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Abstract. Large regions of protoplanetary discs are believed to be too weakly ionised to support
magnetorotational instabilities, because abundant tiny dust grains soak up free electrons and
reduce the conductivity of the gas. At the outer edge of this “dead zone”, the ionisation fraction
increases gradually and the resistivity drops until the magnetorotational instability can develop
turbulence. We identify a new viscous instability which operates in the semi-turbulent transition
region between “dead” and “alive” zones. The strength of the saturated turbulence depends
strongly on the local resistivity in this transition region. A slight increase (decrease) in dust
density leads to a slight increase (decrease) in resistivity and a slight decrease (increase) in
turbulent viscosity. Such spatial variation in the turbulence strength causes a mass pile-up
where the turbulence is weak, leading to a run-away process where turbulence is weakened and
mass continues to pile up. The final result is the appearance of high-amplitude pressure bumps
and deep pressure valleys. Here we present a local linear stability analysis of weakly ionised
accretion discs and identify the linear instability responsible for the pressure bumps. A paper
in preparation concerns numerical results which confirm and expand the existence of the linear
instability.

Keywords. accretion, accretion disks, (magnetohydrodynamics:) MHD, turbulence, (stars:)
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1. Introduction
Consider a protoplanetary disc irradiated with a cosmic ray flux F (particles per area

per unit time). The reduction of the flux is controlled by the equation

dF

dz
= −κρ(z)F (z) , (1.1)

where κ is the opacity and ρ is the z-dependent mass density. The solution is

F↓(z) = F∞ exp[−κΣ↑(z)] , (1.2)
F↑(z) = F∞ exp[−κΣ↓(z)] . (1.3)

Here Σ↑(z) =
∫ ∞

z
ρ(z)dz is the column density of gas above the given point, while

Σ↓(z) =
∫ z

−∞ ρ(z)dz is the column density below. We have Σ = Σ↑(z) + Σ↓(z) at all z.
Introducing the ionisation rate ζ(z) we get (Sano et al. 2000)

ζ(z) =
ζCR

2
{exp[−Σ↑(z)/ΣCR] + exp[−Σ↓(z)/ΣCR]} . (1.4)
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Here ζCR is the ionisation rate by cosmic rays in interstellar space and ΣCR = 1/κ is the
penetration column density of cosmic rays. Free electrons are lost as they collide with
dust grains. This yields the rate equation

∂ne

∂t
= ζnn − nen•〈σv〉e,• (1.5)

for electron number density ne . Here ζ = κmnF is the ionisation rate. The equilibrium
electron density fraction is

ne

nn
=

ζ

n•〈σv〉e,•
. (1.6)

This expression is valid in the limit of negligible gas phase recombination and is equivalent
to the ion-dust plasma limit of Okuzumi (2009). The resistivity of the electrons is given
in c.g.s. units by

η =
c2

4πσe
, (1.7)

where c is the speed of light and σe is the electrical conductivity. In turn the conductivity
is given by

σe =
nee

2

meν
. (1.8)

Here ne is the number density of electrons, e is the electron charge, me is the electron
mass, and ν is the collision frequency of electrons with neutrals. The momentum rate
coefficient 〈σv〉 = ν/nn for transfer of momentum from electrons to neutrals is given by
〈σv〉 = 8.3 × 10−10T 1/2 cm3 s−1 . This finally yields (Blaes & Balbus 1994)

η = 230
(

nn

ne

)
T 1/2 cm2 s−1 . (1.9)

Together with equation (1.6) and equation (1.4) this gives us a model for the resistivity
in protoplanetary discs, provided that we know ζCR of the cosmic rays, ρ(z) and ΣCR
for the gas, and number density nd and collision cross section σd of the dust grains.

The fastest growing wavenumber for the MRI is

kBH =

√
15
16

vA

Ω
, (1.10)

where vA = B0/
√

µ0ρ is the vertical Alfvén speed and B0 is the constant vertical magnetic
field component. The MRI can grow when the Elsasser number ΛMRI fulfills

ΛMRI =
v2

A

ηΩ
� 1 . (1.11)

For the Minimum Mass Solar Nebula the Elsasser number in the mid-plane scales with
r−4 , assuming that Σ � ΣCR and constant β = Pgas/Pmag .

