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Abstract

It is shown that a rational map of degree at least 2 admits a meromorphic invariant line field if and only if
it is conformally conjugate to either an integral Lattès map, a power map, or a Chebyshev polynomial.
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1. Introduction

A line field supported on a subset E of the complex sphere C is the Beltrami
differential µ= µ(z)dz̄/dz supported on E with |µ| = 1. We say µ is measurable
if µ(z) is a measurable function. Let f be a rational map of degree deg( f )≥ 2. We
say f admits an invariant line field if there is a measurable line field µ supported on a
set in C with positive measure such that f ∗µ= µ almost everywhere (refer to [3]).

We are mostly interested in the invariant line fields which are carried on the Julia
sets for rational maps. One well-known example is the so called ‘integral Lattès map’,
which is constructed via a torus endomorphism. The construction is as follows. Let
X = C/3 be a complex torus and let α be a complex number such that |α|> 1 and
α3⊂3. Multiplication by α induces an endomorphism F : X→ X . Let ℘ : X→ C
be the Weierstrass function. Since ℘(−z)= ℘(z), the endomorphism F induces a
rational map f : C→ C such that f (℘ (z))= ℘(F(z)). Such a map f is called a
Lattès map. If α is an integer, then F admits an invariant line field on X . This line
field has the form eiθdz̄/dz and can descend to an invariant line field for f (see [3]).
On the other hand, we can verify that if f admits an invariant line field, then this line
field lifts to an invariant line field for F and α turns out to be an integer. In this case,
we say f is an integral Lattès map.

One of the central problems in complex dynamics is the following.
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CONJECTURE 1.1 (No invariant line fields). A rational map f of degree deg( f )≥ 2
carries no invariant line fields on its Julia set, except when f is an integral Lattès map.

The conjecture implies the density of hyperbolic maps in the space Ratd of all
rational maps of degree d (see [3]). Much study has been devoted to special families of
rational maps, especially quadratic polynomials of the form fc(z)= z2

+ c for c ∈ C.
However, even for the quadratic family, the conjecture is still unsolved.

Fortunately, if we require the line field µ to be ‘good’, we can classify all the
rational maps which leave µ invariant. Here, a ‘good’ line field means that it can
be written in the form µ= φ̄/|φ|, where φ is a nonzero meromorphic quadratic
differential defined on C. In this case, formally, we call µ a meromorphic line field,
dual to φ. Correspondingly, we say that f admits a meromorphic invariant line field if
f ∗µ= µ.

Now we can formulate our main theorem.

THEOREM 1.2. Let f be a rational map of degree deg( f )≥ 2. Then f admits a
meromorphic invariant line field if and only if f is conformally conjugate to one of the
following maps.

(1) an integral Lattès map;
(2) the power map z 7→ zd , for d ∈ Z and |d| ≥ 2;
(3) ±Tn, n ≥ 2, where Tn is the nth Chebyshev polynomial defined by Tn(2 cos z)=

2 cos(nz).

This theorem is deeply inspired by a theorem in [3] which states that if a rational
map f admits an invariant line field which is holomorphic on a nonempty open set
contained in the Julia set, then f is an integral Lattès map. Moreover, three examples
are provided in [3]. One is the power map z 7→ zd , for which the line field is dual to
dz2/z2; another is the integral Lattès map, for which the line field is dual to

dz2

(z − p1)(z − p2)(z − p3)(z − p4)
;

the third is the quadratic polynomial f (z)= z2
− 2, for which the line field is dual to

dz2/(z2
− 4). So it is a natural question to determine whether these are all examples

which admit meromorphic invariant line fields. These examples motivate our study.
It is interesting to compare our classification theorem with another trichotomy

theorem from the viewpoint of ‘permutable maps’. Motivated by [5], we call a rational
map f permutable if it commutes with another rational map g, f ◦ g = g ◦ f , where
both f and g have degree at least 2, and no iterate of f is equal to an iterate of g.

THEOREM 1.3 (Ritt [6] and Eremenko [2]). A rational map f of degree deg( f )≥ 2
is permutable if and only if it is a finite quotient of an affine map; that is, if and only if
it is either a Lattès, Chebyshev, or power map.

