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GENERATORS OF MONOTHETIC GROUPS 

D. L. ARMACOST 

A topological group G is called monothetic if it contains a dense cyclic sub­
group. An element x of G is called a generator of G if x generates a dense cyclic 
subgroup of G. We denote by E(G) the set of generators of G; the complement 
of E(G) in G} consisting of the "non-generators" of G, we write as N(G). 
Throughout this paper we consider only locally compact abelian (LCA) 
groups satisfying the T2 separation axiom (note that a monothetic group is 
automatically abelian). In [1] certain problems of measurability concerning 
the set E(G) are discussed. In this paper we shall consider some algebraic and 
topological properties of the sets E(G) and N(G). 

The LCA groups which we shall mention often are the integers Z, the 
cyclic groups Z(w), the quasicyclic groups Z(pœ), the additive group of the 
rational numbers 0 taken discrete, the circle group T, and the group Jp of 
^>-adic integers with its usual compact topology. Information on all these 
groups can be found in [2]. If G is an LCA group, we denote by G the character 
group of G. If 7 G G we write ker y for the kernel of y; the trivial character is 
written 1. If two groups G and H are topologically isomorphic, we write 
G = H. We shall have occasion to write the operation of G both multipli-
catively and additively; in the former case, the identity element is written 
as e, and in the latter case as 0. We shall make constant use of the fact that a 
locally compact monothetic group is either topologically isomorphic with Z 
or is compact (see [2, 9.2]). Our last preliminary will be the statement of a 
well-known result: 

LEMMA 1. / / G is LCA, N(G) = {x £ G: x Ç ker y for some y ^ 1 in G}. 

Proof. See, for example, [2, 25.11]. 

Our first result will be the determination of necessary and sufficient con­
ditions for E(G) to form a dense subset of G. Since E(Z) is certainly not dense 
in Z, we may restrict our attention to compact groups. We first observe that, 
if G is not connected, it has a proper open subgroup U. Since E(G) is contained 
in the complement of U, it is clear that E(G) cannot be dense in G. It is not 
difficult to show that the converse is true: 

THEOREM 1. Let G be a monothetic LCA group. Then E(G) is dense In G if 
and only if G is connected. 

Proof. One direction has already been indicated. For the converse, assume 
that G is connected and note that if x £ E(G), then xn 6 E(G) for all integers 

Received January 29, 1971 and in revised form, June 11, 1971. 

791 

https://doi.org/10.4153/CJM-1971-087-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1971-087-7


792 D. L. ARMACOST 

n 7e 0. To see this, assume that xn Ç N(G) for some n ^ 0. Then by Lemma 1, 
there exists y 9e 1 in G such that y(xn) = 1. Hence yn(x) = 1, and so, again 
by Lemma 1, yn = 1, contradicting the fact that G is torsion-free. If (x) 
denotes the cyclic subgroup of G generated by x, we have now shown that 
(x) — {e} C E(G). But (x) is dense in G, and since G is not discrete, (x) — {e} 
is dense in G also. Hence JE(G) is dense in G, completing the proof. 

Later on, in the proof of Theorem 3, we shall have a use for Theorem 1. 
For the present, we ask the analogous question concerning N(G). We first 
show that, if G is not totally disconnected, then N(G) is dense in G. To see 
this, suppose that y Ç G has infinite order. Then Un=iker(yn) C N(G), by 
Lemma 1. On the other hand, a simple duality argument shows that 
UST=z ker(7w) is a dense subgroup of G, since the annihilator in G of this sub­
group is just PI^=Z(TW) = {1}I where (7*) denotes the cyclic subgroup of G 
generated by yn. Hence, if G is not totally disconnected, it has a character of 
infinite order and so N(G) is dense in G, by the above argument. Thus it 
remains only to examine the totally disconnected monothetic groups G for 
which N(G) is dense. Since N(Z) is not dense in Z, we may restrict our atten­
tion to the compact totally disconnected monothetic groups, for which we 
have a simple structure theorem: 

LEMMA 2. A compact totally disconnected monothetic group has the form 
Y\VdP Ap (i.e.f the (full) di ect product of the groups Av under the product 
topology, where P is the set of primes) where Ap is either trivial, Z(pr?) (where rp 

is a positive integer), or Jp. 

