by the definition of aE). Hence, the
sum of all c2w,E (w ∈W) will be strictly positive and so we can write that sum as fE dim E

where fE ∈ R is strictly positive. In fact, we have the following orthogonality relations (see [15,
Excercise 9.8]): ∑

w∈W
cw,E cw,E′ =

{
fE dim E if E ∼= E′,
0 otherwise.

The connection with left cells is given by the following result, first proved by Lusztig [23,
5.7], [26, 3.5] in the equal parameter case (where the proof ultimately relies upon a geometric
interpretation of the basis {C ′w} of H); the general case (where no geometric interpretation is
available) is proved by an elementary argument in [12, 3.5, 3.8]. Given E ∈ Irr(W) and a left
cell C of W , we denote by m(C, E) the multiplicity of E as an irreducible constituent of the
left cell module [C]1 (as defined in Remark 3.5).

Proposition 5.1. Let E ∈ Irr(W) and C be a left cell.

(a) Let also E′ ∈ Irr(W). Then∑
w∈C

cw,E cw,E′ =
{
fE m(C, E) if E ∼= E′,
0 otherwise.

(b) If cw,E 6= 0 for some w ∈ C, then we also have w−1 ∈ C.

In what follows, it will be important to renormalise the leading coefficients. In the equal
parameter case, this renormalisation is suggested by the formula in [26, 3.5(b)] (see Remark 5.5
below). In the unequal parameter case, we cannot just take the analogous formula; instead, we
proceed as follows where we partly rely on a conjectural property. Following [10, Section 3]
and [14, Section 1.5], we define real numbers

n̆w :=
∑

E∈Irr(W)

f−1
E cw,E for any w ∈W.

https://doi.org/10.1112/S1461157012001064 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157012001064

248 M. GECK

(Note that, in [14, Section 1.3], we have omitted the factor (−1)l(w) in the definition of cw,E ;
hence, the numbers ñw in [14, Section 1.5] will be equal to (−1)l(w)n̆w.) With this notation,
we can now state the following conjecture.

Conjecture 5.2. Let D̃ := {w ∈W | n̆w 6= 0}. Then the following hold.
(a) Every left cell of W contains a unique element of D̃.
(b) We have w2 = 1 and n̆w =±1 for every w ∈ D̃.

It is known that every left cell contains at least one element of D̃. (This follows from [14,
1.8.5 and 2.1.20].) We expect that D̃ is precisely the set D defined in Definition 3.8 and that
n̆w = nw for all w ∈ D. The advantage of the definition of D̃ is that this set can actually be
computed in an efficient way; see Algorithm B below.

Remark 5.3. Conjecture 5.2 and the equality D̃ =D are known to hold if Lusztig’s
properties P1–P15 in [27, 14.2] are satisfied for W, L (see [14, Section 2.3] for details).
By [27, Section 16] (see [6] for W of non-crystallographic type), P1–P15 do hold in the
equal parameter case where Γ = Z and L(s) = 1 for all s ∈ S. It is also known that then the
coefficients of the polynomials P ∗y,w are non-negative; see [1, 24]. Hence, in this case, we have

n̆w = nw = 1 for all w ∈ D̃.

We shall consider some cases of unequal parameters in the examples below.

Definition 5.4. Assume that Conjecture 5.2 holds for W, L. Let w ∈W and d ∈ D̃ be the
unique element such that w, d belong to the same left cell. Then we set

c∗w,E := (−1)l(w)+l(d)n̆d cw,E for all E ∈ Irr(W).

Remark 5.5. Assume that we are in the equal parameter case where Γ = Z and L(s) = 1
for all s ∈ S. Let us check that then our renormalisation corresponds to the formula in [26,
3.5(b)]. Thus, we claim that

c∗w,E = (−1)l(w)+aE cw,E for all w ∈W and E ∈ Irr(W). (a)

This is seen as follows. Let w ∈W . By Remark 5.3, we have n̆d = 1 where d ∈ D̃ is the unique
element such that w, d belong to the same left cell. Hence, it will be enough to show that

l(d)≡ aE mod 2 for all E ∈ Irr(W) such that cw,E 6= 0. (b)

Now let E ∈ Irr(W) be such that cw,E 6= 0. Then, by [26, 3.3], we have aE = a(w) where
z 7→ a(z) (z ∈W) is the function defined by Lusztig [24]. This function is constant on the
left cells of W and so aE = a(d). Thus, it remains to show that l(d)≡ a(d) mod 2. But this
immediately follows from [24, 3.2] (see also [14, Remark 2.3.5]) and property P5 in [27, 14.2].
An explanation for the renormalisation in (a) can be given by using the asymptotic algebra
J introduced by Lusztig [25]. This algebra has a basis {tw | w ∈W} and one can easily check
that the map tw 7→ (−1)l(w)+l(d)tw (where d ∈ D̃ is such that w, d belong to the same left cell)
defines an algebra automorphism of J .

Remark 5.6. Assume that Conjecture 5.2 holds for W, L. Let C be a left cell and consider
the unique element d ∈ D̃ ∩ C. Then we have:

c∗d,E =m(C, E) for all E ∈ Irr(W).

https://doi.org/10.1112/S1461157012001064 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157012001064

PYCOX 249

In the framework of Lusztig’s theory of the asymptotic algebra, the above statement appears
in [27, 21.4]; see also [23, Chapter 12]. One can give a more elementary argument, as follows.
We consider the algebra J̃ defined in [14, Section 1.5]. Using J̃ , one can define a partition of
W into ‘left J̃-cells’; see [14, Section 1.6]. By [14, Proposition 2.1.20], every Kazhdan–Lusztig
left cell is a union of left J̃-cells. Hence, by [12, Lemma 3.7] and [14, Example 1.8.5], we have

m(C, E) =
∑

d∈D̃∩C

n̆dcd,E for all E ∈ Irr(W).

