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Abstract

We consider a sequential rule, where an item is chosen into the group, such as a university
faculty member, only if his/her score is better than the average score of those already
belonging to the group. We study four variables: the average score of the members of
the group after k items have been selected, the time it takes (in terms of the number of
observed items) to assemble a group of k items, the average score of the group after
n items have been observed, and the number of items kept after the first n items have
been observed. We develop the relationships between these variables, and obtain their
asymptotic behavior as k (respectively, n) tends to ∞. The assumption throughout is
that the items are independent and identically distributed with a continuous distribution.
Though knowledge of this distribution is not needed to implement the selection rule,
the asymptotic behavior does depend on the distribution. We study in some detail the
exponential, Pareto, and beta distributions. Generalizations of the ‘better than average’
rule to the β better than average rules are also considered. These are rules where an item
is admitted to the group only if its score is better than β times the present average of the
group, where β > 0.
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1. Introduction

In many practical situations, when it is desired to sequentially assemble a group of good
quality, the ‘better than average’ rule is used. This rule selects an individual into the group if
and only if he/she is better than the average quality of the previously selected members of the
group. Individuals are considered sequentially and a decision of retention or rejection must be
made without recourse. Such a policy may be used when recruiting new faculty to a university
department, selecting students to a university for graduate study, or selecting a sports team.

In this paper we consider the asymptotic behavior, both in number and average quality, of
the selected group under the better than average rule using the assumption that the observations
are independent and identically distributed (i.i.d.). We also extend these results to a class of
related selection rules, which we term β better than average rules. Under these rules, an item
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is selected if and only if it is better than β times the average quality of the items that already
belong to the group. For β = 1, this is the usual better than average rule. When ‘better’ is
‘larger than’, for β > 1 (the more typical case), the β better than average rule is more stringent
and, for β < 1, it is less stringent than the better than average rule.

The better than average selection rule was first considered in Preater (2000). He dealt with
exponentially generated values and related cases. The focus of his paper was on the average
quality of the retained items.

Sequential rules that retain an observation based on how its relative rank relates to the ranks
of those already retained are considered in Krieger et al. (2007b). The behavior of the number
of items kept and their average quality are determined in that paper.

The next section is devoted to general results. In essence we consider the asymptotic behavior
of four quantities: the average quality and the number of items observed until k items are
retained, and the average quality and the number of items retained after n items have been
observed. In Section 3 the relationships in asymptotic behavior of the other three quantities
to that of the average quality when k items are retained are obtained under certain conditions.
The exponential distribution is used as an example to illustrate these results and relate them
to the findings of Preater (2000). Many results heavily depend on the underlying distribution
of the i.i.d. random variables. The Pareto family is explored in Section 4, and the beta family
is explored in Section 5. These three families of distributions are representatives of the three
domains of attraction of extreme values.

2. Notation and preliminary results

In this paper we consider a sequence of observations that are i.i.d. The decision of whether to
retain an item needs to be made when it is observed, based only on its score and the average score
of those items already seen. The observations are denoted byX1, X2, . . . and are i.i.d. random
variables from a common distribution F . Knowledge of F is not necessary to implement the
rule under investigation. However, the asymptotic behavior of the rule does depend on the
specification of F .

The behavior of the rules will be characterized by considering four quantities:

• Tk = Tk(F ) = Tk(X) = the number of observations inspected (including that item) until
the kth item is retained;

• Ȳk = Ȳk(F ) = Ȳk(X) = the average of the first k observations that are kept;

• Mn = Mn(F) = Mn(X) = the number of items that are kept by time n;

• An = An(F ) = An(X) = the average of the items that are kept by time n.

We use any of the three forms of notation as convenient.
The β better than average rule is defined as follows: for fixed β (which is suppressed in the

notation) and Tk , defined above as the number of items observed until the kth item is selected,
let Y1 = X1. Thus, T1 = 1. Now Tk and Yk are defined inductively by

Tk+1 = inf{i > Tk : Xi > βȲk}, k = 1, 2, . . . ,

and

Yk+1 = XTk+1 , k = 1, 2, . . . .
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It is clear that Ȳk increases in k for β = 1. If β > 1, we assume nonnegative Xi to avoid the
situation that if Ȳk is negative then the cutoff to retain an observation becomes less stringent.
Below is an intuitive result, which is true generally. The proof is adapted from Preater (2000).

Let xF = sup{x : F(x) < 1}. When xF = ∞, clearly Tk < ∞ almost surely (a.s.) for all k
and all β. When β > 1, we assume that xF = ∞.

Lemma 2.1. Let Xi be i.i.d. from any distribution. Unless F has an atom at xF and X1 = xF
(in which case Ȳ1 = xF ), the sequence T1, T2, . . . is well defined for all k ≥ 1 and the better
than average rule satisfies

Ȳk → xF a.s. as k → ∞. (2.1)

Furthermore, when Xi ≥ 0 and xF = ∞, the sequence T1, T2, . . . is well defined and (2.1)
holds for all β > 1.

