
THE ELLIPTIC INTEGRALS OF THE THIRD KIND 

E. H. NEVILLE 

This paper develops a case for adopt ing as the s tandard elliptic integrals 
of the third kind the function IIs(w, a) defined by 

„. , v Çu qs a qs ' a du 
IIs(w, a) = I -~2—— — 

J o qs u — qs a 
and the three functions l is (u, a + Kc), Us(u} a + Kn), Us(u, a + Kd) where 
KCJ Kn, Kd are the three quarter-periods of the Jacobian system. The function 
IIs(w, a) is the same function whether qs u is cs u, ns u, or ds u. 

The origin of the paper was a wish to understand how it has come about 
t h a t the integrals commonly accepted as s tandard are not related sym­
metrically to the the ta functions in terms of which they are expressed. The 
explanation of this irregularity is in three par t s : 

(1) T h e first of Jacobi 's formulae for evaluating an elliptic integral is a 
deduction from the identi ty 

(0.1) ^ 2 ^2 = 1 — csn asn u. 
v Q a Q u 
(2) T o cover the range of real integrals with real variables it is necessary to 
use in addition to Q(u + a) 0(u — a) the three products 

Qi(u + a) Qi(u — a ) , R(u + a) H(u — a), Hi(w + a) B.i(u — a). 

(3) If the only elliptic functions recognized are sn u, en u, dn u, the only 
denominator which can be associated with the products in (2) is 92a Q2u. 

The third par t of this answer is the mischief-maker leading to a set of in­
tegrals with no communi ty of s t ructure. 

1. The notat ion is the systematic notation used in my Jacobian Elliptic 
Functions (8), including tha t for bipolar functions suggested in the preface 
(p. iv) to the second edition (1951). Except t ha t he prefers œp to Kp, it is adopted 
by Lenz in his paper (7) writ ten as a t r ibute to Faber. Glaisher's function 
pq u is the function with simple zeros congruent with Kp and simple poles 
congruent with Kq and with 1 for its leading coefficient a t the origin. 

The bipolar function bpq u has simple poles congruent with Kp and Kq 

and simple zeros congruent with the other two of the four points Ks, Kc, 
Kn, Kd\ since these other points are the zeros of the derivative pq ' u, the bipolar 
function is a multiple of the logarithmic derivative pq ' u/pq u and we obtain 
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a definite function by again requiring the leading coefficient.at the origin to 
be 1. Then 

(1.1) bps u = — p s ' w / p s ^ = sp' u/sp u 

and if the origin is neither pole nor zero 

(1.2) bpq u = sp Kq pq' u/pq u. 

Explicitly, bpq u = rp u tq u — tp u rq u, but more often than not the 
arbitrary coupling of a zero with a pole is an irrelevant nuisance. Since 
ps ups(u + Kv) is independent of u, (1.1) implies 

(1.3) bps(u-\-Kp) = — bps u. 

The theta functions I use also have 1 for leading coefficient at the origin. 
For Hw/H'O, H^/HiO, QU/QO, QIU/QIO I write ê,u, ûcu, ênu, ûdu, relieving 
the memory by associating each of the functions with its lattice of zeros. 
The quotient ûpu/ê^u is the elliptic function pq u. 

The quarter-period relations between the theta functions are 

(1.4, 1.5) âcu = Aês(u + Ke),dnu = BeXuds(u + Kn) 

(1.6) êdu = Cûn(u + Kc) = DeXuûs{u + Kd) 

where A, B, C, D, X are constants whose values are not needed in this paper. 
From these relations it follows that the function zp u defined according to 
Lenz's notation (7) by 

(1.7) zpu —dp u/âpU 

satisfies the quarter-period relations 

(1.8) zc u = zs(u + Ke), zd u = zn(u -\- Kc), 

(1.9) zn u = zs(u + Kn) + X, zd u = zs(w + Kd) + X. 

Since ênu is a multiple of Qu, the logarithmic derivative zn u is identical with 
the function Zu defined by Jacobi. 

2. In terms of the function ênu, Jacobi's identity (0.1) becomes 

/ o i \ dn(a + u)dn(a — u) 2 2 , 
(2.1) — - V - r i = 1 — c sn a sn u = An 

vn avn u 
and if we alter the numerators in turn, but not the denominator, we have 
/oo\ dd(a + u)êd{a — u) 2 2 . , A 

(2.2) — rr~ri = c c n a c n w + c = A ,̂ 
uw a#w u 

(2.3) — r r r i = sn a - sn u s= As, 

(2.4) — a 2 o 2 = c d n a d n w - c c = Ac. 
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It was all but inevitable that before the discovery by Glaisher in 1882 of the 
complete group of twelve Jacobian functions the integrands to be associated 
with Jacobi's integrand 

(2.5) In = —\d log An/da = c sn a en a dn a sn2u/An 

should be 

(2.6) Id= — | d log Ad/da = c sn a en a dn a en u/Ad 

(2.7) Is = —% d log As/da = —sn a en a dn a/As 

(2.8) Ic = —\d log Ac/da = sn a en a dn a dn u/Ac 

but a revision in the light of Glaisher's discovery is long overdue. 

3. If 

(3.1) A , - AP(W,a) = | l o g | ^ - ^ 

then 

(3.2) ^sAv_=_2e_Av__2zna 
da du 

and therefore 

(3.3) I Ipdu = Ap(^, a) + M zn a. 

This is Jacobi's argument. The relation between the integrals is clear if 
we replace (3.3) by 

(Ip — zn a)du = Ap(u, a) 
o 

but zn a is not an elliptic function of a, and we can only regard the integrals 
in (3.3) as forming not one set of peculiar interest but one of the four sets 
of the more general form Ap(u, a) + u zq a. 