Proof. See [2, 25.16]. 

We shall show that if N(G) is not dense in G, then it is already a closed subset 
of G, and that this occurs in relatively few monothetic groups. 

THEOREM 2. Let G be a compact monothetic group. If G is not totally discon­
nected, then N(G) is dense in G. If N(G) is not dense in G, then N(G) is closed 
in G and this occurs if and only if G is the direct product of a finite number of 
the groups Ap described in Lemma 2. 

Proof. The first assertion has already been shown above. If N(G) is not 
dense in G, then G is totally disconnected and has the form given in Lemma 2. 
Now it is shown in [2, 25.27] that for such groups G, E(G) = YlpePE(Ap). 
It is clear from the definition of the product topology that N(G) will be dense 
in G unless all but a finite number of the factors Ap are trivial, so G is the direct 
product of a finite number of the groups Ap. Finally, we must show that in 
this case, N(G) is indeed closed. To see this, wre observe that E(AP) is open 
in Ap for each p. This is obvious when Ap has the form Z(pTp) and for Ap = JP 

it is shown, again in [2, 25.27], that N(JP) is the open and closed subgroup of 
sequences with zero in the first coordinate, so E(ip) is open in Jp. Hence 
E(G) is open in G, so N(G) is closed. This completes the proof. 
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We can also deduce from Lemma 2 and from the remarks in the proof of 
Theorem 2 that N(G) is open in G whenever G is a compact totally discon­
nected monothetic group (alternatively, we could see this by observing that 
ker 7 is open in G for each y in G; then apply Lemma 1). Our next result 
shows that N(G) is open in G only when G is totally disconnected. 

THEOREM 3. Let G be monothetic. Then N{G) is open in G if and only if G is 
totally disconnected. 

Proof. We remarked above that if G is totally disconnected, then N(G) 
is open in G. The converse appears more difficult to establish. We show that if 
the identity component C of G is not trivial, then N(G) is not open in G. We 
do this by finding an element x0 in N(G) and a net {x^ <€/ where x, G E{G) 
for each i in the index set 7, such that lim xt = #0. We may of course assume 
that G is compact. 

We first observe that an element x in G is a generator of G if and only if x, 
considered as a character of the discrete group G, is one-one (this follows trom 
Lemma 1). We may assume that G is not connected, since otherwise E(G) is 
dense in G, by Theorem 1, so N(G) cannot be open. Thus we are assuming that 
\e\ <ZC <ZG({e} 9e C^G). Let B(G) and B(T) denote the torsion subgroups of 
G and the circle group T, respectively. Since B(G) may be considered as a sub­
group of BÇT) [2, 24.32] and since BÇT) is divisible, we may extend the 
identity mapping from B{G) into BÇT) to a homomorphism / : G-^BÇT) 
(see [2, A.7]). Since G is not a torsion group, it is clear t h a t / is not a one-one 
character of G. Now/, being a character of G, may be identified as an element 
XQ of G. It is clear that x0 is a non-generator of G with the property that 
Y(#O) 9e 1 for every non-trivial Y £ G of finite order. 

We next observe that C is a monothetic group [2, 25.14]. Hence, by 
Theorem 1, E(C) is dense in G, so we may find a net {yt} <€/ with yt G E(C) 
for each i G 7, such that limy* = e. If we set xt = Xoy*, then clearly 
lim #* = x0 and it only remains to show that Xi is in E(G) for each i G 7. We 
do this by appealing to Lemma 1 ; that is, we show that if y is any element in 
E(C), then y(x0y) 9e 1 for each y ^ 1 in G. 