Proof. First consider the better than average rule. Let Ȳ0 = 0. It is easily seen by induction
that

Ȳk =
k∑
j=1

Yj − Ȳj−1

j
.

Since Ȳk is monotone increasing, it follows that Y = limk→∞ Ȳk exists. We want to show
that, for any x < xF , we have P(Y ≤ x) = 0. Let x < xF be given and, when xF < ∞, let
0 < ε < xF − x, while if xF = ∞, let ε = 1. Then, on the event Ax = {Y ≤ x}, we have

Y =
∞∑
k=1

Yk − Ȳk−1

k
≥

∞∑
k=1

(Yk − x)+

k
≥

∞∑
k=1

ε 1(Yk > x + ε)

k
,

where a+ = a 1(a > 0). But, the sum on the right-hand side diverges, implying that P(Ax) =
0. Thus, (2.1) follows for the better than average rule. Now, the average Ȳk[β] satisfies
P(Ȳk[β] ≥ Ȳk) = 1 for the β better than average rule for all k; hence, (2.1) follows.

We exclude the case in which X1 = xF in our further considerations. We now turn to a
general result that relates the number of items kept after n have been observed when X ∼ F .
Let Z1, Z2, . . . be a sequence of i.i.d. random variables with distribution G. Assume that the
random variables are continuous. We can couple the items generated according to F and G in
the following way. Let Zi = g(Xi), where g = G−1F and, thus, is an increasing function.
Note that if and only if g is convex, g−1 (which relates Z to X) is concave. Note that we are
assuming that the cumulative distribution functions F andG are strictly increasing, but this can
easily be extended to nonstrict monotonicity.

Denote byMn(X) the number of items kept by aβ better than average rule for theX-sequence
X1, X2, . . . after n items are observed. Similarly, Mn(Z) denotes the number of items kept
using the Z-sequence. We have the following result.

Theorem 2.1. Let X ∼ F , and let g(x) be an increasing concave function. Let G be the
cumulative distribution function of a random variable distributed as g(X). When β = 1,
Mn(G) ≥st Mn(F) for all n (where ‘≥st’ means ‘stochastically not smaller than’). Thus,
Tk(F ) ≥st Tk(G).

Proof. Clearly g(x) = G−1(F (x)). Let Z ∼ G, and let An(X) be the average of the X
values of the kept items after n items are observed, using for a selection rule the better than
average rule based on theX-sequence, and let Bn(X) be the average of theX values kept using
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the better than average rule based on the Z-sequence. Without loss of generality, couple the
Xi values and the Zi values by setting Zi = g(Xi). Let An(Z) be the average of the Z values
kept by its rule after n items are observed.

We shall prove by induction that, with this coupling,

(i) Mn(X) ≤ Mn(Z); and

(ii) An(X) ≥ Bn(X).

Clearly the stochastic ordering in the statement follows from this. For n = 1, clearlyM1(X) =
M1(Z) = 1 and A1(X) = B1(X) = X1. Now suppose that (i) and (ii) hold for n − 1. We
consider the following two cases.

(a) The case in which Xn > An−1(X). Item n is kept using the X-sequence. Then

Zn = g(Xn) > g(An−1(X)) ≥ g(Bn−1(X)) > An−1(g(X)) = An−1(Z).

The last inequality follows because g is concave. This implies that the nth item is also kept by
its rule using the Z-sequence. Hence, (i) holds. Furthermore,

An(X) = Mn−1(X)An−1(X)

Mn−1(X)+ 1
+ Xn

Mn−1(X)+ 1

and

Bn(X) = Mn−1(Z)Bn−1(X)

Mn−1(Z)+ 1
+ Xn

Mn−1(Z)+ 1

≤ Mn−1(X)Bn−1(X)

Mn−1(X)+ 1
+ Xn

Mn−1(X)+ 1

≤ Mn−1(X)An−1(X)

Mn−1(X)+ 1
+ Xn

Mn−1(X)+ 1

= An(X).

The first inequality holds becauseMn−1(X) ≤ Mn−1(Z), and the last inequality holds because
An−1(X) ≥ Bn−1(X). Hence, (ii) follows.

(b) The case in which Xn ≤ An−1(X). Hence, the nth item is not kept by the rule that uses the
X-sequence. Part (i) is immediate. If the nth element is not kept by the Z-sequence, (ii) is also
immediate. Now assume that the nth item is retained using the Z-sequence. Then

Bn(X) = Mn−1(Z)Bn−1(X)

Mn−1(Z)+ 1
+ Xn

Mn−1(Z)+ 1
≤ An−1(X) = An(X),

as both Bn−1(X) and Xn do not exceed An−1(X).