So much was evident a century ago, and Enneper (2, §34) recorded the 
integrands corresponding to the sixteen combinations. The calculation is 
simple. Since zq a — zn a = qn'a/qn a 

(3.5) AÀu,a)+uzqa = jo[lP + ^)dU=-^ofa(log^)du. 

For given p, and q other than n, the denominator Av can be put into the form 
Upq qn2a + VPQ1 where Upq, VPQ do not involve a, and then 

(3.6) -i-LgA-) = -2-^^. 
da \ qn a/ Ap qn a 

Hence, for q other than n, 

(3.7) Av(u, a) + UZQ a — —— I • 
qnaJo 

VPQdu 
qn a J o A. v 
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and the integrands which yield the sixteen integrands are given in terms of 
sn w, en u, dn u compact ly and explicitly in Table I. 

TABLE I 

_ 1 . ûp{a — u) ûq'a 
DERIVATIVE OF \ log -^—:—- + u-~ WITH RESPECT TO U 

s — sn2 u en2 u - 1 c xdn2u -f- sn2a — sn2w 
c Cl\2U — c'sn2u dn2u -c~lc' -T- c_1dn2adn2w - c~lc' 
n 1 dn2u c sn2u cn2u -f- 1 — c sn2a sn2w 
d dn% c' c cn2u c'svPu -r- c cn2a cn2w + c' 

Xsn 'a/sna Xcn'a/cna X snacnadna Xdn 'a /dna 

As functions of u, the integrands in this table are multiples of the sixteen 
fractions each of which has one of the four numera tors 1, sn2uy cn2u} dn2u and 
one of the four denominators As, Ac, An, Ad. In this sense the set is complete, 
b u t the s t ructure , so clear from the integrals, is u t ter ly obscure when only 
the integrands are displayed. 

4. In using (3.7) we have completed our table of integrands from its third 
column, b u t since zq u — zr u = q r ' ^ / q r u, we could as easily complete a 
row from any one of its members , and we now ask if a different choice of 
s tandard integrals and a free use of Glaisher 's notat ion will clarify the pa t t e rn 
of the integrands. 

T h e clue is in the effect of quarter-period addit ion on the the ta functions. 
A quarter-period addit ion to a is a quarter-period addit ion to the a rguments 
of the two the ta functions in Ap and to the a rguments of the two the t a func­
tions in zq a, and if p and q are the same, only one t ransformation is involved. 
Let us then de'lne a set of four integrals by writing 

(4.1) Up(u, a) = Ap(w, a) + u zp a 

and complete the set of integrals by means of the identi ty 

(4.2) Ap(u, a) + u zq a = ITp(^, a) + u q p ' a / q p a, 

From (1.4) and (1.6) applied to (3.1) 

Ac(u, a) = As(u, a + Kc)> Ad(u, a) = An(u, a + Kc) 

and therefore from (1.8) 

(4,3, 4.4) ITc(w, a) = IIs(«, a + Kc), Ud(u, a) = nn(w, a + Kc). 

Also from (1.5) 

ên(a-ju} = -2\Mfl,(fl + Kn - u) dn'a = ff/(q + Kn) 
ên(a + u) ds(a + Kn + u)' dn a ês {a + Kn) ' 
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and therefore 

A„(«, a) = — Xw + A,(w, a + Kn), zn a = X + zs(a + i Q , 

implying 

(4.5) IIn(«, a) = IIs(«, a + Kn). 

As functions of a, the integrands with which we are dealing are periodic in 
2KC and 2Kn; hence 

IIsO, a + Kc + Kn) = ns(w, a + Kd), 

and from (4.4) and (4.5) 

(4.6) nd(«, a) = ns(«, a + Kd). 

Thus for p = c, n, d, 

(4.7) Up(u, a) = ns(«, a + Kv). 

In my book, IIp(w, a) is defined by this formula, and not directly in terms 
of the theta function ûpu. 

The structure of the set of integrals 

ILs(u, a), IIc(w, a), IIn(w, a), IId(w, a) 

is symmetrical, for if Up(u} a) is any one of the four functions, then 

IIp(w, a), IIp(ft, a + Ke), ILp(u, a + Kn), Uv{u, a + Kd) 

are the same four functions looked at, so to speak, from Kp. To put the matter 
differently, the symmetrical relation 

(4.8) nq(«, a + Kv) = IIp(«, a + Xff) 

shows that no one of the functions dominates the set. Briot and Bouquet 
(1, p. 447) complete the set from IIn(w, a) and associate each function 
IIn(^, a + Kq) with one theta function and each difference Un(u, a + Kq) 
— Iln(w, a) with one elliptic function, but their notation does not achieve the 
economy of typical formulae. 

5. To use an integral we must be able to recognize the integrand. We denote 
the integrand corresponding to Up(u, a) by Jp or if necessary by Jp(u,a). 
In terms of theta functions 

Jp — dAp/du + zp a, 

but what we have to consider is the explicit expression of Jp as an elliptic 
function. The four integrands satisfy the same quarter-period relations as 
the functions from which they are derived or, in other words, satisfy the 
typical relation 

(5.1) J M a + Kp) = Jp(u, a + Kq) 

derived from (4.8). 
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In our table in §3, the functions Js, JC1 Jni Jd occupy the principal diagonal 
where they appear as follows: 

(K 01 K 00 ̂  T
 s n ' a sn u T __ c' en'a sn u  

( O . Z l , O.ZZ) J s — / 2 2 \ > J c — / —1 1 2 1 2 — 1 / \ y 

s n a ( s n a - s n w ) cna(c an Û an w - c c) 

, , O Q , 0 ^ T c sn a en a dn a snV c' dn'a sn & 
{b.Zôy O.Z4:) Jn — 2 2 1 J d — A t 2 2 i / \ » 

1 - c s n a s n w dn a(c c n a c n w + c) 
We may suggest that it is because only the original Jacobian functions sn u, 
en u, dn u are used that the symmetry of the quartette cannot be seen, but 
since each function might be expressed in terms of any one of the twelve 
functions pq u, we are not likely to find satisfactory transformations by a 
process of trial and error. 