Thus, the claim immediately follows from the assumption that Conjecture 5.2 holds. In
particular, we have the following formula for the decomposition of the left cell module [C]1:

[C]1 =
∑

E∈Irr(W)

m(C, E) E = n̆d
∑

E∈Irr(W)

cd,E E

(in the appropriate Grothendieck group of representations).

Definition 5.7. Assume that Conjecture 5.2 holds for W, L. Let C be a left cell of W and
denote by Irr(W | C) the set of all E ∈ Irr(W) such that E is an irreducible constituent of [C]1.
Then we define

X(W | C) :=
(
c∗w,E

)
E∈Irr(W |C), w∈C∩C−1 .

(Following Lusztig [26, 27], this table can be interpreted as the character table of the
subalgebra of the asymptotic algebra J which is spanned by tw for w ∈ C ∩ C−1; the unique
element d ∈ D̃ ∩ C corresponds to the identity element of this algebra, in accordance with
Remark 5.6.) Note that, by Proposition 5.1, we have E ∈ Irr(W | C) if and only if cw,E 6= 0
for some w ∈ C; furthermore, cw,E = 0 unless w, w−1 belong to the same left cell. Thus, every
non-zero leading coefficient will appear in one of the tables X(W | C) as C runs over the left
cells of W .

Example 5.8. Assume thatW is a finite Weyl group and that we are in the equal parameter
case where Γ = Z and L(s) = 1 for all s ∈ S. Then the tables X(W | C) have been determined
explicitly by Lusztig [26, 3.14], based on the results in [23]. In particular, it turns out that,
if E ∈ Irr(W) is ‘special’ in the sense of Lusztig [21], then c∗w,E > 0 for all w ∈W . (Except
for some exceptional cases in type E7 and E8, the latter statement already appeared in [23,
Proposition 7.1]; one can also check this property directly in the exceptional cases by using the
methods in the proof of [23, Proposition 7.1].) Furthermore, still assuming that E is special, we
actually have c∗w,E > 0 for all w ∈ C ∩ C−1 where C is a left cell such that m(C, E)> 0. Thus, for
any given left cell C, all the entries in the row of X(W | C) corresponding to the unique special
representation occurring in [C]1 are strictly positive. Note that, by Proposition 5.1, there can
be at most one row with this property.

We shall now be interested in computing the tables X(W | C) explicitly in the case where W
is not of crystallographic type and also in some examples involving unequal parameters.

Algorithm B. The following procedure verifies if Conjecture 5.2 holds for W, L and
determines the tables X(W | C) for all left cells of W .

Step 1. Let Cl(W) be the set of conjugacy classes of W . Using the inductive description
in [15, Proposition 8.2.7], we determine the ‘class polynomials’ fw,C ∈A for all w ∈W and all
C ∈ Cl(W). These polynomials have the following property. For w ∈W , define Tw := εL(w)T̃w;

https://doi.org/10.1112/S1461157012001064 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157012001064

250 M. GECK

for any C ∈ Cl(W) let dmin(C) = min{l(w) | w ∈ C} and let wC ∈ C be a representative such
that l(wC) = dmin(C). Then we have:

trace(Tw, Eε) =
∑

C∈Cl(W)

fw,C trace(TwC
, Eε) for all E ∈ Irr(W).

Step 2. By [15, Chapter 10, 11], the character tables

X(H) =
(
trace(TwC

, Eε)
)
E∈Irr(W), C∈Cl(W)

are explicitly known. Furthermore, the functions E 7→ aE and E 7→ fE are explicitly known; see,
for example, [15, Appendix] (equal parameter case) and the summary in [14, Section 1.3] for
unequal parameters. Thus, in combination with the class polynomials in step 1, we can explicitly
compute all the leading coefficients cw,E where w ∈W and E ∈ Irr(W). Consequently, we can
then also compute the numbers n̆w for all w ∈W , and the set D̃.

Step 3. By Algorithm A, we can determine the partition of W into left cells. (We do not need
the additional information on the associated W -graphs here.) Let C be a fixed left cell. Using
the data in step 2, we can then explicitly verify if Conjecture 5.2 holds. Using the formula in
Proposition 5.1(a), we can find the multiplicities m(C, E) for all E ∈ Irr(W). Thus, the table
X(W | C) is determined.

In PyCox, the function leftcellleadingcoeffs implements the procedure in Algorithm B
for a given left cell. This allows the explicit determination of all the tables X(W | C) for groups
W of rank up to around 7 and any weight function L. All this even works for type E7 where
it takes about 3 hours and requires 4 GB of main memory. With this information, it is then
straightforward to verify Kottwitz’s conjecture for type E7, as mentioned in the introduction.

Performing only steps 1 and 2 of Algorithm B yields the set D̃ and all the leading coefficients
cw,E . This even works for type E8 where it takes nearly 18 days and requires about 22 GB of
main memory to compute the 101 796 elements in D̃. (As far as I am aware, these elements
have not been explicitly known before.) All the known sets D̃ for W of exceptional type are
explicitly stored in a compact format within PyCox; see the function libdistinv.

The explicit data in the examples below have been computed with the help of the PyCox

function leftcellleadingcoeffs.