Remark 2.1. It is interesting to note that Theorem 2.1 requires that β = 1, i.e. the better
than average rule. Here is an example where the conclusion fails for β > 1. For β > 1,
consider Z = X1/2. The second item is kept for the X-sequence if X2 > βX1. The second
item is not kept for the Z-sequence if X1/2

2 < βX
1/2
1 . Hence, when X1 and X2 are such that

βX1 < X2 < β2X1, the conclusion fails. This is easily fulfilled, since β > 1.

The next result considers a sequence of distribution functions {Fj } and sequences of i.i.d.
random variables from each.
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Theorem 2.2. Let {Fj } be a sequence of continuous CDFs that converges weakly to a contin-
uous distribution F . Then

(i) for fixed n, Mn(Fj ) → Mn(F) as j → ∞, in distribution;

(ii) for fixed n, An(Fj ) → An(F ) as j → ∞, in distribution;

(iii) for fixed k, Tk(Fj ) → Tk(F ) as j → ∞, in distribution;

(iv) for fixed k, Ȳk(Fj ) → Ȳk(F ) as j → ∞, in distribution.

We omit the proof. For a proof, see Krieger et al. (2007a).

3. Almost sure convergence

In this section we find conditions on the behavior of Ȳk from which it follows that Tk , Mn,
and An converge a.s. Sections 4 and 5 are devoted to finding particulars and establishing that
these conditions on Ȳk hold for various families of distributions.

Of the four quantities considered, Ȳk is the easiest to handle directly, often through the
use of the martingale convergence theorem. It is not unusual for Ȳk to satisfy condition (3.1)
in Theorem 3.2, below. The asymptotic behavior of Tk can then also be determined, as in
Theorem 3.2, below, using Theorem 3 of Feller (1971, p. 239), which we reproduce below as
Theorem 3.1 (in the generality needed here).

The quantities {An} and {Mn} are more difficult to handle directly, as they develop as
intertwined sequences. Let Fn be the σ -field generated by {X1, . . . , Xn}. Then, clearly,

E(An | Fn−1) = An−1 P(Xn ≤ βAn−1 | An−1)

+ Mn−1An−1 +Xn

Mn−1 + 1
P(Xn > βAn−1 | An−1)

and
E(Mn | Fn−1) = Mn−1 + P(Xn > βAn−1 | An−1).

It is therefore difficult to separate these two quantities. Their asymptotic behavior can never-
theless, in many instances, be derived through an ‘inversion’ of the asymptotic behavior of Ȳk
and Tk , respectively, as given in Theorems 3.3 and 3.4, below.

Theorem 3.2, below, which considers the a.s. convergence of Tk relies on Theorem 3 of
Feller (1971).

Theorem 3.1. (Feller’s theorem (1971, p. 239).) Let Q1,Q2, . . . be independent random
variables with E(Qn) = 0, and let Sn = ∑n

i=1Qi . If b1 < b2 < · · · → ∞ are constants and

∞∑
n=1

E

(
Q2
n

b2
n

)
< ∞

then
b−1
n Sn → 0 a.s. as n → ∞.

We use Theorem 3.1 in the following way.

Theorem 3.2. Let Pj = 1 − F(βȲj−1) with P1 ≡ 1. Suppose that

jωPj → W a.s. asj → ∞ (3.1)
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for some 0 < ω < ∞, where P(0 < W < ∞) = 1. Then

Tk

kω+1 → 1

(ω + 1)W
a.s. as k → ∞.

Proof. We shall use Feller’s theorem conditionally on the sequence {Ȳk}. Let

bj =
j∑
i=1

P−1
i ,

and letQi = Ti − Ti−1 −P−1
i with T0 ≡ 0. Obviously, the sequence {bj }∞j=1 satisfies the first

condition of Feller’s theorem.
Note that, conditional on {Pj }, the distribution of Ti − Ti−1 is geometric (Pi) and these

differences are conditionally independent of each other. Hence, {Qn}∞n=1 is a sequence of
conditionally independent random variables with zero expectation and variance (1 − Pn)/P

2
n .

We shall show that the second condition of Feller’s theorem holds.
Let ε > 0. Define Jε to be such that

W(1 − ε) ≤ jωPj ≤ W(1 + ε) for all j ≥ Jε,

where W is given in (3.1). Therefore, conditional on {Pj },
∞∑
n=1

E

(
Q2
n

b2
n

)
=

∞∑
n=1

1 − Pn

P 2
n

/( n∑
j=1

P−1
j

)2

<

Jε−1∑
n=1

1

P 2
n

/( n∑
j=1

P−1
j

)2

+
∞∑
n=Jε

n2ω

W 2(1 − ε)2

/( n∑
j=1

jω

W(1 + ε)

)2

≤
Jε−1∑
n=1

1

P 2
n

/( n∑
j=1

P−1
j

)2

+ (1 + ε)2

(1 − ε)2

∞∑
n=Jε

n2ω
/(

nω+1

ω + 1

)2

< ∞.