We take a hint from the Weierstrassian theory, in which the fundamental 
integrand of the third kind is p'a/(p# — pa), and we have 

P" Va^u _ - a(a — u) 2u a a 
Jo pu — pq g a(a + u) aa 

If the Weierstrassian functions have the same lattice as the Jacobian functions, 
ûsu and au are integral functions with the same zeros, and the relation between 
them is 

au = é"u êsu, 

where /x is a constant. Hence 

. a(a — u) . ds{a — u) a'a ê/a 
log -7 : ( = - 4 fiau + log r ~ : r , = 2 fid + , 

u a + w ds(a + u) aa dsa 
and therefore 

that is, 
«/o 

p'adu ( , . > 
= 2{ As(w, a) + uzsa], o pw — pa 

| p ' a 
/ . = 

pu — pa 

Since pu differs from qs2u by a constant, whether q is c, n, or d, we have 

(5.3) J. = -^3Ï±-
qs u — qs a 

and therefore 

•* > i \ r („ n\ - qs(a+Kp)gs'(a+Kp) 
(5.4) Jv\u, a) = g 27—, T^ N— , 

qs u — qs (a + Ap) 
a general formula which includes (5.3). 

To verify that the formulae (5.21—5.24) extracted from the table in §3 can be 
deduced from (5.4) is an exercise in algebra. First, qs'a = — sq'a/sq2 a, gives 

(5.5) J, = s q ' a s q 2 M • 
sq a(sq a — sq u) ' 
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this formula includes (5.21), and shows that in spite of appearances the inte­
grand given by (5.21) does not stand in any special relation to Kn. 

Next, since ps a(ps a + Kv) = p$'Kp, identification of q with p in (5.4) gives 

T — P s ' Kp SP ft sp'a 
ps u — ps Kp sp a 

that is, 

(5.61) / = p s ' X sp a sp'a sp'tt . 
v 1 — ps'2Kp sp2a sp2w ' 

this formula includes (5.23), identifying Jacobi's integrand with Js(u, a + Kn). 
In other words, IIn(^, a) is Jacobi's function II(u, a) seen as one member of a 
set of which the other two members IIc(^, a) ILd(u, a) have their integrands 
given by 

/ - « n e r.0\ T c' sc a sc'a sc w T cc' sd a sd'a sd u 
(5.0Z, 5.0d) Jc = T 7—2 2" , Jd = — 7~1 T~T2 T2~ • 

1 — c se a se u 1 + ce sd a sd M 

Lastly, to recover (5.22) and (5.24) from (5.4), we suppose q to be distinct 
from p and r to be the third member of the set c, n, d ; then 

(5.71, 5.72) qs(a + Kp) = qsKp rp a, qr(a + Kp) = qr i^rq a. 

Since sr2u {qs2u — qs2 (a + Kp)} is a linear function of qv2u which is zero 
only if qr2u = qr2(a + KP), it follows that qs2u — qs2(a + Kv) is a multiple 
of rs2u{qr2a qr2u — qr2Kp), and is therefore the product of 

rs ^(pq Kr qr a qr u + pr KQ) 

by a factor independent of u. Determining the factor by putting u = Kg 

and using (5.71), we have 

qs2u — qs2(a + Kp) = rp2a rs2w(pq2i£rqr2a qr2u + pr2Kq). 

Using (5.71) again and replacing qs2Kp rp'a/rp a by ps2Kq pr 'a/pr a, we have 

/ r o n r _ p s X pr'a sr2u 
pr a(pq Krqr aqr u + pr'Kq) ' 

This is the formula of which (5.22) and (5.24) are two cases; a third case is 
another formula for Jacobi's integrand: 

Jn 
c nc'a se u 

nca(c ' *dc2adc2w — cc' l) 

In fact there are six cases of (5.81), but the interchange of q and r is almost 
trivial. The direct transformation of (5.82) into (5.23) takes the form 

c nc'a se u ce' en a cn'a sn u 
nc a(c' l dc2a dc u — cc' *) dn2a dn2w — c cn2a en u 

cc' sn a sn'a sn u  
(1 — csn2a)(l — csn2w) — c(l — sn2a)(l — snV) 
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6. The relation between IIp(^, a) and Uq(u, a) can be expressed as a relation 
between functions instead of as a relation between arguments, for (4.1) gives 

(6.1) np(«, a) - Uq(u, a) = * log 2 9 ^ - ^ 1 + u . 2 9 ^ . 
pq(a + w) p q a 

In other words, an alternative definition of Up(uy a) in terms of Us(u, a) is 

(6.2) np(tt, a) = ns(«, a) + \ log E ^ - ^ l + w . 2 ^ . 
ps(a + u) p sa 

The additional logarithmic ambiguity is only apparent if it is understood that 
the logarithm is zero when u = 0 and varies continuously as u describes the 
path of integration implicit in Us(u, a). 

It is interesting to establish (6.2) in terms of integrands. With differences of 
notation, the algebra is essentially Legendre's (5, §46; 6, §49). With the use 
of the bipolar function, the addition theorem for ps u can be written 

ps(u + v) = ps u ps z;(bps u — bps fl)/(ps w — ps v). 

Hence 

(no\ ps(a — u) _ bps u + bps a 
ps(a + u) bps w — bps a ' 

and the result to be proved is, that if ap = a + ^ , then 

ps ap ps'ap psa ps'a bps a bps'zi ps'a # 
2 2 — 2 2 i _ 2 i 2 "T~ î 

ps w — ps aP ps w — ps a bps w — bps a ps a 
since 

ps'a = — ps a bps a, ps'a^ = — ps ap bps ap = ps ap bps a. 
From (1.3), this is equivalent to 

(6.4) _ 2
b P s ^ 2 = i + _ ^ - P ^ _ _ + _ ^ E A L _ _ . 

bps w — bps a ps u — ps a ps u — ps ap 

Now ps2u(bps2u — bps2a) is a quadratic function of ps2u which vanishes 
if ps2u = ps2a and therefore also, from (1.3), if ps2^ = ps2ap; also the co­
efficient of ps% in ps u bps2^, that is, in ps'2u, is 1. Hence 

(6.5) ps2u{bps2u — bps2a) = {ps2u — ps2a)(ps2u — ps2ap). 