We set the rate coefficients for collisions between electrons and dust grains as

〈σv〉e,• = πa2
•ce , (1.12)

where ce is the thermal speed of the electrons.

ce =
√

8kBT

πme
. (1.13)

This simple approach allows us to calculate the resistivity of the gas anywhere in the
disc at a relatively modest computational cost.

https://doi.org/10.1017/S1743921311006569 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921311006569


52 A. Johansen, M. Kato & T. Sano

2. Stability analysis
We proceed now to analyse the stability of a turbulent accretion disc with turbulent

stress S and turbulent diffusion Dt . We work in the shearing sheet formalism, representing
a small corotating box at an arbitrary distance from the central star. The constant
Keplerian angular frequency is Ω. The gas velocity relative to the main Keplerian flow
is u and the velocity of the dust component is w. The gas density and the dust number
are denoted ρg and nd . We consider an isothermal equation of state with constant sound
speed cs . Dust is coupled to the gas via a drag force working on the time-scale τf . The
dynamical equations are

Dux

Dt
= 2Ωuy − c2

s

ρg

∂ρg

∂x
, (2.1)

Duy

Dt
= −1

2
Ωux − 1

ρg

∂S

∂x
, (2.2)

Dρg

Dt
= −ρg

∂ux

∂x
+ Dt

∂2ρg

∂x2 , (2.3)

Dwx

Dt
= 2Ωwy − 1

τf
(wx − ux) , (2.4)

Dwy

Dt
= −1

2
Ωwx − 1

τf
(wy − uy ) , (2.5)

Dnd

Dt
= −nd

∂wx

∂x
+ Dt

∂2nd

∂x2 . (2.6)

Here D/Dt ≡ ∂/∂t + (u · ∇) − (3/2)Ωx∂/∂y. Going in the limit of short friction times
we get the simplification

wx = ux + τf
c2
s

ρg

∂ρg

∂x
, (2.7)

wy = uy + τf
1
ρg

∂S

∂x
. (2.8)

The viscous instability arises from the dependence of S on nd . We linearise the equation
system around the state with gas density ρ0 and dust number density n0 and define the
particle-stress coupling parameter of the background state χ = ∂ ln S/∂ ln nd . When the
Elsasser number is smaller than unity we expect that χ ∼ 1 (Pessah 2010). We ignore
turbulent diffusion Dt in the linearisation. We consider axisymmetric perturbations with
f(x, t) = f̂ exp[i(kxx − ωt)].

The resulting linearised equation system can be put on the matrix form Mf̂ = 0,
where f̂ = (ûx , ûy , ρ̂g , n̂d) is a vector of complex amplitudes and M is⎛

⎜⎜⎝
iω 2Ω −c2

s /ρ0 ikx 0
−(1/2)Ω iω 0 (χ/n0)(S0/ρ0)ikx

−ρ0 ikx 0 iω 0
−n0 ikx 0 (n0/ρ0)τf c

2
s k

2
x iω .

⎞
⎟⎟⎠ (2.9)

We have only non-trivial solutions when the determinant of the matrix is zero. The
dispersion relation is

0 = ω2(ω2 − c2
s k

2
x − Ω2) − 2k2

xΩS0χ

ρ0
(c2

s k
2
xτf − iω) . (2.10)

This equation can be solved numerically to find four complex frequencies for each
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Figure 1. The growth rate γ+ as a function of radial wavenumber kx , based on a numerical
solution to equation (2.10). Left plot: parameters are Ω = cs = ρ0 = τf = 1 and S0 = 0.01. The
maximum growth rate, γm ax = 0.25Ω, occurs at km ax = 5H−1 , while the highest wavenumber
for growth is klim = 10H−1 . The two solution branches, following the limiting solutions found
in equations (2.15) and (2.14), are indicated with dotted lines. Right plot: same as left plot but
with passive particles (τf = 0). The instability for passive particles occurs at longer wavelengths
and at lower growth rates.

wavenumber. However, a simplification of the equation system allows us to find two
analytical solutions instead.

Assuming geostrophic balance 0 = 2Ωuy −c2
s (∂ ln ρg/∂x) instead of equation (2.1), the

dispersion relation simplifies to the second order expression

0 = ω2(−c2
s k

2
x − Ω2) − 2k2

xΩS0χ

ρ0
(c2

s k
2
xτf − iω) . (2.11)

The approximation that geostrophic balance is always maintained effectively filters away
high frequency density waves that are of no importance for the viscous drift instability.
The two solutions to equation (2.11) are

ω± =
1

1 + k2
xH2 k2

x

S0χ

Ωρ0

[
1 ±

√
1 + (1 + k2

xH2)
2c2

s Ωτfρ0

S0χ

]
i . (2.12)