Since both conditions of Feller’s theorem are satisfied,

b−1
n Sn → 0 a.s. as n → ∞.

Now

b−1
n Sn =

( n∑
j=1

P−1
j

)−1(
Tn −

n∑
j=1

P−1
j

)

=
( n∑
j=1

P−1
j

)−1

Tn − 1

→ 0 a.s. as n → ∞. (3.2)

Also, for n ≥ Jε,

Jε−1∑
j=1

P−1
j +

n∑
j=Jε

jω

W(1 + ε)
≤

n∑
j=1

P−1
j ≤

Jε−1∑
j=1

P−1
j +

n∑
j=Jε

jω

W(1 − ε)
. (3.3)
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Therefore, for large enough n,

1

1 + ε
≤

∑n
j=1 P

−1
j

nω+1/(ω + 1)W
≤ ε + 1

1 − ε
.

Letting ε tend to 0, it follows, from (3.2) and (3.3), that

Tk

kω+1 → 1

(ω + 1)W
a.s. as k → ∞.

Now that we have established almost sure convergence for Tk suitably normalized, we relate
this result to the almost sure convergence for Mn. For example, if Tk/k2 converges a.s. to a
well-defined random variable (as we will show in Theorem 3.5, below, when F is exponential
and β = 1), this states that it takes on the order of k2 observations until k items are retained.
It is intuitive that if n items are observed then the order

√
n of these items should be retained.

Theorem 3.3, below, implies that, for the exponential distribution withβ = 1,Mn/
√
n converges

a.s.
More precisely, let ck be an increasing sequence of positive constants (that later will denote

the rate at which Tk goes to ∞) with lim ck = ∞. We define a sequence of increasing positive
constants (for the rate of Mn) by

dn = sup{j | cj ≤ n} for n = 1, 2, . . . .

Since ck → ∞, dn is defined for all n. Also, assume that

lim
n→∞

d	n/x

dn

= h(x) (3.4)

exists for every 0 < x < ∞ and that h is continuous, where 	x
 is the largest integer less than
or equal to x.

The result for the almost sure convergence of Mn is explored in the following theorem.

Theorem 3.3. Let
Tk

ck
→ Q a.s. for k → ∞,

where 0 < Q < ∞. Assume that ck is such that (3.4) holds, with continuous h. Let Mn =
sup{j | Tj ≤ n}, n = 1, 2, . . . . Then

Mn

dn
→ h(Q) a.s. as n → ∞.

The proof is omitted. It can be found in Krieger et al. (2007a).
Suppose that 1 − F(βȲk), properly normalized, converges a.s. to a possibly nondegenerate

random variable. This implies, from Theorem 3.2, that Tk , and ultimately, from Theorem 3.3,
that Mn, when properly normalized, also converge a.s. to possibly nondegenerate random
variables. We now establish conditions such that An, suitably normalized, converges a.s. to a
nondegenerate random variable.

Theorem 3.4. Let Ȳk/kγ → Y and Mn/n
ψ → M a.s. as k → ∞ and n → ∞, where γ > 0

and ψ > 0 are constants and P(0 < Y < ∞) = P(0 < M < ∞) = 1. Then

An

nγψ
→ YMγ a.s. as n → ∞.
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Proof. For any ε > 0, there exists random kε and nε such that, for all k ≥ kε and n ≥ nε,

Ykγ (1 − ε) ≤ Ȳk ≤ Ykγ (1 + ε)

and
Mnψ(1 − ε) ≤ Mn ≤ Mnψ(1 + ε).

Note that An = ȲMn . Also, eventually Mn ≥ kε a.s. Then

YMn
γ (1 − ε) ≤ An ≤ YMn

γ (1 + ε)

and, for n ≥ nε,

YMγ nγψ(1 − ε)γ+1 ≤ An ≤ YMγ nγψ(1 + ε)γ+1.

This implies that

YMγ (1 − ε)γ+1 ≤ An

nγψ
≤ YMγ (1 + ε)γ+1,

so that
An

nγψ
→ YMγ a.s. for n → ∞.

We now apply the previous results to the exponential distribution.

Theorem 3.5. Assume that the observations are i.i.d. from an exponential distribution with
mean 1. Let β = 1, and let G denote a random variable that has the Gumbel distribution,
exp{−e−x}. Then

(i) Ȳk − log k converges a.s. to G as k tends to ∞;

(ii) Tk/k2 converges a.s. to eG/2 as k tends to ∞;

(iii) Mn/
√
n converges a.s. to

√
2e−G/2 as n tends to ∞; and

(iv) An − (log n)/2 converges a.s. to (G+ log 2)/2 as n tends to ∞.