Multiplying by sp2u, differentiating, and substituting for ps'u and sp'u from 
(1.1), we have 

bps u bps'u = —bps u{ps2u — ps2a ps2ap sp2u), 

that is, 
(6.6) — ps2u bps'u = ps% — ps2a ps2ap. 

From (6.5) and (6.6), 

,A -s bps'u ps u — ps a ps ap  
\V'l) u 2 i 2 _ / 2 2 \ / 2 2 \ > 

bps u — bps a (ps u — ps a) (ps u — ps aP) 
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and the right-hand side of (6.7), resolved into partial fractions in the variable 
ps2w, is the right-hand side of (6.4). 

7. Since Us(u, a) is an odd function of a, (6.2) can be written 

(7.11) ns(f*, a) + ns(«f Kp - a) = 4 log p S ^ + u\ - u . ̂  ; 
ps(a — u) ps a 

further, since IIs(w, a) as a function of a, has 2Kq for a period, 

ns(«, Kp- (a + Kq)) = ns(«, (#„ - a) + Kq), 

and substituting a + Kq for a in (7.11) we have for q 9e p, 

(7.12) nq(«, a) + nq(«, XP - a) = 4 log rq '^a + U\ - u . ̂  . 
*rq(a — M) rq a 

The formulae (7.11) and (7.12) may be regarded as halving the area of values 
of a throughout which IIq(^, a) requires a theta function for its evaluation. 

From these formulae we see also that if 2a is a quarter-period the integrals 
of the third kind degenerate. Since the value of ps(\Kp + u)ps(^Kp — u) 
is p^\Kp, we have from (7.11) 

(7.21) ns(«, \KP) = 4 log {sp \KV ps(^ + \KV)} + \ u bps \KV. 

Also rq(\KP + u)rq(%Kp — u) is a constant, since addition of Kv to ^ inter­
changes the poles and the zeros of rq u; this constant is rq2 \KV, and we have 
from (7.12) 

(7.22) nq(«, \KP) = 4 log {qr $Kprq(u + \KP)) - \u(&qp\Kp - brs$Kp), 

since rq a = rs a/qs a. 
For the sake of completeness we must add that the identities 

IIp(«, KP — a) = — IIs(w, a), IIp(w, a) = — IIs(w, Kp — a) 

imply 

(7.31) Hp(«, a) + np(«, XP - o) = I log ^ ^ g - « • ®£ , 
sp(a — u) sp a 

(7.32) nP(w, 4XP) = 4 log {ps \KP sp(w + \KP)\ - \ u bps \KP. 
To us, (7.31) and (7.32) are little more than repetitions of (7.11) and (7.21), 
but we must remember that since the function we are denoting by IIn(w, a) 
was known long before Us(u, a) was introduced, the classical formulae im­
plicit in Jacobi's theorema de additione argumenti parametri (4, p. 159) are 
cases of (7.22) and (7.32). 

The values of the bipolar functions used in (7.21) and (7.22) are easily 
found. For any value of u, 

(7.41) qs 2u + rs 2u = bps u, 

and therefore 

(7.42, 7.43) bps \KP = qsKp + rsXp, bqs \KP = rsKp. 
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Thus (7.22) becomes 

(7.44) nq(«, \KP) = J log {qr$Kprq(u + $KP)} + J^(qs Kp - rsKp). 

We can modify the logarithmic terms in (7.21) and (7.22) and take fuller 
advantage of (7.41) and (7.42). From (6.3), (7.11) is equivalent to 

(7.51) IIs(w, a) + IIs(w, Kp — a) = \ log i~ r-~— + u bps a, 
bps u + bps a 

and therefore (7.21) is equivalent to 

(7.52) I I s K **,) - 1 log g ^ g ^ f * + M q r f , + « * , ) • 

Instead of (7.12) we have 

(7.53) nq(«, a) + Hq(w, i ^ - a) 

_ 11 (bqs u + bqs a) (brs u — brs a) 
2 (bqs w — bqs a) (brs w + brs a) l°g 7U u—"xTT T T r — w(bqs a — brs a), 

leading to 

(7.54) nq(«, | X P ) 

_ i w (bgs t^+jggg) (brs t* - qsgg) ^ _ 
" 4 l 0 g (bqs tt - rsKP) (brs ^ + qsKp)

 + *U{qsKp TSKp)' 

The squares of the constants qsKp are given by 

(7.61) ns2i£c = - c s 2 i ^ = 1, ns2Kd = -ds2 i£„ = c, ds2Kc = -cs2Kd = c', 

and depend only on the Jacobian system, but the constants themselves with 
the exception of nsKc depend on the choice of a basis for the lattice. Defining 
u, k, kf by 
(7.62) v = scKn, k = ns(Kc + Kn), kf = dsKc, 

we have 
(7.63) v2 = - 1 , k2 = c, &'2 = c', 

and the six critical constants are given by 

(7.64) nsi£c = 1, csKn = — v, nsKd = — k, 
dsKn = — vk, dsKc = k\ csKd = ufe'. 

The relations 

nsKc/csKn = dsKn/nsKd = csKd/dsKc = u 

express that rotation in the direction Kc—>Kn—> Kd is positive or negative 
according as v is +i or —i. 