There are two cases to consider. If 7 9e 1 in G has finite order, then cer­
tainly 7(C) = {1}. Hence 7(^0^) = y(xo)y(y) = Y(*O) ^ 1, by the way in 
which Xo was constructed. If, on the other hand, 7 in G has infinite order, we 
first observe that 7(3;) has infinite order for any y Ç E{C) (for if (y(y))n = 1 
for some positive integer n, then yn(y) = 1 and since yn, restricted to C, is a 
non-trivial character of G, it would follow from Lemma 1 that y (£ E(C)). 
On the other hand, y(x0) G BÇT) for each 7 G G, again by the construction 
of XQ. Hence if y(x0y) = 1, we would conclude that y(y) G BÇT), contradict­
ing the fact that y(y) has infinite order. 

In summary, x0y G E(G) for each y G E(C) and so x0 is the limit of the net 
of generators xt = x0yu so N(G) is not open in G. This completes the proof. 
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Remark. In Theorem 2 we found t h a t if N(G) is not dense in G then it is 
closed. From Theorem 3, however, we see t h a t if E(G) is not dense (i.e., if G 
is not connected) it does not follow t h a t E(G) is closed (i.e., t h a t G is total ly 
disconnected) . I t would be of interest to find an explicit description of the 
closure of the set E(G) for an arb i t ra ry monothet ic group G. 

W e now consider some algebraic properties of the generators and non-
generators of a monothet ic group. We first observe t ha t the set of non-
generators of the circle coincides with the torsion subgroup of the circle; in 
part icular, then, A ( T ) is a subgroup of T . We are led to two questions: 

(1) Which monothet ic groups G have the proper ty t ha t N(G) is a subgroup 
of G? 

(2) For which monothet ic groups G is every element of infinite order a 
generator of G? 

T h e answers to these two questions will be the substance of our last two 
theorems. 

T H E O R E M 4. Let G be a monothetic LCA group. Then N(G) is a subgroup of G 
if and only if G is one of the following: 

(1) Z(pn) where p is a prime and n a non-negative integer, 
(2) Jp for some prime p, 
(3 ) a compact connected group of dimension one. 

Proof. I t is obvious t h a t N(Z(pn)) is a subgroup of Z(pn). Moreover, it is 
shown in [2, 25.27] t h a t N(JP) is an open and closed subgroup of 3P. If G is of 
type (3), then the rank of G is one, by [2, 24.28], so G is a subgroup of 0 (see 
[2, A. 15 and A. 16]). If x and y are in N(G), there are non-trivial characters 71 
and 72 in G such t h a t 71 (x) — y2 (y) = 1. Since G C Q, there exist nonzero 
integers m and n such t h a t 7 i w = 7 / . Then we have yim(pcy) = 1, so xy is also 
in N(G). Since the inverse of a non-generator is always a non-generator, we 
conclude tha t N(G) is a subgroup of G if G is of type (3). 

For the converse, we note first t ha t if N(G) is a subgroup of G, then G mus t 
be compact , since A ( Z ) is not a subgroup of Z. I t is, moreover, easy to see t h a t 
G mus t be indecomposable (i.e., G cannot be wri t ten as the direct sum of two 
of its proper closed subgroups) . Hence the discrete group G is algebraically 
indecomposable, so either G — Z(pn), G ~ Z ( ^ œ ) , or else G is torsion-free 
[3, Theorem 10]. Thus , either G ~ Z(pn), G ~ Jp, or else G is compact and 
connected. I t remains only to show tha t , in the last case, the rank of G is one 
[2, 24.28]. We shall show tha t , if the rank of G exceeds one, we can find two 
characters on G, neither of which is one-one, bu t whose product is one-one; 
this will mean t ha t we have found two non-generators of G whose product is a 
generator of G, so A7(G) is not a subgroup of G. 