Proof. (i) This result is given in Preater (2000).

(ii) The value of Pj = 1 −F(Ȳj−1) = exp(−Ȳj−1). But, from (i), Ȳj − log j converges a.s.
to G. Then jPj = j exp(−Ȳj−1) ≈ je−(G+log j) = e−G = W . Hence, jPj converges a.s., so
ω = 1 in Theorem 3.2, i.e. Tk/k2 converges a.s. to 1/(ω + 1)W = eG/2.

(iii) Since (by (ii)) Tk/k2 converges a.s. to Q = eG/2, it follows that ck is equal to k2 in
Theorem 3.3. Hence, dn = 	√n
. This implies that

h(x) = lim
n→∞

	√n/x

	√n
 = 1√

x
.

Therefore, from Theorem 3.3, Mn/dn converges a.s. to 1/
√
Q = √

2e−G/2. Finally, since
limn→∞ dn/

√
n = 1, the result follows.

(iv) We have An = ȲMn . Thus, from (i), An − logMn → G a.s. as n → ∞. From (iii),
log(Mn/

√
n) converges a.s. to

√
2e−G/2. But,

An − logMn = An − log

(√
n
Mn√
n

)
= An − log n

2
− log

(
Mn√
n

)
.

Hence, An − (log n)/2 converges a.s. to G+ log(
√

2e−G/2), from which (iv) follows.
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4. Pareto distribution

In this section and Section 5 different families of distributions are considered. The Pareto
distribution considered in this section and the beta distribution with parameters (α, 1) considered
in Section 5, along with the exponential distribution discussed previously, are representative
of families that belong to the three domains of attraction of extreme values (see Leadbetter et
al. (1983)). The paradigm of extreme values is suitable in this context because ultimately the
average of kept observations will be governed by the behavior in the tail of the distribution
generating the observations.

From the theorems in the previous section, once a condition on Pj = 1 − F(βȲj ) is
established, it follows that Tk , Mn, and An, suitably normalized, converge a.s.

Let X1, X2, . . . be i.i.d. from a Pareto distribution, given by

Fα(x) = (1 − x−α) 1(x ≥ 1), (4.1)

and, hence,
fα(x) = αx−(α+1) 1(x ≥ 1).

Note that, for X ∼ Fα , we have, for x ≥ c ≥ 1,

P(X > x | X > c) =
(
x

c

)−α
= P(cX > x). (4.2)

Let U1, U2, . . . be i.i.d. with distribution Fα . From (4.2), it follows (taking c = βȲk−1) that
Yk can be represented as

Yk = UkβȲk−1 for k = 1, 2, . . . (4.3)

with Ȳ0 ≡ β−1. This representation is justified since, conditional on Yk ≥ βȲk−1, the distribu-
tion of Ȳk depends on Ȳk−1 in the above multiplicative way.

Since Pj = (βȲj−1)
−α , it is sufficient to show that Ȳj , suitably normalized, converges a.s.

to a random variable W , where P(0 < W < ∞) = 1. From (4.3),

Ȳk = (k − 1)Ȳk−1 + UkβȲk−1

k
= βUk + k − 1

k
Ȳk−1. (4.4)

For X ∼ Fα(x) to have finite expectation, we must have α > 1, therefore, at first we assume
that this condition holds. Since E(Uk) = α/(α − 1), it follows that

ak ≡ E

(
βUk + k − 1

k

)
= 1 + βα/(α − 1)− 1

k
for k ≥ 1.

Thus, E(Ȳk | Ȳk−1) = akȲk−1. Now let

bk =
( k∏
j=1

aj

)−1

and Vk = bkȲk. (4.5)

It follows that {Vk} is a nonnegative martingale sequence with expectation β−1 and, thus, by
the martingale convergence theorem, converges a.s. to a finite limit, i.e.

bkȲk → Y ∗ a.s. as k → ∞. (4.6)
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We shall write (4.5) in a form that shows the rate of convergence more clearly.

b−1
k =

k∏
j=1

aj

= exp

( k∑
j=1

log aj

)

= exp

( k∑
j=1

log

(
1 + (β − 1)α + 1

(α − 1)j

))

= exp

( k∑
j=1

(
(β − 1)α + 1

(α − 1)j
+O(j−2)

))

= exp

(
(β − 1)α + 1

α − 1
log k + δk

)

= k((β−1)α+1)/(α−1)Dk,

where Dk converges to a positive constant. It follows that (4.6) can be written as

k−((β−1)α+1)/(α−1)Ȳk → Y a.s. as k → ∞, (4.7)

where Y has finite expectation.
We have shown that P(Y < ∞) = 1. We need to show that P(Y > 0) = 1. It suffices to show

that E(log(k−cȲk)) > A for some constantA > −∞ for all k, where c = ((β−1)α+1)/(α−1).
We use

Ȳk = Ȳk−1

(
k − 1 + βUk

k

)
,

where the Uk are the i.i.d. Pareto(α) of (4.1).
Let	k = E(log(k−cȲk))− E(log(k − 1)−cȲk−1). It is sufficient to show that

∑∞
k=1|	k| <∞.