The results of expressing the constants in (7.52) and (7.54) in terms of 
u, k, k' are valid for all Jacobian systems, but it is for the classical systems 
in which k and k' are real that they are specially required. 

https://doi.org/10.4153/CJM-1959-023-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1959-023-4


ELLIPTIC INTEGRALS 185 

8. In proposing that the typical integrand in the table in §3 should be treated 
as Jp(u,a) + qp ' a /qpa rather than as Ip(u, a) + qn'a/qn a, we are not 
altering the composition of the table. The integrands are the same sixteen 
functions of u and a, and the most to be claimed is that with the whole set of 
Glaisher's functions at our service we have shown that we can move easily 
from one entry to another within the table. To Hermite (3) are due examples 
of a process by which the tale of recorded integrals of the third kind can be 
quadrupled in length. The denominator An in (2.1) is the denominator in the 
classical expression for sn(a + u), and since 

ds(a + u)/ûn{a + u) = sn(a + u) = ( snacnwdnw + c n a d n c sn u)/AH 

we have 

[p. 1 ) r-j—r~2 = sn a en u an u + en a an a sn u, 
#» avn u 

Jacobi's argument now gives 

/o r»\ fMcn a d n a e n w d n w - s n a(dn2a + c en2 a)sn u . 
(8.2) I -: ^—-z du 

Jo s n a e n w d n w + c n a d n a s n t t 

*ên(a-u) ûna 

This method gives integrands corresponding to the 48 integrals 

, , $P(a - u) ûQ
fa 

with p y£ r, but Hermite himself attached no importance to the extension. 
His comment, "au fond, ces diverses expressions se ramènent à la quantité . . ." 
TL(uf a), suggests only that he was dissatisfied with the incoherent mass of 
formulae derived from Jacobi's integrand and its three companions. 

More interesting than this extension is Hermite's use of the integrand 

sn a en a dn a/(sn2u — sn2a), 

which is the integrand denoted above (§§2-3) by Is, in preference to Jacobi's 
integrand /„, or, in other words, his use of the integral As(u, a) + u zn a in 
preference to Jacobi's integral II(u, a) which is An(u, a) -\-uzna. "Cette 
intégrale présente," he says, "plus de facilité que celle de Jacobi pour établir 
les théorèmes sur l'addition des arguments" (3, p. 841). That is to say, he 
has found that the advantages of using the function A,(#, a) associated with 
the origin instead of the corresponding function An(w, a) associated with the 
point Kn outweigh any disadvantages due to the heterogeneity of As(w, a) 
+ uzna as compared with An(u, a) + u zn a. And this in spite of the 
fact that for elliptic functions he has only those whose poles are congruent 
with Kn. 
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9. The integrands tabulated in §3 are functions to which Jacobi's method 
of integration is seen in advance to be applicable; we have still to consider the 
arbitrary integrand \/(pq2u — /x). Determining a constant a by the condition 

(9.11) pq 2 a = M, 

and inserting a numerator found to be convenient, we deal with the integral 

f 
Jo 

"pq a pq'a du 
o pq2u — pq2a 

If q is s, the integral is already known, for (5.3) is equivalent to 

(9.12) r - f i ^ E ^ o A . _ ( } 

Jo ps u — ps a 

If q is not s, then pq2u is a linear function of sq2 u; whether pq2u is sq2u or 
1 — qs2Kpsq2u 

pq a pq'a sq a sq'a 
pq2« — pq2a sq2u — sq2a ' 

and since 

we have 

qs a qs'a __ qs'q qs a sq'a sq u 
qs2« — qs2a qs a * qs2w — qs2a sq a ' sq u — sq2a 

/ n i o \ p q a p q ' a Cu sq2udu __ t N 

sq a J o pq u — pq a 

(9.14) I 2 2- = —^— + Hs(w, a). 
Jo PQ w - pq a qs a f0pqu — pqa qs . 

Although (9.13) is valid whether or not p is s, it is worth while to separate 
the two cases for the sake of further simplification. If p is s, the formula is 

2 
/n IKN sq a C squ du ( . 
(9.15) -^— I — -Y1 2- = IIs(«, a), 

sq a Jo sq u — sq a 
a simple variant of (9.12), and if p is not s it can be written 

/ n i , v p s ^ s q ' a Cu squ du _ , , 
(9.16) - <L-^- —f± ^ n s ( w a ) 

sq a J o pq w — pq a 

since 
qs2i£p = — p s 2 ^ . 

The earliest of all integrals of the third kind, Legendre's function II defined 
by (5, p. 17; 6, p. 17) 

du °-.r 
t / 0 

(1 + wsin20)A' 
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where A = y/{l — csin2</>), is the integral 

du 

x o l + w sn2w ' 

It is usual now to change the sign in the denominator, and we take the integral 
of this form with sn u replaced by pq u as 

du 
f o 1 — X pq2u ' 

If we define a by 

0 

(9.21) qp2a = X, 

we have 
qp'q/qp a _ pq a pq'q 

i -v 2 — 2 2 > 

1 — X pq u pq u — pq a 

and we have merely to rewrite (9.12), (9.14), (9.15), and (9.16) as 
(9.22) ^ f T -, r- = ns(«, a), 

sp a J o 1 — sp a ps u 

(9.23) ^ — I ^ 2 2~ = —~ h ns(«, a), 
qp a J o 1 — qp a pq w qs a 

/no^\ fMqs a qs'a sqVdw , N 
(9-24) J„-T^?W^ = ns(M'a)' 

psXps^ f" "l\*" 2 = ns(Ml a). 
psa Jo 1 — qp apq u 

There is an alternative substitution. The function pq u has one of the 
quarter-periods of the Jacobian system for a half-period, and if this quarter-
period is Kt, the product qpu qp(u + Kt) is independent of uy that is, is a 
constant of the system. If the square of this constant is jPg, to write 

(9.31) X =jpqpq2a 

is equivalent to writing 

qp2(a + Kt) = X, 

and this change replaces IIs(w, a) by IIt(w, a). The quarter-period relevant 
for ps u and sp u is Kp, and if the three quarter-periods of the system are 
Kpy KQf Kry then sp(Kp + Kq) = — spKr and 

jPs = sp2Kq sp2i£r; j s q = qs2Kp qs2Kr. 