This theorem was first proved by Ritt [6] in 1923, and by Eremenko [2] using a
quite different method in 1989. For higher-dimensional analogues, see [1].
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2. Proof of the main theorem

First we need some notation. Let M(C) be the set of all meromorphic quadratic
differentials defined on C. For φ ∈M(C), let Z(φ) and P(φ) be the zero set and the
pole set of φ, respectively. The order of φ ∈M(C) at a point z0, denoted by ordz0(φ),
is defined as follows. If z0 is a zero of φ of order n, set ordz0(φ)= n; if z0 is a pole
of φ of order n, set ordz0(φ)=−n; for other cases, where z0 is called a regular point
of φ, set ordz0(φ)= 0. For a rational map f , let C( f ) be the set of all critical points,
and let

P( f )=
⋃

c∈C( f ),n>0

f n(c)

be the postcritical set. The backward orbit of a point z, under iteration of f , is denoted
by orb−(z)=

⋃
n≥0 f −n(z). Let deg( f, z) be the local degree of f at z.

PROOF OF THEOREM 1.2. Let f be a rational map of degree deg( f )≥ 2 and µ=
φ̄/|φ| be a meromorphic invariant line field of f for some φ ∈M(C).

The ‘if’ part of the theorem is easy to verify. The proof for the ‘only if’ part consists
of five steps.

STEP 1. f ∗(φ̄/|φ|)= φ̄/|φ| if and only if there is a positive constant C such that
f ∗φ = Cφ. This constant C is uniquely determined by f . Moreover, any other
meromorphic invariant line field of f must have the form eiθµ for some θ ∈ R.

Note that the relation f ∗(φ̄/|φ|)= φ̄/|φ| is equivalent to

f ∗φ/φ = | f ∗φ|/|φ|. (2.1)

This indicates that the well-defined holomorphic map f ∗φ/φ : C→ C takes only
positive values, thus equation (2.1) holds if and only if f ∗φ/φ is a positive constant
by open map theorem.

Now suppose µi = φ̄i/|φi | (i = 1, 2) are two meromorphic invariant line fields
for f . The above argument shows f ∗φi = Ciφi , i = 1, 2. Since φ1/φ2 is a well-
defined holomorphic map from C to itself, denoted by R, the relation

f ∗φ1

f ∗φ2
=

C1φ1

C2φ2

implies that R ◦ f = (C1/C2)R. Comparing the degree of R ◦ f and f , we conclude
thatR is a nonzero complex constant, and C1 = C2. Therefore µ1 is identical to µ2 up
to a rotation.

From now on, we may write φ and C as φ f and C f since they are determined by f .
To find all rational maps which admit meromorphic invariant line fields is equivalent to
finding all solutions ( f, φ f , C f ) ∈ Rat+2 ×M(C)× R+ to the indeterminate equation

f ∗φ f = C f φ f ,
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where Rat+2 is the space of all rational maps of degree at least 2. In local coordinates,
φ f = φ f (z) dz2, the indeterminate equation has the form

φ f ( f (z)) f ′(z)2 = C f φ f (z). (2.2)

Moreover, for any z ∈ C, comparing the order of f ∗φ f and φ f at the point z, we have
the identity

ordz( f ∗φ f )= deg( f, z)(2+ ord f (z)(φ f ))− 2= ordz(φ f ). (2.3)

STEP 2. Z(φ f )= ∅.

Otherwise let z0 ∈ Z(φ f ) 6= ∅. We can conclude from equation (2.2) that
orb−(z0)⊂ Z(φ f ). Since Z(φ f ) is a discrete subset of C, # orb−(z0) <∞ and
# f −1(orb−(z0))≥ # orb−(z0). On the other hand,

f −1(orb−(z0))=
⋃
n≥1

f −n(z0)⊂ orb−(z0).

So we have f −1(orb−(z0))= orb−(z0). It is easy to see that all points in orb−(z0)

are superattracting periodic points. If # orb−(z0)≥ 3, by Montel’s theorem, the set
C̄\ orb−(z0) is completely invariant and lies in the Fatou set F( f ). This indicates that
the Julia set J ( f )= ∅, which is a contradiction. Thus # orb−(z0) can only be 1 or 2.

If # orb−(z0)= 2, then f is conformally conjugate to the power map z 7→ zd , for
some d ∈ Z. But it is known that any meromorphic invariant line field of the power
map must be dual to Cdz2/z2 (see Section 1 and Step 1), which has no zeros. So this
case is impossible.