Example 5.9. Let W be of type H3 or H4. Let C be a left cell of W . Using Algorithm A,
we obtain the left cells of W ; we have

|C| ∈
{
{1, 5, 6, 8} in type H3,
{1, 8, 18, 25, 32, 36, 326, 392, 436} in type H4.

(See also Alvis [1].) If |C| equals 1, 5, 25 or 36, then [C]1 is irreducible and the table X(W | C)
is (1). Now assume that |C| equals 6, 8, 18 or 32. Then [C]1 = E1 ⊕ E2 where E1 6∼= E2,
dim E1 = dim E2 and where we choose the notation such that E1 is a special representation.
Then the table X(W | C) is

E1 1 1
E2 1 −1 or

E1 1 α
E2 1 1− α,

according to whether fE1 equals 2 or 2 + α, respectively, where α= 1
2 (1 +

√
5). Finally, if |C|

equals 326, 392 or 436, then X(W | C) is given by Table 3. Here, we use the notation for Irr(W)
defined in [15, Appendix]. As in Example 5.8 we note that there is a row in which all entries
are strictly positive, and this row corresponds to the unique special representation occurring
in [C]1 (which is 24s in Table 3).

https://doi.org/10.1112/S1461157012001064 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157012001064

PYCOX 251
T
a
b
l
e

3
.

T
h
e

ta
b
le

s
X

(W
|C

)
fo

r
b
ig

le
ft

ce
ll
s

in
ty

p
e
H

4
;
α

=
(1

+
√

5
)/

2
.