The quarter-period relevant for pq u is Kr, and 

jp* = qp2^r. 

From (9.22), (9.24), and (9.25) we have 
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(9.32) ^ f \ r - ^ 2 2" = Hp(«f a), 
ps a Jo 1 — j p s ps a ps w 

mQON fM. sq a sq'a sq2w d« _ , . 
(9.33) jsg-f—r1—T 2- = IIq(«, a), 

Jo 1 — JSQ sq asq w 
/OQyi\ ps2if g qr'a fw sq2u du , . 
(9.34) * ^ ~ I -1—2 2~ = nr(w, a), 

qra Jo 1 — jPQ pq a pq « 
and from (9.23) 

(9.35) -J1— I 2 2~ = — h IIr(«, a). 
sq a Jo 1 — JpQ pq a pq ^ pr a 

We can now see the structure of the integrands which compose the leading 
diagonal of the table in §3. Since the only functions to be used are Jacobi's 
three functions sn u, en u, dn u, the denominator has one of the two forms 
pn2w — pn2a, 1 — j p n pn2apn2^. The integrand Js corresponding to Tls(u, a) 
is the integrand in (9.15) with n for q; to use (9.16) would be merely to sub­
stitute ~(cn2u — cn2a) or — (dn2u — dn2a)/c for sn2u — sn2a. The function 
Hn(«,a) comes only from (9.33), and since j s n = ns2i£cns2(i£c + Kn) = c, 
we find the integrand Jn as c sn a sn'a sn2w/(l - c s n 2 a s n 2 w ) , precisely as 
given by Jacobi. The functions IIc(^, a) and IId(w, a) come from (9.34), the 
one when pq u is dn u and the other when pq u is en u, but we must express 
qr 'a/qr a as — rq'a/rq a; the constants required are given by 

ds2Kn = — C, j d n = l/c'\ CS2Kn = -ljcn = ~c/c' 

and the entries in the table can be verified immediately. 

10. As we have said, the substitution fi = pq2a does not impose any res­
trictions on fx, and theoretically the two formulae (9.12) and (9.14), together 
with the expression of TLs(u, a) as AB(u, a) + u zs a, reduce any function of 
the third kind to a combination of functions each of which is a function of a 
single argument. But if the problem is the evaluation of a real integral by 
means of real variables, there are complications. A real value of /x does not 
necessarily give a real value of a, and if u is real and a complex, then functions 
of a + u are functions which must be dissected before they can be evaluated. 

In discussing evaluation, we assume that Kc has a real value K and Kn an 
imaginary value iKf, and we assume also that K and K' are positive; then 
k and kf are positive, and v is i. The origin and the points K, K + iKf, iKr are 
the corners of a rectangle which we denote by SCDN. In applying general 
formulae it is important to remember that K + iKf is — Kdl since in the 
formal theory the three quarter-periods satisfy the symmetrical relation 
Kc + Kn + Kd = 0. 

The path of integration is a segment of the real axis. For the present we 
continue to take u = 0 for the lower limit; the effect of removing this restric­
tion is considered in our concluding paragraph. 
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If one of the twelve functions pq2a is real, all of them are real, and therefore 
each of the functions pq a and each of the derivatives pq'a is either real or 
imaginary. Hence in all that follows each of the functions IIp(w, a) is either 
real or imaginary. To put in a real form a formula in which IIp(w, a) is in fact 
imaginary, we write 

Up(u, a) — ill'p(u,a); 

if one of the two functions Up(u, a), H'p(u, a) is imaginary, the other is real. 
This notation is extremely convenient for our purpose here, but is obviously 
not susceptible of extension for general use. 

11. The three functions cs2u, ds2u, ns2u are real on the perimeter SCDNS, 
and decrease steadily from + oo to* — œ as u describes the contour; cs2u changes 
sign at C, ds2^ at D, and ns2u at N. Hence ps a ps' a, which is — es a ds a ns a, 
is real if a is on SC or DN, imaginary if a is on CD or NS. It follows that 
IIs(«, a) is real if a is on SC or DN, and n's(w, a) is real if a is on CD or NS. 
We identify the side to which a belongs by reference to the value of one of 
the functions pq2a; most simply ds2a decreases from + » through c' to 0 
along SCD and from 0 through — c to — <» along DNS. 

To locate a on a side of the fundamental rectangle by means of a real 
variable, we write a = Kp + b or a = Kp + ibf, where Kp is one of the two 
corners available, and we have four pairs of formulae: 

ds2a > c' 
(11.11) a = b Us(u, a) = ILs(u, b) = Aa(w, b) + u zs b 
(11.12) a = K - b Us(u, a) = -Ilc(u, b) = -A c (« , b) - w z c b} 

c' > ds2a = 0 
(11.13) a = K + ib' ill 's(«, a) = in'c(tt, ii ') = Ac(«, W) + u zc i i ' 
(11.14) a = X + iK' - ih\ 

ill 's(«, a) = —in'd(«, iô') = — Ad(«, iô') — w zd i6', 

0 > ds2a > - c 
(11.15) a = K + iK' - 4 

IIs(wf a) = — nd(w, 6) = — Ad(w, b) — u zd b 
(11.16) a = iK' + b Us(ut a) = Un(ut b) = An(w, b) + « zn 6, 

— c > ds2a 
(11.17) a = *# ' - *i' 

ill 's(«, a) = — ill'n(w, ib') = —An(utib
f) —uznib' 

(11.18) a = iJ' in's(w, a) = in 's(«, ib') = A,(«, ib') + u zs i6'. 