If # orb−(z0)= 1, then f −1(z0)= {z0}, and deg( f, z0)= deg( f ). By identity (2.3),
we have

ordz0( f ∗φ f )= deg( f )(ordz0(φ f )+ 2)− 2= ordz0(φ f ).

But this is also impossible since ordz0(φ f )≥ 1, deg( f )≥ 2.

STEP 3. f is critically finite, that is #P( f ) <∞. Moreover, P( f )= P(φ f ).

For any c ∈ C( f ), equation (2.2) implies that f (c) ∈ P(φ f ). Otherwise c will be
a zero of φ f , which is already ruled out in Step 2. Replacing f by f n , we have
f n(c) ∈ P(φ f ), thus ⋃

n≥0

f n(C( f ))⊂ P(φ f ).

This means f is critically finite, since P(φ f ) is a finite set. Moreover, P( f )⊂ P(φ f ).
If P(φ f )\P( f ) 6= ∅, taking z0 ∈ P(φ f )\P( f ), we have from equation (2.2) that

orb−(z0)⊂ P(φ f ), # orb−(z0)=∞,

which is a contradiction. This ends the proof of Step 3.
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By the Riemann–Roch theorem,

deg(φ f )= #Z(φ f )− #P(φ f )=−#P(φ f )=−4.

This means that φ f has four poles (counting the multiplicity). Since f is critically
finite, each periodic cycle of f is either repelling or superattracting (see [3] or [4]).

STEP 4. If f has no superattracting cycle, then f is an integral Lattès map.

The proof in this step is due to McMullen (compare [3]). For completeness, we
include it here. If f has no superattracting cycle, then the Julia set J ( f )= C.

We first show that φ f has four simple poles. That is, up to a constant,

φ f =
dz2

(z − p1)(z − p2)(z − p3)(z − p4)
.

Indeed, if φ f has a pole p0 of order 2 or more, that is, ordp0(φ f )≤−2, then we
can conclude from identity (2.3) by induction that for any z ∈ orb−(p0), ordz(φ f )≤

−2, therefore orb−(p0)⊂ P(φ f ). An argument similar to Step 2 indicates that
f −1(orb−(p0))= orb−(p0) and # orb−(p0)= 1 or 2. It turns out that f is either
conjugate to a power map or conjugate to a polynomial. But this will contradict
J ( f )= C.

Now we consider the orbifold O f of f . Recall that the orbifold O f of the critically
finite map f is a pair (C, N f ), where N f : C→ N ∪ {∞} takes values greater than 1
only on a discrete set of C. It is defined as follows:

(a) N f (x)= 1 , when x ∈ C\P( f );
(b) N f (x) is the least common multiple of the local degrees in the set

{deg( f n, y) | f n(y)= x, n ≥ 1}

for x ∈ P( f );
(c) N f (x)=∞ if the local degrees in the set {deg( f n, y) | f n(y)= x, n ≥ 1} are

unbounded.

We claim that O f = (C, (2, 2, 2, 2)). In fact, it is easy to see that N f (x)= 1 when
x ∈ C\P( f ). For x ∈ P( f ), it is obvious that N f (x)≥ 2. Let z ∈ f −n(x) for n ≥ 1.
Note that ( f n)∗φ f = Cn

f φ f ; by identity (2.3),

ordz(( f n)∗φ f )= deg( f n, z)(2+ ordx (φ f ))− 2= ordz(φ f ).

Since P( f )= P(φ f ) and every pole of φ f is simple in this case, ordx (φ f )=−1.
Therefore ordz(φ f ) has only two choices 0 or −1, and deg( f n, z) can only be 1 or 2.
Thus N f (x)≤ 2. The above argument shows that for any x ∈ P( f ), N f (x)= 2. This
proves the claim.

By [3, Theorem A.5], if O f = (C, (2, 2, 2, 2)), then f is a Lattès map. By
assumption, f admits a meromorphic invariant line field, so f is an integral
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Lattès map. Moreover, since φ f is integrable over C, we have C f = deg( f ) from
the identity ∫

C
| f ∗φ f | = deg( f )

∫
C
|φ f |.

STEP 5. If f has a superattracting cycle, then f is either conjugate to a power map or
conjugate to a Chebyshev polynomial.

Let z0 be a superattracting point of f with period p. From identity (2.3),

ordz0(( f p)∗φ f )= deg( f p, z0)(2+ ordz0(φ f ))− 2= ordz0(φ f ).