Throughou t this pa r t of the proof we use the more convenient addi t ive 
notat ion. If the rank of G exceeds one, let us part i t ion a maximal independent 
subset M of G into two disjoint non-empty subsets Mi and M2. Note t h a t 
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since G is isomorphic to a subgroup of the circle, the cardinality of M does not 
exceed the power of the continuum. Let (Mi) denote the subgroup of G 
generated by Mt for i = 1, 2. Let D(Mt) be the minimal divisible extension 
of (Mi) [2, A. 15] and note that Mt is a maximal independent subset of D(Mi) 
for i = 1, 2 (see the proof of [2, A.16]). Define/i: G-^D(M1) by setting fx 

equal to the identity mapping on (Mi) and zero on (M2) and then extending 
this mapping to all of G by the divisibility of D(M\) [2, A.7]. Similarly, 
define jf2: <5-»-D(M2) w i th / 2 the identity on (M2) and zero on (-Mi). We 
then consider both / i and / 2 to be homomorphisms from G into 
i j = D(Mi) © D(M2), the external direct sum of Z>(Mi) and D(M2). Now 
since the rank of H does not exceed the power of the continuum, we may 
consider H to be a subgroup of the circle [2, 15.13] and so the functions/i and 
f2 may be identified with characters of G. They are obviously not one-one. 

Our proof will be completed by showing that the pointwise sum / i + f2 is 
one-one. Let c be a member of G and suppose that (fi + / 2 ) ( c ) is the zero 
(0, 0) of H. Since fi(c) has the form (mu 0) and/2(c) has the form (0, m2), we 
conclude tha t / i (c ) = f2(c) = (0,0). Since M is a maximal independent set 
in G we may write ^c = Wi + m2l where n is a non-zero integer, and m* G (Mi) 
for i = 1,2. A direct computation shows that (0,0) = (fi + f2)(nc) = 
(mi, ra2), so wi = w2 = 0 and hence ^c = 0. Since G is torsion-free, it follows 
that c = 0, so / i + /2 is one-one. This completes the proof. 

COROLLARY. Le/ C7 fre <m infinite monothetic LCA group. The following are 
equivalent: 

(1) N(G) is a closed subgroup of G, 
(2) N(G) is an open subgroup of G, 
(3) G = ip for some prime p. 

Proof. If (1) holds, Theorem 2 and the previous theorem imply that (3) 
must hold. We have already remarked that (3) => (2) => (1), which completes 
the proof. 

We conclude our findings by answering our second question given above. 

THEOREM 5. Let G be an infinite monothetic LCA group. If every element of 
infinite order in G is a generator of G, then G = T. 

Proof. Since G = Z is impossible, we assume that G is compact. Now G 
cannot be a torsion group, since then G would be finite. Let x G G have 
infinite order. Then xn has infinite order for every positive integer n. This 
implies that G is torsion-free, since if y ^ 1 in G had finite order n, then 
y(xn) = 1, whence xn is not a generator of C7, a violation of hypothesis. Since 
G is compact, G must be connected. Now a compact connected monothetic 
group is solenoidal [2, 25.14 and 25.18]. Hence there is a continuous homo-
morphism / : R —> G having dense image, where R denotes the additive group 
of real numbers with the usual topology. 
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We next show t h a t / cannot be one-one. If/ were one-one, then / (R) would 
be a torsion-free connected subgroup of G. Hence if 7 ^ 1 is in G, we know that 
7 is one-one on / (R) , since every element of/(R) except/(0) must, by hypothe­
sis, be a generator of G. On the other hand, 7 ( / ( R ) ) = T, since T has no 
proper connected subgroups. Thus we obtain an algebraic isomorphism 
between R and T, which is absurd. Hence / is not one-one. 

Finally, the transpose m a p / * : G —> R is one-one, but does not have dense 
image, by the preceding paragraph and [2, 24.41(b)]. Since all non-dense 
subgroups of R are isomorphic to Z, we conclude that G == Z, so G = T. 
This completes the proof. 
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