L
ef

t
ce

ll
s

w
it

h
3
2
6

el
em

en
ts

8
r

1
0

−
1

1
0

0
−

1
−

1
0

0
1

−
1

0
1

8
r
r

1
−

1
0

1
−

1
−

1
0

0
1

1
−

1
0

1
−

1
1
8

r
1

1
0

−
1

−
1

1
0

0
1

−
1

−
1

0
1

1
2
4

t
1

2
−
α

4
−

3
α

5
−

3
α

2
−
α

2
−
α

0
0

−
2
+
α

−
2
+
α

−
5
+

3
α

−
4
+

3
α

−
2
+
α

−
1

2
4

t
1

1
+
α

1
+

3
α

2
+

3
α

1
+
α

1
+
α

0
0

−
1
−
α

−
1
−
α

−
2
−

3
α

−
1
−

3
α

−
1
−
α

−
1

2
4

s
1

2
−

2
α

7
−

4
α

1
3
−

8
α

6
−

4
α

1
6
−

1
0
α

7
−

4
α

7
−

4
α

1
6
−

1
0
α

6
−

4
α

1
3
−

8
α

7
−

4
α

2
−

2
α

1
2
4

s
1

2
α

3
+

4
α

5
+

8
α

2
+

4
α

6
+

1
0
α

3
+

4
α

3
+

4
α

6
+

1
0
α

2
+

4
α

5
+

8
α

3
+

4
α

2
α

1
3
0

s
1
−

1
+
α

1
−
α

−
2
+
α

3
−
α

1
−
α

−
2
+

2
α

−
2
+

2
α

1
−
α

3
−
α

−
2
+
α

1
−
α

−
1
+
α

1
3
0

s
1

−
α

α
−

1
−
α

2
+
α

α
−

2
α

−
2
α

α
2
+
α

−
1
−
α

α
−
α

1
4
0

r
1

2
3

1
0

−
2

−
1

−
1

−
2

0
1

3
2

1
4
8

r
r

2
0

2
−

2
0

0
0

0
0

0
2

−
2

0
−

2

L
ef

t
ce

ll
s

w
it

h
3
9
2

el
em

en
ts

1
0

r
1

0
−

1
−

1
1

0
0

0
−

1
0

1
0

0
1

−
1

−
1

0
1

1
6

t
1
−

1
+
α

−
α

1
−
α

1
−

1
−

1
α

0
−
α

0
1

1
−

1
α

−
1
+
α

1
−
α

−
1

1
6

t
1

−
α

−
1
+
α

α
1

−
1

−
1

1
−
α

0
−

1
+
α

0
1

1
−

1
1
−
α

−
α

α
−

1
1
8

r
1

0
1

−
1

−
1

0
0

0
1

0
1

0
0

−
1

1
−

1
0

1
2
4

t
1

3
−

2
α

3
−

2
α

1
−
α

5
−

3
α

2
−
α

2
−
α

1
−
α

0
−

1
+
α

0
−

2
+
α
−

2
+
α
−

5
+

3
α
−

3
+

2
α
−

1
+
α
−

3
+

2
α
−

1
2
4

t
1

1
+

2
α

1
+

2
α

α
2
+

3
α

1
+
α

1
+
α

α
0

−
α

0
−

1
−
α
−

1
−
α
−

2
−

3
α
−

1
−

2
α

−
α

−
1
−

2
α
−

1
2
4

s
1

4
−

3
α

5
−

3
α

2
−
α

1
3
−

8
α

7
−

4
α

7
−

4
α

1
1
−

7
α

1
6
−

1
0
α

1
1
−

7
α

2
−

2
α

7
−

4
α

7
−

4
α

1
3
−

8
α

5
−

3
α

2
−
α

4
−

3
α

1
2
4

s
1

1
+

3
α

2
+

3
α

1
+
α

5
+

8
α

3
+

4
α

3
+

4
α

4
+

7
α

6
+

1
0
α

4
+

7
α

2
α

3
+

4
α

3
+

4
α

5
+

8
α

2
+

3
α

1
+
α

1
+

3
α

1
3
0

s
1

1
−

1
2
−
α
−

2
+
α

1
−
α

1
−
α

2
−
α

−
2
+

2
α

2
−
α

2
−

2
α

1
−
α

1
−
α

−
2
+
α

−
1

2
−
α

1
1

3
0

′ s
1

1
−

1
1
+
α
−

1
−
α

α
α

1
+
α

−
2
α

1
+
α

2
α

α
α

−
1
−
α

−
1

1
+
α

1
1

4
0

r
2

1
3

3
2

−
2

−
2

−
1

−
2

−
1

2
−

2
−

2
2

3
3

1
2

4
8

r
r

2
1

1
1

−
2

0
0

1
0

−
1

0
0

0
2

−
1

−
1

−
1

−
2

L
ef

t
ce

ll
s

w
it

h
4
3
6

el
em

en
ts

6
s

1
α
−

1
−
α
−
α

−
α

α
1
+
α

−
1

−
1

−
α

1
+
α

−
α

−
1
−
α

α
α

1
1
+
α

α
−

1
−
α
−
α

−
α

−
1

1
α

6
s

1
1
−
α
−

2
+
α
−

1
+
α
−

1
+
α

1
−
α

2
−
α

−
1

−
1
−

1
+
α

2
−
α
−

1
+
α
−

2
+
α

1
−
α

1
−
α

1
2
−
α

1
−
α
−

2
+
α
−

1
+
α
−

1
+
α
−

1
1

1
−
α

1
6

t
1

α
−
α

−
1

−
1
−

1
+
α

1
1
−
α

0
0

0
0

0
0

0
0

−
1

1
−
α

α
1

1
−

1
+
α
−

1
−
α

1
6

t
1

1
−
α
−

1
+
α
−

1
−

1
−
α

1
α

0
0

0
0

0
0

0
0

−
1

α
1
−
α

1
1

−
α
−

1
α
−

1
2
4

t
1

1
−
α

3
−

2
α

2
−
α

2
−
α

3
−

2
α

5
−

3
α

1
−
α

0
0

0
0

0
0

0
0
−

5
+

3
α
−

3
+

2
α
−

3
+

2
α
−

2
+
α
−

2
+
α
−

1
+
α
−

1
α
−

1
2
4

t
1

α
1
+

2
α

1
+
α

1
+
α

1
+

2
α

2
+

3
α

α
0

0
0

0
0

0
0

0
−

2
−

3
α
−

1
−

2
α
−

1
−

2
α
−

1
−
α
−

1
−
α
−
α
−

1
−
α

2
4

s
1

1
−
α

5
−

3
α

3
−

2
α

3
−

2
α

8
−

5
α

1
3
−

8
α

2
−
α

6
−

4
α

1
0
−

6
α

6
−

4
α

1
0
−

6
α

1
6
−

1
0
α

4
−

2
α

4
−

2
α

2
−

2
α

1
3
−

8
α

8
−

5
α

5
−

3
α

3
−

2
α

3
−

2
α

2
−
α

1
1
−
α

2
4

s
1

α
2
+

3
α

1
+

2
α

1
+

2
α

3
+

5
α

5
+

8
α

1
+
α

2
+

4
α

4
+

6
α

2
+

4
α

4
+

6
α

6
+

1
0
α

2
+

2
α

2
+

2
α

2
α

5
+

8
α

3
+

5
α

2
+

3
α

1
+

2
α

1
+

2
α

1
+
α

1
α

3
0

s
2

1
1
−
α

0
0

2
−
α
−

4
+

2
α

1
−
α
−

1
+

2
α

1
−
α

4
−

3
α

1
−
α

α
1
−
α

1
−
α

3
−

2
α
−

4
+

2
α

2
−
α

1
−
α

0
0

1
−
α

2
1

3
0

s
2

1
α

0
0

1
+
α
−

2
−

2
α

α
1
−

2
α

α
1
+

3
α

α
1
−
α

α
α

1
+

2
α
−

2
−

2
α

1
+
α

α
0

0
α

2
1

4
0

r
2

1
3

0
0

−
1

2
3

0
−

2
0

−
2

−
2

−
2

−
2

2
2

−
1

3
0

0
3

2
1

4
8

r
r

2
1

1
0

0
1

−
2

1
0

0
0

0
0

0
0

0
2

−
1

−
1

0
0

−
1
−

2
−

1

https://doi.org/10.1112/S1461157012001064 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157012001064

252 M. GECK

Example 5.10. Let W be of type I2(m) where m> 3 and S = {s1, s2}. Assume that we
are in the equal parameter case, where Γ = Z and L(s) = 1 for all s ∈ S. Let ζ ∈ C be a root of
unity of order m, chosen such that ζ + ζ−1 = 2 cos(2π/m). By [15, Section 5.4], we have

Irr(W) =
{
{1W , sgn, σ1, σ2, . . . , σ(m−1)/2} if m is odd,
{1W , sgn, σ1, σ2, . . . , σ(m−2)/2, sgn1, sgn2} if m is even,

where 1W is the unit and sgn is the sign representation, all σj are 2-dimensional, and sgn1, sgn2

are two further 1-dimensional representations when m is even, in which case we fix the notation
such that s1 acts as +1 in sgn1 and as −1 in sgn2. The left cells and the corresponding left cell
modules are given as follows (see, for example, [14, 2.1.8, 2.2.8]):

{10}, {1m}, {21, 12, 23, . . . , 1m−1}, {11, 22, 13, . . . , 2m−1} (m odd)

{10}, {1m}, {21, 12, 23, . . . , 2m−1}, {11, 22, 13, . . . , 1m−1} (m even).