Note that	k = c log((k− 1)/k)+ E(Zk), where Zk = log((k− 1 + βUk)/k) and note the
following result.

Lemma 4.1. We have

E(Zk) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

c

k
+O

(
1

kα

)
if 1 < α < 2,

c

k
+O

(
log k

k2

)
if α = 2,

c

k
+O

(
1

k2

)
if α > 2.

If Lemma 4.1 is true then
∑∞
k=1 |	k| < ∞ because 	k = −c/k + c/k +O(1/kmin(α,2))

and all the O(·) terms are summable.

Proof of Lemma 4.1.

E(Zk) = E

(
log

(
k − 1 + βUk

k

))
= log

(
k − 1

k

)
+ E

(
log

(
1 + βUk

k − 1

))
.
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Consider

E

(
log

(
1 + βUk

k − 1

))
=

∫ ∞

x=1
log

(
1 + βx

k − 1

)
αx−(α+1) dx

=
(

β

k − 1

)α ∫ ∞

y=β/(k−1)
log(1 + y)αy−(α+1) dy

=
(

β

k − 1

)α ∫ 1

y=β/(k−1)
log(1 + y)αy−(α+1) dy

+
(

β

k − 1

)α ∫ ∞

y=1
log(1 + y)αy−(α+1) dy,

provided that k ≥ β + 1. The last term in the above expression is of orderO(1/kα). Note that

y − y2

2
≤ log(1 + y) ≤ y. (4.8)

But,

(
β

k − 1

)α ∫ 1

y=β/(k−1)
ytαy−(α+1) dy =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α

t − α

((
β

k − 1

)α
−

(
β

k − 1

)t)
if α �= t,

α

(
β

k − 1

)α
(log(k − 1)− logβ) if α = t.

(4.9)
We are interested in t = 1, 2. The leading term is when t = 1 (α �= t in this case always),

which gives a leading term in the approximation of the first integral of

αβ

α − 1

1

k − 1
+O

(
1

kα

)
= αβ

(α − 1)k
+O

(
1

k2

)
+O

(
1

kα

)
.

• If t = 2 and α �= 2, (4.9) becomes O(1/k2)+O(1/kα).

• If t = 2 and α = 2, (4.9) becomes O(log k/kα).

Writing αβ/(α − 1)k + log((k − 1)/k) as c/k +O(1/k2) completes the proof of the lemma
as the remainder terms are either O(1/kα) if 1 < α < 2, O(log k/k2) if α = 2, or O(1/k2) if
α > 2.

Theorem 4.1. If F is Pareto(α) with α > 1 and β > (α − 1)/α then

(i) Ȳk/k((β−1)α+1)/(α−1) converges a.s. as k tends to ∞;

(ii) Tk/k((β−1)α2+2α−1)/(α−1) converges a.s. as k tends to ∞;

(iii) Mn/n
(α−1)/((β−1)α2+2α−1) converges a.s. as n tends to ∞ to finite positive random

variables; and

(iv) An/n((β−1)α+1)/((β−1)α2+2α−1) converges a.s. as n tends to ∞ to finite positive random
variables.
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Proof. First assume that β ≥ 1.

(i) This follows from (4.7).

(ii) Since Pj = (βȲj−1)
−α , ω in (3.1) is ((β − 1)α+ 1)/(α− 1)α, and the result follows from

Theorem 3.2.

(iii) This follows from Theorem 3.3 with dn = n(α−1)/((β−1)α2+2α−1).

(iv) Since γ = ((β − 1)α + 1)/(α − 1) and ψ = (α − 1)/((β − 1)α2 + 2α − 1) (hence,
γψ = ((β − 1)α + 1)/((β − 1)α2 + 2α − 1)), the result follows from Theorem 3.4.

If (α−1)/α < β < 1 then eventually Ȳk will exceed 1/β a.s. and, henceforth, representation
(4.3) is valid and the proof follows as above.

In particular, when β = 1,

Ȳk

k1/(α−1)
,

Tk

k(2α−1)/(α−1)
,

Mn

n(α−1)/(2α−1)
, and

An

n1/(2α−1)

converge a.s.

Remark 4.1. Consider Theorem 2.1, which relatesMn for two distributions that are connected
to each other in a particular way. For the Pareto distribution, F(x) = (1 − x−α) 1(x ≥ 1)
with α > 0. This implies that if X ∼ Pareto(α) then Z = Xα/α

∗ ∼ Pareto(α∗), where α∗ is
any positive constant. It follows that the number of items retained after n are observed will
be stochastically at least as large for α∗ as it is for α when α∗ > α. This is consistent with
Theorem 4.1, which states that Mn is of order n(α−1)/(2α−1).