One solution is complex positive (instability), while the other is always complex negative
(damped mode). In the two limits of kxH the growth rate γ+ = Im(ω+) of the positive
solution is

kxH � 1 : γ+ =
1

H2

S0χ

Ωρ0

(
1 +

√
1 + k2

xH2 2c2
s Ωτfρ0

S0χ

)
, (2.13)

kxH � 1 : γ+ = k2
x

S0χ

Ωρ0

(
1 +

√
1 +

2c2
s Ωτfρ0

S0χ

)
. (2.14)

The high wavenumber branch can further be expanded as

kxH �
√

S0χ/(2c2
s Ωτfρ0) : γ+ = kx

√
2ΩτfS0χ

ρ0
. (2.15)

This limit is only relevant if S0χ/(2c2
s Ωτfρ0) > 1.
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The growth rate of the viscous drift instability tends towards infinity for infinitely high
wave numbers, according to equation (2.15). The linear scaling with kx , however, implies
that turbulent diffusion will stabilise the mode at high wavenumbers. Turbulent diffusion
of the particles has a damping rate of

γD = −k2
xDt = −k2

x

S0

Ωρ0
. (2.16)

The limiting wavenumber for instability, where γ = γD + γ+ = 0, is

k2
limH2 = 2χ

(
1 +

c2
s Ωτfρ0

S0

)
− 1 . (2.17)

The most unstable wavenumber has no simple analytical form in the general case. How-
ever, in the case of mobile dust particles with Ωf τf > 0 we find the most unstable
wavenumber in the high wavenumber branch, because of the different wavenumber scal-
ing of instability and turbulent damping. The most unstable wavenumber is

kmax =

√
Ω3τfχρ0

2S0
, (2.18)

which is two times the limiting wavenumber. Weaker (stronger) turbulence has maximum
growth rate at shorter (longer) wavelengths. For typical parameters we find a wavelength
for maximum growth around a few scale heights in the radial direction. The highest
growth rate is

γmax/Ω =
1
2
χΩτf , (2.19)

which shows clearly the importance of freedom in the motion of the particles relative to
the gas. The dependence of the growth rate on the wavenumber is shown in Figure 1 for
typical values relevant to a protoplanetary disc.

2.1. Passive particles
For passive particles with Ωf τf = 0 the most unstable wavenumber is

k2
maxH

2 =
√

2χ − 1 . (2.20)

The wavenumber is real for χ � 0.5. The maximum growth rate is

γmax/Ω = (
√

2χ − 1)2 S0

c2
s ρ0

, (2.21)

provided χ � 0.5. For χ > 0.5 there is growth even for zero friction time dust grains
(which just trace the gas flow). In this case the increased gas density in the growing
pressure bumps is enough to cause instability, from the passively advected dust grains.
The growth rate with passive particles is also shown in Figure 1.

3. Outlook
To identify this new viscous instability in a numerical simulation we solve the resistive

MHD equations in the standard shearing box approximation using the Pencil Code. We
consider a box size of Lx = 10.56H, Ly = 2.64H, Lz = 1.32H and a grid resolution of
256 × 64 × 32. First we let the simulation run 20 orbits with only the constant hyper-
resistivity needed to dissipate energy released by the turbulent stresses. After 20 orbits
we turn on the density-dependent resistivity where regions of higher (lower) density have

https://doi.org/10.1017/S1743921311006569 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921311006569


A new viscous instability in weakly ionised protoplanetary discs 55

Figure 2. The evolution of the gas column density, averaged over the azimuthal direction, as a
function of time. The left plot shows the results with constant hyperresistivity. Weak 5–10% level
pressure bumps form on the largest scales of the turbulent flow (Johansen et al. 2009). Including
dust-dependent resistivity, the right-hand plot shows the evolution of high-pressure regions with
weak turbulence and low-pressure regions with high turbulence. This situation arises from the
viscous instability driven by the dust-dependent resistivity of the gas.

higher (lower) resistivity. Figure 2 shows a space-time plot of the density. The emergence
of a high-amplitude pressure bump is clear in the case of space-dependent resistivity.

The presence of pressure bumps in protoplanetary discs can have a positive effect
on planet formation because the radial drift of particles is stopped in pressure bumps
(particles seek the point of highest pressure, see e.g. Kato et al. 2009 and Johansen
et al. 2009). Our new linear viscous instability can lead to the emergence of strong
pressure bumps at the outer edge of the dead zone in protoplanetary discs. This makes
the outer edge of the dead zone a prime site for planetesimal formation and thus for the
rapid formation of the cores of gas giants. A paper in preparation details the non-linear
evolution of the viscous instability (Kato et al. in preparation).
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