Here, for any k > 0, we write 1k = s1s2s1 . . . (k factors) and 2k = s2s1s2 . . . (k factors); note
that 1m = 2m. We have:

[10]1 = 1W , [21, 12, 23, . . . , 2m−1]1 = (sgn1)⊕ (sum of all σj),

[11, 22, 13, . . . , 1m−1]1 = (sgn2)⊕ (sum of all σj), [1m]1 = sgn,

where sgn1 and sgn2 have to be omitted if m is odd. (Note that [14, 2.2.8] contains a misprint:
the roles of sgn1, sgn2 need to be changed there.) By [14, Example 1.3.7], we have a1W

= 0
and asgn =m; all the other irreducible representations have a-invariant equal to 1. First of all,
one easily checks that

c∗w,1W
=
{

1 if w = 1
0 otherwise and c∗w,sgn =

{
1 if w = w0,
0 otherwise,

where w0 ∈W is the longest element. Next consider sgn1 and sgn2 (in case m is even). Let
w ∈W . For i= 1, 2 we denote by li(w) the number of occurrences of the generator si in a
reduced expression for w. Then

trace(T̃w, sgn1) = (−1)l2(w)εl1(w)−l2(w)

and so

c∗w,sgn1
=
{
−(−1)l2(w) if l1(w)− l2(w) =−1,
0 otherwise.

A similar formula holds for c∗w,sgn2
where the roles of l1(w) and l2(w) need to be interchanged.

Finally, consider σj . By [15, Lemma 8.3.3], we have

trace(T̃si
, σj) = ε− ε−1 and trace(T̃wk

, σj) = ζjk + ζ−jk

where wk = (s1s2)k for 0 6 k 6m/2. In particular, we see that

c∗s1,σj
= c∗s2,σj

= 1 and c∗wk,σj
= 0 for all 0 6 k 6m/2.

Let y ∈W be a conjugate of s1 or s2. Then l(y) is odd and we write l(y) = 2k + 1 where k > 0.
Assume that k > 2 and let i ∈ {1, 2} be such that y′ = siysi < y. Then siy or ysi equals wk. So
we have

trace(T̃y, σj) = trace(T̃y′ , σj) + (ε− ε−1)trace(T̃wk
, σj).

Since aσj
= 1, this yields that cy,σj

= cy′,σj
+ (ζjk + ζ−jk). Thus, we have

c∗y,σj
= cy,σj

= 1 +
∑

16i6k

(ζji + ζ−ji).

https://doi.org/10.1112/S1461157012001064 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157012001064

PYCOX 253

For example, for m= 5, we obtain for the two left cells with m− 1 = 4 elements:

X(W | C) :
σ1 1 α
σ2 1 1− α where α= 1

2 (1 +
√

5).

Having computed all the leading coefficients for W , we also see that

D̃ = {1, s1, s2, w0}.

To conclude, let E ∈ Irr(W) be special, that is, E ∈ {1W , sgn, σ1}. By the above computations,
we see that c∗w,E > 0 for all w ∈W ; note also that c∗y,σ1

> 0 where l(y) = 2k + 1 and 1 6 k 6
m/2− 1. Using this property and the explicit description of the left cells, we deduce that
c∗w,E > 0 for all w ∈ C ∩ C−1 where C is a left cell with m(C, E)> 0.

Conjecture 5.11. Assume that Conjecture 5.2 holds for W, L and define

SL(W) := {E ∈ Irr(W) | c∗w,E > 0 for all w ∈W}.

Then, for each left cell C ofW , there is a unique E ∈ SL(W) such thatm(C, E)> 0; furthermore,
for this E, we have m(C, E) = 1 and c∗w,E > 0 for all w ∈ C ∩ C−1.

Remark 5.12. Let W be a finite Coxeter group and assume that we are in the equal
parameter case where Γ = Z and L(s) = 1 for all s ∈ S. Then the above conjecture holds where
SL(W) consists precisely of the ‘special’ representations as originally defined by Lusztig [21].

Indeed, by standard reduction arguments, we can assume that W is irreducible. If W is a
finite Weyl group, the assertion holds by the results of Lusztig [23, 26], as already discussed
in Example 5.8. If W is of type I2(m), H3 or H4, then the required assertions are verified by
inspection using the data in Examples 5.9 and 5.10.

Remark 5.13. Assume that Conjectures 5.2 and 5.11 hold for W, L. Then we have∑
E∈SL(W)

dim E = number of left cells of W (with respect to L).

Proof. We consider the quantity

ν =
∑

C

∑
E∈SL(E)

m(C, E)

where the first sum runs over all left cells of W . Since the direct sum of all left cell modules
[C]1 is isomorphic to the regular representation of W , we have

dim E =
∑

C

m(C, E) for every E ∈ Irr(W).

This shows that ν =
∑
E∈SL(W) dim E. On the other hand, by Conjecture 5.11, we have

1 =
∑

E∈SL(W)

m(C, E) for each left cell C.

So ν equals the number of left cells. This yields the desired equality. 2

Let us now consider some examples with unequal parameters.