Even though the Pareto distribution with α ≤ 1 does not have finite mean, Ȳk , suitably
normalized, still converges a.s. It is apparent from (4.5) that

log Ȳk = log Ȳk−1 + Zk,

where Z1 = U1 and Zk = log((k − 1)/k)+ log(1 + βUk/(k − 1)) when k > 1, where the Ui
are i.i.d. Pareto(α). Hence,

log Ȳk =
k∑
j=1

Zj .

Lemma 4.2, below, provides a handle on the rate at which E(Zk) and E(Z2
k ) grow, which is

needed along with Theorem 3.1 to obtain the desired results.

Lemma 4.2. (i) If 0 < α < 1 then, for all β > 0,

kα E(Zk) → cα,β and kα E(Zk
2) → dα,β as k → ∞,

where cα,β and dα,β are positive constants.

(ii) If α = 1 then, for all β > 0,

E(Zk)

(log k)/k
→ c1,β and k E(Zk

2) → d1,β as k → ∞.

Proof. The results follow by substituting the bounds and the bounds squared on log(1 + y)

in (4.8) into the results in (4.9) and realizing that log((k − 1)/k) is of lower order.
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Theorem 4.2. (i) If 0 < α < 1 then, for all β > 0,

log Ȳk
k1−α converges a.s. as k → ∞.

(ii) If α = 1 then, for all β > 0,

log Ȳk
(log k)2

converges a.s. as k → ∞.

Proof. (i) The proof applies Theorem 3.1. Specifically, let Qi = Zi − E(Zi) and bn =∑n
i=1 E(Zi). Then bn is increasing for large enough n since, by Lemma 4.2, E(Zi) > 0 for

large enough n. Also, from Lemma 4.2, the sum is of order n1−α , which goes to ∞. But,
E(Q2

n) is of order 1/nα and b2
n is of order n2−2α . Hence, E(Q2

n)/b
2
n is O(1/n2−α), which is

summable. Theorem 3.1 then implies that
∑n
i=1 Zi/bn converges a.s. to 1. But, bn is of order

n1−α and
∑n
i=1 Zi = log Ȳn.

(ii) The proof is the same in form as part (i). The only difference is that since E(Zn) is
O(log n/n), this implies that bn is O(log2 n). It follows that E(Q2

n)/b
2
n is O(1/n log2 n),

which is summable.

Since log Ȳk/k1−α converges a.s. for α < 1, it follows that Ȳ 1/k1−α
k converges a.s. Similarly,

when α = 1, Ȳ 1/ log2 k

k converges a.s. The behavior of the other quantities of interest, Tk , Mn,
and An, for the Pareto distribution with α ≤ 1, is more complicated and, hence, omitted from
this discussion.

5. Beta distribution

We assume that observationsXi are i.i.d. from a beta distribution with parameters (α, 1), i.e.

Fα(x) = xα 1(0 ≤ x ≤ 1)+ 1(x ≥ 1), α > 0. (5.1)

Here we consider the case where ‘better’ means ‘smaller’. In this example we retain Xn if it
is smaller than βAn−1, where An−1 is the average of the items retained after n − 1 items are
observed.

The reason we frame ‘better’ to be ‘smaller’ for beta distributions is that we are confronted
with anomalous situations for any random variable with support [0, L) with L < ∞, if better
is larger, if β > 1. For example, if β = 2 then here, once An−1 >

1
2 , all ensuing observations

will not be kept. Note that if β = 1 then the problems of ‘smaller than average’ and ‘larger
than average’ are related by lettingX∗

i = 1 −Xi and considering the distribution of Beta(1, α)
for X∗

i .
Clearly, here smaller β values result in more stringent rules. For this reason, we assume that

β is small throughout the present section. Let Wk be the value of the kth item that is retained,
and let W̄k be the average of the first k items that are retained. Since, for Fα(x) in (5.1) for
0 ≤ x ≤ c ≤ 1,

P(X ≤ x | X ≤ c) =
(
x

c

)α
= P(cX ≤ x),

we can write
Wk = βW̄k−1Uk, (5.2)

where the Uk are i.i.d. with cumulative distribution function Fα(x), as in (5.1).
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It follows that

W̄k = (k − 1)W̄k−1 + UkW̄k−1β

k
=

(
1 + Ukβ − 1

k

)
W̄k−1

with W0 = 1/β. Hence, E(W̄k | Fk−1) = akW̄k−1, where

ak = 1 − 1 − βα/(α + 1)

k
,

since E(Uk) = α/(α + 1).
Let

bk =
( k∏
j=1

aj

)−1

, (5.3)

and consider Rk = W̄kbk for k ≥ 1. It follows that Rk is a nonnegative martingale with
expectation 1/β and, hence,

Rk → R a.s. as k → ∞.