Since deg( f p, z0)≥ 2, we have ordz0(φ f )=−2. Thus z0 is a pole of φ f of order 2.
Moreover, by identity (2.3) and induction, all preimages of z0 are poles of φ f of
order 2. There are two possibilities:

(P1) z0 is a fixed point of f and f −1(z0)= {z0};
(P2) z0 is of period 2 and f −1(z0)= {ζ }, f −1(ζ )= {z0}.

For (P1), there are two choices for φ f up to a constant.

CASE 1. φ f =
dz2

(z − z0)2(z − z1)2
.

CASE 2. φ f =
dz2

(z − z0)2(z − z1)(z − z2)
.

In Case 1, take γ ∈ Aut(C), the automorphism group of C, such that γ (0)=
z1, γ (∞)= z0. Then γ ∗φ f = C dz2/z2 for some constant C and F = γ−1

◦ f ◦ γ is
a polynomial such that F∗(γ ∗φ f )= C f γ

∗φ f . By conjugation, we may assume f is a
polynomial and φ f = dz2/z2. The equation f ∗φ f = C f φ f is equivalent to

( f ′(z)/ f (z))2 = C f /z
2. (2.4)

Comparing the leading coefficients on both sides of (2.4), we have C f = deg( f )2.
It is easy to find the general polynomial solution f (z)= Azd , where A is a nonzero
complex constant and d = deg( f ). In this case, f is conjugate to a power map.

In Case 2, take γ ∈ Aut(C), such that γ (∞)= z0, γ (−2)= z1, γ (2)= z2. It is
easy to show that γ ∗φ f = C dz2/(z2

− 4) for some constant C and F = γ−1
◦ f ◦ γ

is a polynomial. Thus as in Case 1 we assume that f is a polynomial and φ f =

dz2/(z2
− 4). The equation f ∗φ f = C f φ f is equivalent to

f ′(z)2(z2
− 4)= C f ( f (z)2 − 4). (2.5)

We want to find all polynomial solutions to this equation. First note that f (2)= 2
or −2 if we set z = 2. Comparing the leading coefficients on both sides, we have
C f = deg( f )2. To solve equation (2.5), we need a little trick. Let

z = w +
1
w
, f (z)= ϕ(w)+

1
ϕ(w)

,
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where ϕ(w) is required to be a holomorphic map; it need only be defined in some open
set U in C. Indeed, since the mapw 7→ w + w−1 is locally injective when |w| is large,
we can always do this. Calculation shows that

f ′(z)= w
ϕ′(w)

ϕ(w)

ϕ(w)− ϕ(w)−1

w − w−1 .

Then equation (2.5) becomes

w
ϕ′(w)

ϕ(w)
=±n, w ∈U,

where n = deg( f ). This new equation has general solution ϕ(w)= Cwn or ϕ(w)=
(Cwn)−1 for some indeterminate constant C , so

f

(
w +

1
w

)
= Cwn

+
1

Cwn , w ∈U.

This relation in fact holds for all w ∈ C̄ by the identity theorem of holomorphic maps.
If f (2)= 2, then C = 1. In this case f (2 cos z)= 2 cos(nz) if we write w = ei z , and
so f = Tn . If f (2)=−2, then C =−1. In this case f =−Tn . Therefore, in Case 2,
f is conjugate to a Chebyshev polynomial Tn or −Tn .

The only remaining case is (P2). In this case, we can easily show that C f =

deg( f )2, φ f = dz2/((z − z0)
2(z − ζ )2) and f is conjugate to the power map z 7→ zd ,

for d ∈ Z and d ≤−2. We omit the details here.
The proof is complete. 2

REMARK 2.1. For convenience we list all solutions to the indeterminate equation
f ∗φ f = C f φ f in the following table.

f is conjugate to φ f C f O f

Integral Lattès map dz2

(z−p1)(z−p2)(z−p3)(z−p4)
deg( f ) (C, (2, 2, 2, 2))

Power map dz2

(z−z0)
2(z−z1)

2 deg( f )2 (C, (∞,∞))

±Chebyshev polynomial dz2

(z−z0)
2(z−z1)(z−z2)

deg( f )2 (C, (2, 2,∞))

We can see that for all cases O f is a parabolic orbifold and √
|φ f | is an orbifold metric on O f .
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