Example 5.14. Let W be of type I2(m) where m> 3 is even and S = {s1, s2}. Assume
that we have a weight function such that b= L(s1)> a= L(s2)> 0. The left cells and the

https://doi.org/10.1112/S1461157012001064 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157012001064

254 M. GECK

corresponding left cell modules are given as follows (see, for example, [14, 2.1.8, 2.2.8]):

{10}, {21}, {1m−1}, {1m}, {11, 22, 13, . . . , 2m−2}, {12, 23, 14, . . . , 2m−1}.

(Notation as in Example 5.10.) We have:

[10]1 = 1W , [21]1 = sgn1, [1m−1]1 = sgn2, [1m]1 = sgn,

[11, 22, 13, . . . , 2m−2]1 = [12, 23, 14, . . . , 2m−1] = sum of all σj .

By [14, Example 1.3.7], the a-invariants are given as follows:

a1W
= 0, asgn1

= a, asgn2
=
m

2
(b− a) + a, asgn =

m

2
(a+ b), aσj

= b.

Arguing as in Example 5.10, we find the following leading coefficients:

cw,1W
=
{

1 if w = 10

0 otherwise, and cw,sgn =
{

1 if w = 1m
0 otherwise.

cw,sgn1
=
{

1 if w = 21

0 otherwise, and cw,sgn2
=
{
−(−1)m/2 if w = 1m−1

0 otherwise.

For σj , we now obtain c11,σj = 1, c21,σj = 0 and also cwk,σj = 0 where wk = (s1s2)k for
0 6 k 6m/2. Next, assume that k > 3 is odd; then we find the recursions

c1k,σj
= c2k−2,σj

+ (ζjk + ζ−jk) and c2k,σj
= c1k−2,σj

.

Finally, the numbers n̆w have been determined in [14, 1.7.4]:

n̆w =


1 for w ∈ {10, 11, 21, 23, 1m},
−(−1)m/2 for w = 1m−1,
0 otherwise.

This allows us, first of all, to verify that Conjecture 5.2 holds where

D̃ = {10, 11, 21, 23, 1m−1, 1m}.

Continuing as in Example 5.10, we conclude that Conjecture 5.11 also holds where

SL(W) = {1W , sgn1, sgn2, sgn, σ1}.

For example, form= 8 and b= 2, a= 1, we obtain for the two left cells withm− 2 = 6 elements:

X(W | C) :
σ1 1

√
2 1

σ2 1 0 −1
σ3 1 −

√
2 1.

Example 5.15. Let W be of type F4, with generators and diagram as in Table 1. Then
a weight function L is specified by two elements a, b ∈ Γ>0 where a= L(s0) = L(s1) and
b= L(s2) = L(s3). Let us assume that a > 0 and b > 0. (By the discussion in [14, Section 2.4],
the case where L(s) = 0 for some s ∈ S can always be reduced to the case where all weights are
strictly positive, possibly by passing to a proper reflection subgroup of W .) By the symmetry
of the diagram, we can also assume that a6 b. Then, by the results in [8, Section 4], there are
essentially only four cases to consider:

a= b, b= 2a, 2a > b > a, b > 2a.

The equal parameter case is already settled by Lusztig [21]. In the remaining cases it turns
out that, for every left cell C, the representation [C]1 is multiplicity-free with at most 3
irreducible constituents. Using Algorithm B we have checked that Conjecture 5.11 holds where

https://doi.org/10.1112/S1461157012001064 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157012001064

PYCOX 255

the sets SL(W) are given as follows:

a= b : 11, 14, 91, 94, 12, 42, 45, 81, 82, 83, 84;
b= 2a : 11, 13, 14, 22, 23, 24, 41, 91, 92, 93, 12, 42, 43, 44, 45, 81, 82, 84;

b 6∈ {a, 2a} : 11, 12, 13, 14, 21, 22, 23, 24, 41, 91, 92, 93, 94, 12, 42, 43, 44, 45, 81, 82, 83, 84.

In all cases where C has two irreducible components, the table X(W | C) is given by:

E1 1 1
E2 1 −1 where E1 ∈ SL(W).

We give one particular example where n̆d =−1, for the case a= 1, b= 2: There is a left cell C

such that C ∩ C−1 = {d, w} where

d= s1s0s2s1s0s2s1s2 and w = s1s2s1s0s2s1s2s3s2s1s0s2s1s2;

note that both l(d) and l(w) are even. We have d ∈ D̃, n̆d =−1 and

X(W | C) :
E1 1 1
E2 1 −1 where

E1 = 41 ∈ SL(W),
E2 = 16.

In all cases where C has three irreducible components, the table X(W | C) is given by:

E1 1 2 1
E2 1 −1 1
E3 1 0 −1

where
E1 = 12 ∈ SL(W),
E2 ∈ {61, 62},
E3 = 16.

We note the following special behaviour in the case where b= 2a. By [8, Section 4], there are
three left cells C1, C2, C3 such that

[C1]1 = 13 ⊕ 83, [C2]1 = 21 ⊕ 91, [C3]1 = 91 ⊕ 83.

The corresponding representations in SL(W) are 13, 91, 91, respectively. Since we have
HomW ([C1]1, [C3]1) 6= 0 and HomW ([C2]1, [C3]1) 6= 0, the three left cells are contained in the
same two-sided cell. Thus, there are two representations in SL(W) belonging to this two-sided
cell. (This is not an isolated event: there are many examples in typeBn with unequal parameters
as well.) This phenomenon can not happen in the equal parameter case where every two-sided
cell contains a unique special representation (see Lusztig [23, Chapter 5]).