We shall write (5.3) in a slightly different form which will show the rate of convergence more
explicitly. For each α and β, let

γ = αβ − (α + 1)

α + 1
< 0.

Then

b−1
k =

k∏
j=1

aj =
k∏
j=1

(
1 + γ

j

)
= Dkk

γ ,

where Dk tends to a finite positive limit as k tends to ∞. Thus, for β ≤ (α + 1)/α, it follows
that

k1−αβ/(α+1)W̄k → W a.s. for k → ∞,

where W has finite expectation.
We know that P(W < ∞) = 1. We need to show that P(W > 0) = 1 in order to apply the

results of Section 3.
It suffices to show that E(log(k1−αβ/(α+1)W̄k)) ≥ −A for some positive constant A for all

k ≥ 2. Since

W̄k = W1

k∏
j=2

(
1 − 1 − Ujβ

j

)
,

where the Ui are i.i.d. Fα(x), then

E(log(k1−αβ/(α+1)W̄k)) =
(

1 − αβ

α + 1

)
log k + E(log W̄k)

=
(

1 − αβ

α + 1

)
log k + E(logU1)+

k∑
j=2

E

(
log

(
1 − 1 − Ujβ

j

))
,

E(logU1) =
∫ 1

0
(log x)αxα−1 dx = (log x)xα|10 −

∫ 1

0
xα−1 dx = − 1

α
,
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and

E

(
log

(
1− 1 − Ujβ

j

))
≥ − E

(
1 − Ujβ

j

)
−E

((
1 − Ujβ

j

)2)
≥ −1 − αβ/(α + 1)

j
− 1

j2

for all j ≥ 2. The first inequality follows because log(1 − u) ≥ −u − u2 for 0 ≤ u ≤ 1
2 .

Hence,
k∑
j=2

E

(
log

(
1 − Ujβ

j

))
≥ −

(
1 − αβ

α + 1

) k∑
j=2

1

j
− π2

6
.

Therefore,

E(log(k1−αβ/(α+1))W̄k) ≥
(

1 − αβ

α + 1

)(
log k −

k∑
j=2

1

j

)
− 1

α
− π2

6
≥ −

(
1

α
+ π2

6

)
.

The last inequality follows from
∑k
j=2 1/j ≤ log k.

Theorem 5.1. If F is Beta(α, 1) then, for β < (α + 1)/α,

(i) k1−αβ/(α+1)W̄k converges a.s. as k tends to ∞;

(ii) Tk/k((α+1)2−α2β)/(α+1) converges a.s. as k tends to ∞;

(iii) Mn/n
(α+1)/((α+1)2−α2β) converges a.s. as n tends to ∞ to finite positive random vari-

ables; and

(iv) Ann(α+1−αβ)/((α+1)2−α2β) converges a.s. as n tends to ∞ to finite positive random
variables.

In particular, when β = 1, k1/(α+1)W̄k , Tk/k(2α+1)/(α+1),Mn/n
(α+1)/(2α+1), and Ann1/(2α+1)

converge a.s. to finite positive random variables.

Proof. First assume that β ≤ 1. Since here Pj = F(βW̄j−1) = (βW̄j−1)
α , this implies

that ω in (3.1) is equal to (α + 1 − αβ)/(α + 1)α. Since

Tk

k((α+1−αβ)/(α+1))α+1
= Tk

k((α+1)2−α2β)/(α+1)
,

part (ii) follows from Theorem 3.2.

(iii) This follows from Theorem 3.3.

(iv) This follows from Theorem 3.4 with γ and ψ as given.

If 1 < β < (α+1)/α then eventually W̄k will exceed 1/β a.s. and, henceforth, representation
(5.2) is valid and the proof follows as above.

Remark 5.1. Let X have the Pareto distribution with parameter ν and consider g(x) = 1 −
x−ν/α . Clearly g is increasing. It is concave for all ν > 0 and α > 0. Let Z = g(X). It is
easily seen that Z is Beta(1, α). For β = 1, Theorem 2.1 implies that E(M∗

n(ν)) ≤ E(Mn(α))

for all α, ν, and n, where M∗
n(ν) is the number of items retained by time n by a Pareto(ν)

random variable.
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Further remarks can be found in Krieger et al. (2007a). Among the topics discussed there
are the following.

(a) A comparison between the performance of the rules considered in Krieger et al. (2007b)
and those of the present paper.

(b) The behavior of the rules for β values outside the domains discussed in Theorems 3.5,
4.1, and 5.1.

(c) The behavior of the rules under other distributions belonging to the same domains of
attraction.

(d) A comparison of the limiting behavior of max(X1, . . . , Xk) and Ȳk belonging to the same
domain.
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