For any one value of a there is a choice between two formulae, and we can 
cover the whole perimeter either using two theta functions with b, b' in the 
intervals (0, K), (0, K') or using the four theta functions with b, b' in the 
intervals (0, |2C), (0, \K')\ in the first case we have a further choice, for we 
can use êsu on CSN and ûdu on CDN or ûcu on 5CD and ênu on SND. 
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With a on SC or ND the choice between functions is more apparent than 
real. Writers from Legendre onwards ignore (11.12) and (11.15) without 
explaining why these alternatives can be ignored. For the final evaluation 
from (11.11) and (11.12) we have explicitly 

Since #5(i£ — u) = #si£ t?cw, tables of #sw and #/& have only to be provided 
with the complementary argument K — u to become tables of ûsK ûcu and 
—êsK ûc'u} and we use the same entries and do the same arithmetic whether 
we compute As(u, K — b) and zs(K — b) as 

i i **(K -b-u) â/(K - b) 
2 gûs(K -b + u)' #s(K- b) 

or compute — Ac(u, b) and —zs b as 

_ i ff,Zflc(6 + u) _ âsKâc'b 
2 gûsKûc(b - u)y ûsKûcb' 

The same considerations apply to (11.15) and (11.16): tables of ûnu and ûn'u 
provided with the complementary argument K — u are tables of ânK ûdu 
and —ânK ûd'u. 

With a on SN or CD the process of evaluation is more elaborate and the 
distinction between the alternatives is not trivial. The theta function in 
Ap(u, ib') has the complex arguments ibr d= u and must be dissected before 
n'p(w, ib') can be computed. We take the four functions in turn. The theta 
functions are defined in terms of v, where v/\TT — u/K, that is, where v = wu/2K 
and we write also /3 = irb''/2K. It is to be noticed that ûjib' means (d$p/du)u==ib> 
that is, (d&p/dv)u=ib' . dv/du, and that therefore 

uûv'ib' = v(dôp/dv)v=ip. 

The functions are defined in terms of v and q, where 

(11.21) q = e~*K'/K, 

but g is a constant of the Jacobian system and variation of q is not contem­
plated. 

The functions iïsu, ûcu are multiples of 
1.2 • o l 2 -3 • r 3.4 • * , 

sin v — q sin 6v + q sin bv — q sin 7v + . . . 

cos v + q ' cos 3v + q" cos 5v + q cos 7z/ + . . . 

and therefore ûs(ib' + u) is a multiple of 
(cosh /3 sin v — q1' cosh 3/3 sin 3v + q ' cosh 5/3 sin 5v — . . .) 

+ i (sinh /3 cos v — q ' sinh 3/3 cos 3^ + q sinh 5/3 cos 5v — . . .) 

https://doi.org/10.4153/CJM-1959-023-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1959-023-4


ELLIPTIC INTEGRALS 191 

and ûc{W + u) is a multiple of 

(cosh /3 cos v + g1,2cosh 3/3 cos 3z/ + q~" cosh 5/3 cos 5v + . . .) 

— i (sinh ]S sin v + g ' sinh 3/3 sin 3z; + g ' sinh 5/3 sin 5z> + . . .). 

Hence 

(11.22) n's(«, ib') = 

cosh ft sin v — q ' cosh 3/3 sin 3fl + q ' cosh 5/3 sin 5v . . . 
sinh /3 cos z; — g1,2sinh 3/3 cos 3^ + g2'3sinh 5ft cos 5v . . . 

__ cosh /3 — 3g1,2cosh 3ft + 5g 3cosh 5/3 — . . . 
~ U ' sinh /3 - gL2sinh 3/3 + g23~sinh 5/3 - . . . 

and 

(11.23) ÏI'c(w, i& ) = 

sinh ft sin A + g ' sinh 3ft sin 3fl + g sinh 5/3 sin 5z; + . . • 
cosh /3 cos v + g1,2cosh 3ft cos 3v + g2"3cosh 5/3 cos bv + . . . 
_ sinh /3 + 3g12sinh 3/3 + 5g2-3sinh 5ft + . . . 

U ' cosh /3 + gL2cosh 3ft + g2'3cosh 5/3 + . . . " * 

Similarly, since ânu, ûdu are multiples of 

1 — 2g cos 2v + 2g cos 4z/ — 2g cos $v + 2g cos 8v — . . . 

1 + 2g cos 2v + 2g cos 4z; + 2g cos 6v + 2g cos Sv + . . . 

we have 

(11.24) n 'n(^, ib') = 

2g sinh 2ft sin 2v — 2g4sinh 4ft sin 4z; + 2g9sinh 6/3 sin 6z; — . . . 
1 — 2g cosh 2/3 cosh 2v + 2g4cosh 4/3 cos 4.v — 2g9cosh 6ft cos 6v + . . . 

i 4g sinh 2ft - 8g4sinh 4/3 + 12g9sinh 6/3 - . 
+ U ' 1 - 2g cosh 2ft + 2g4cosh 4/3 - 2g9cosh 6ft + . . . ' 

(11.25) n'd(u,ib') = 

_ 2g sinh 2(3 sin 2?/ + 2g4sinh 4/3 sin 4P + 2g9sinh 6/3 sin 6v + . . . 
- arc tan 1 + ^ ^ ^ ^ ^ ^ + 2 g 4 c o g h 2 ^ c o g ^ + 2^9

C0Sh 6 £ Cos 6*> + . . . 