The above examples show that Conjecture 5.11 holds for W of type I2(m), F4 and any weight
function L. Thus, the case that remains to be dealt with is type Bn with unequal parameters.
I have checked that Conjecture 5.11 holds for type Bn where n ∈ {2, 3, 4, 5, 6} and any weight
function. In general, by the results in [27, Section 22], it is expected that all left cell modules
[C]1 in type Bn are multiplicity-free; hence, one may hope that the tables X(W | C) might be
determined as in [26, Proposition 3.11]. If this were true, then Conjecture 5.11 would follow
in this case as well.

References

1. D. Alvis, ‘The left cells of the Coxeter group of type H4’, J. Algebra 107 (1987) 160–168 see also,
http://mypage.iusb.edu/∼dalvis/h4data.

2. B. Casselman, “Verifying Kottwitz’ conjecture by computer’, Represent. Theory 4 (2000) 32–45.
3. Y. Chen and J.-Y. Shi, ‘Left cells in the Weyl group of type E7’, Comm. Algebra 26 (1998) 3837–3852.
4. F. DuCloux, ‘The state of the art in the computation of Kazhdan–Lusztig polynomials’, Appl. Algebra

Engrg. Comm. Comput. 7 (1996) 211–219.
5. F. DuCloux, ‘Coxeter: software for Kazhdan–Lusztig polynomials for Coxeter groups’; available at

http://www.liegroups.org/coxeter/coxeter3/english.
6. F. DuCloux, ‘Positivity results for the Hecke algebras of noncrystallographic finite Coxeter group’,

J. Algebra 303 (2006) 731–741.

https://doi.org/10.1112/S1461157012001064 Published online by Cambridge University Press

http://mypage.iusb.edu/~dalvis/h4data
http://mypage.iusb.edu/~dalvis/h4data
http://mypage.iusb.edu/~dalvis/h4data
http://mypage.iusb.edu/~dalvis/h4data
http://mypage.iusb.edu/~dalvis/h4data
http://mypage.iusb.edu/~dalvis/h4data
http://mypage.iusb.edu/~dalvis/h4data
http://mypage.iusb.edu/~dalvis/h4data
http://mypage.iusb.edu/~dalvis/h4data
http://mypage.iusb.edu/~dalvis/h4data
http://mypage.iusb.edu/~dalvis/h4data
http://mypage.iusb.edu/~dalvis/h4data
http://mypage.iusb.edu/~dalvis/h4data
http://mypage.iusb.edu/~dalvis/h4data
http://mypage.iusb.edu/~dalvis/h4data
http://mypage.iusb.edu/~dalvis/h4data
http://mypage.iusb.edu/~dalvis/h4data
http://mypage.iusb.edu/~dalvis/h4data
http://mypage.iusb.edu/~dalvis/h4data
http://mypage.iusb.edu/~dalvis/h4data
http://mypage.iusb.edu/~dalvis/h4data
http://mypage.iusb.edu/~dalvis/h4data
http://mypage.iusb.edu/~dalvis/h4data
http://mypage.iusb.edu/~dalvis/h4data
http://mypage.iusb.edu/~dalvis/h4data
http://mypage.iusb.edu/~dalvis/h4data
http://mypage.iusb.edu/~dalvis/h4data
http://mypage.iusb.edu/~dalvis/h4data
http://mypage.iusb.edu/~dalvis/h4data
http://mypage.iusb.edu/~dalvis/h4data
http://mypage.iusb.edu/~dalvis/h4data
http://mypage.iusb.edu/~dalvis/h4data
http://mypage.iusb.edu/~dalvis/h4data
http://mypage.iusb.edu/~dalvis/h4data
http://mypage.iusb.edu/~dalvis/h4data
http://mypage.iusb.edu/~dalvis/h4data
http://mypage.iusb.edu/~dalvis/h4data
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
http://www.liegroups.org/coxeter/coxeter3/english
https://doi.org/10.1112/S1461157012001064

256 PYCOX

7. M. Geck, ‘On the induction of Kazhdan–Lusztig cells’, Bull. Lond. Math. Soc. 35 (2003) 608–614.
8. M. Geck, ‘Computing Kazhdan–Lusztig cells for unequal parameters’, J. Algebra 281 (2004) 342–365.
9. M. Geck, ‘Relative Kazhdan–Lusztig cells’, Represent. Theory 10 (2006) 481–524.

10. M. Geck, ‘Leading coefficients and cellular bases of Hecke algebras’, Proc. Edinb. Math. Soc. 52 (2009)
653–677.

11. M. Geck, ‘Some applications of CHEVIE to the theory of algebraic groups’, Carpathuian. Math. 27 (2011)
64–94.

12. M. Geck, ‘Kazhdan–Lusztig cells and the Frobenius–Schur indicator’, Preprint, 2011, arXiv:1110.5672.
13. M. Geck, G. Hiss, F. Lübeck, G. Malle and G. Pfeiffer, ‘C HEVIE—A system for computing and

processing generic character tables’, Appl. Algebra Engrg. Comm. Comput. 7 (1996) 175–210, electronically
available at http://www.math.rwth-aachen.de/∼CHEVIE.

14. M. Geck and N. Jacon, Representations of Hecke algebras at roots of unity, Algebra and Applications 15
(Springer, New York, 2011).

15. M. Geck and G. Pfeiffer, Characters of finite Coxeter groups and Iwahori–Hecke algebras, London
Mathematical Society Monographs, New Series 21 (Oxford University Press, Oxford, 2000).

16. R. B. Howlett and Y. Yin, ‘Inducing W -graphs’, Math. Z. 244 (2003) 415–431.
17. R. B. Howlett and Y. Yin, ‘Inducing W -graphs II’, Manuscripta Math. 115 (2004) 495–511.
18. R. B. Howlett and Y. Yin, ‘Computational construction of irreducible W -graphs for types E6 and E7’,

J. Algebra 321 (2009) 2055–2067.
19. D. Kazhdan and G. Lusztig, ‘Representations of Coxeter groups and Hecke algebras’, Invent. Math. 53

(1979) 165–184.
20. R. Kottwitz, ‘Involutions in Weyl groups’, Represent. Theory 4 (2000) 1–15.
21. G. Lusztig, ‘A class of irreducible representations of a finite Weyl group’, Indag. Math. 41 (1979) 323–335.
22. G. Lusztig, ‘Left cells in Weyl groups’, Lie Group Representations, I, Lecture Notes in Mathematics 1024

(eds R. L. R. Herb and J. Rosenberg; Springer, New York, 1983) 99–111.
23. G. Lusztig, Characters of reductive groups over a finite field, Annals of Mathematics Studies 107

(Princeton University Press, 1984).
24. G. Lusztig, ‘Cells in affine Weyl groups’, Algebraic groups and related topics, Advanced Studies in Pure

Math. 6 (Kinokuniya and North–Holland, 1985) 255–287.
25. G. Lusztig, ‘Cells in affine Weyl groups II’, J. Algebra 109 (1987) 536–548.
26. G. Lusztig, Leading coefficients of character values of Hecke algebras, Proceedings of Symposia in Pure

Mathematics, 47 (American Mathematical Society, Providence, RI, 1987) 235–262.
27. G. Lusztig, Hecke algebras with unequal parameters, CRM Monographs Series 18 (American Mathematical

Society, Providence, RI, 2003).
28. G. Lusztig and D. A. Vogan Jr., ‘Hecke algebras and involutions in Weyl groups’, Bull. Inst. Math.

Acad. Sin. (N.S.), to appear, arXiv:1109.4606.
29. G. van Rossum et al., Python Language Website, 1990–2012 (Python Software Foundation, see

http://www.python.org/).
30. M. Schönert et al., GAP – Groups, Algorithms, and Programming, fourth ed. (Lehrstuhl D für

Mathematik, RWTH Aachen, Germany, 1994).
31. W. A. Stein et al., Sage Mathematics Software (Version 4.7.1) (The Sage Development Team, 2011, see

http://www.sagemath.org).
32. Y. Yin, ‘An inversion formula for induced Kazhdan–Lusztig polynomials and duality of W -graphs’,

Manuscripta Math. 121 (2006) 81–96.

Meinolf Geck
Institute of Mathematics
University of Aberdeen
Aberdeen AB24 3UE
United Kingdom

m.geck@abdn.ac.uk

https://doi.org/10.1112/S1461157012001064 Published online by Cambridge University Press

http://www.math.rwth-aachen.de/~CHEVIE
http://www.math.rwth-aachen.de/~CHEVIE
http://www.math.rwth-aachen.de/~CHEVIE
http://www.math.rwth-aachen.de/~CHEVIE
http://www.math.rwth-aachen.de/~CHEVIE
http://www.math.rwth-aachen.de/~CHEVIE
http://www.math.rwth-aachen.de/~CHEVIE
http://www.math.rwth-aachen.de/~CHEVIE
http://www.math.rwth-aachen.de/~CHEVIE
http://www.math.rwth-aachen.de/~CHEVIE
http://www.math.rwth-aachen.de/~CHEVIE
http://www.math.rwth-aachen.de/~CHEVIE
http://www.math.rwth-aachen.de/~CHEVIE
http://www.math.rwth-aachen.de/~CHEVIE
http://www.math.rwth-aachen.de/~CHEVIE
http://www.math.rwth-aachen.de/~CHEVIE
http://www.math.rwth-aachen.de/~CHEVIE
http://www.math.rwth-aachen.de/~CHEVIE
http://www.math.rwth-aachen.de/~CHEVIE
http://www.math.rwth-aachen.de/~CHEVIE
http://www.math.rwth-aachen.de/~CHEVIE
http://www.math.rwth-aachen.de/~CHEVIE
http://www.math.rwth-aachen.de/~CHEVIE
http://www.math.rwth-aachen.de/~CHEVIE
http://www.math.rwth-aachen.de/~CHEVIE
http://www.math.rwth-aachen.de/~CHEVIE
http://www.math.rwth-aachen.de/~CHEVIE
http://www.math.rwth-aachen.de/~CHEVIE
http://www.math.rwth-aachen.de/~CHEVIE
http://www.math.rwth-aachen.de/~CHEVIE
http://www.math.rwth-aachen.de/~CHEVIE
http://www.math.rwth-aachen.de/~CHEVIE
http://www.math.rwth-aachen.de/~CHEVIE
http://www.math.rwth-aachen.de/~CHEVIE
http://www.math.rwth-aachen.de/~CHEVIE
http://www.math.rwth-aachen.de/~CHEVIE
http://www.math.rwth-aachen.de/~CHEVIE
http://www.math.rwth-aachen.de/~CHEVIE
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
http://www.sagemath.org
mailto:m.geck@abdn.ac.uk
https://doi.org/10.1112/S1461157012001064

	1. Introduction
	2. Design of PyCox
	3. Cells and W-graphs
	4. Relative Kazhdan--Lusztig polynomials
	5. Leading coefficients of character values
	References