_ 4g sinh 2ft + 8g4sinh 4/3 + 12g9sinh 6/3 + . . . 
^ * 1 + 2g cosh 2/3 + 2g4cosh 4/3 + 2g9cosh 6ft + . . . ' 

If bf and w are real, the functions n'p(z/, i&') have real values and (11.22)— 
(11.25) are formulae from which these values can be calculated. The hyper­
bolic functions do not retard appreciably the convergence of the several 
series; if b' is in the range (0, K')f both sinh nf3 and cosh n/3 are smaller than 
q~n, and if b' is in (0, \K'), then sinh 2n/3 and cosh 2^/3 are smaller than q~n. 
The restriction on the path of u implies that the inverse tangents are all in 
the interval ( —|TT, ^7T). 
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The dissection of the theta functions for the evaluation of elliptic integrals 
is classical; the improvement on current practice lies in avoiding a mixture 
of functions in any one formula. 

12. Light is thrown on the alternatives in (11.11)—(11.18) by the relation 
(6.2) between TLs(u, a) and ILp(u, a): 

(12.1) ILp(u, a) = ns(« f a) + * log p s ^ ~ u\ + u . ^ . 
ps(a + u) p sa 

Denote the midpoints of SC, CD, DN, NS by E, F, G, H, and let b = bs be a 
point in SE and ib' = 6^ be a point in SH. 

In the half-sides £C, DG, GN there are points bc, bd, bn at distance b from 
the corners C, D, N, and we have 

bc = i£c — 4S, IIs(w, 6C) = — IIc(^, ôs), 

bd = — 2£d — 6S, IIs(«f 6d) = — nd(w, &,), 

bn = Kn + 6„ IIs(w, 6„) = IIn(M, J,). 

If bs traverses SE, the four points bs, bc, bn, bd together traverse the two sides 
SC, ND, and the evaluation of IIs(«, a) is extended from SE to the two sides 
by means of the elliptic functions ps u: 

(12.21) ÏIs(w, 6.) = ns(w, b) 

(12.22) ns(« f 6C) = - ns(« f b) - \ log ^ ~ £ ~"-~i 
cs(o -\- u) cs b 

(12.23) ns(«, ft.) = ns(«, i) + * log ^ f } + , . £ f 

(12.24) ns(«, W = - ns(«, 6) - i log | { ^ - g - u . ̂  . 

Since the operation of evaluating the difference 

. . ps(& — w) . ps'ft 
è log -—^—; ; + U . -^—.: 
2 *ps(6 + «) ps6 

from tables of ps w and ps' u is precisely the same as the operation of evaluating 
IIp(w, a) in the form 

2 gtfp(a + «) ^ Wtfpa 

from tables of êpu and #/w, no practical advantage is to be expected from 
these formulae. 

It is different when we deal with the half-sides HN, CF, FD. On them we 
have points b'n, bf

c, b'd such that 

b'n = Kn- b's, ns(« f b'n) = - Hn(«, * ' ,) . 
4% = Kc + *'„ ns(w, J'c) = Hc(tt, ft',), 
6'* - - Kd - b's, Us{u, b'd) = - nd(«, b\). 
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Since b's is imaginary, we take (6.2) in the form 

(12.3) *n'p(«, a) = iIL's(u, a) + * log ^ s a + ^ s u _ ^ ^ 
bps a — bps u ^ 

Using Jacobi's imaginary transformation we have 

bcs(i&'|<0 = ibns(6'|c'),bds(i6'|c) = ibds(&V), bns(*6'|c) = ibcs(6'|c') 

and therefore 

(12.41) n's(«, 6',) = H'S(M, i&'), 

(12.42) n's(tt, J'») = - n's(wf Î6') + arc tan ̂ r i ^ - - u bcs(V|c'). 
bns(^|c) ' 

(12.43) n's(«, ft'c) = n's(« f « ' ) - arc tan g ^ i ^ y - + ttbns(6V), 

(12.44) n 'd(«, yd) = n's(tt, *i') + arc tan | ^ ^ - u bds(i' |c'). 

It is far quicker to evaluate a difference 

bqs(6'|c') , ,,,, ,* 
arc tan1 ; ' — ubqsib \c) 

Dps(u\c) ' 

than to find an isolated value of a function n'p(w, ib') by means of a dis­
sected ^-series, and (12.41)—(12.44), unlike (12.21)—(12.24), can be recom­
mended to computers. 

13. To conclude, we have to consider the integral 

p du T — I du 
)Ul 1 - n pq2u 

between arbitrary real limits. If the integral can be expressed as the differ­
ence between integrals from 0, the evaluation in one of the forms 

sp a _ . , v , psa __ u2 — u\ . qp a 

- V ni2, (u2 - ui) + ïL-r ni2, -j 1- ~- ni2, 
sp a ps'a 1 — /x qp'a 

where II12 = lis («2, a) — IIs(«i, a) introduces no fresh problems. But since 
the integral has a logarithmic singularity at any point where pq2u = pq2a, 
there is a tacit assumption throughout that there is no such point on the u-
path. 

If a is not real, this assumption does not come into operation. But if a is 
real, IIs(#, a) is defined as a real integral only for values of u in (—a, a) and 
L is expressible by means of n i 2 only if u and u2 are in this interval, whereas 
the condition implicit in the existence of the integral does not restrict u and 
u2 separately. The problem is the same as in the integration of 1/x. If neither 
ûs(a — u) nor $s(a + u) is zero for any value of u in (u1} u2), the two quotients 
âs(a — u2)/ûs{a — #1), and &s(a + Ui)/ês(a + u2) are positive and II12, defined as 
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nU2 

I Js(u, a) du, 

can be compu ted as 

f log —, V"o"7~~T—t + (w2 - «i) «— . 

If there are points b\, b2, . . . , bm in (#1, «2) such that qp2£r = qp2a the sub­
stitution of 

4 log + («2 - Ml) T — 

pq2w 

fls(a — u2)âs(a + ^l) 
|#s(a — Ui)ds(a + w2) 

for II12, in the formal evaluation gives the limit of the sum 

J»&1 — e i /»&2—«2 /?&»»—«m /»M2 J 

+ + + T—^ 
when €1, €2, . . . , em tend independently to zero. 
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