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Abstract

We present new software to cross-match low-frequency radio catalogues: the Positional Update and Matching Algorithm.
The Positional Update and Matching Algorithm combines a positional Bayesian probabilistic approach with spectral
matching criteria, allowing for confusing sources in the matching process. We go on to create a radio sky model using
Positional Update and Matching Algorithm based on the Murchison Widefield Array Commissioning Survey, and are able
to automatically cross-match ∼98.5% of sources. Using the characteristics of this sky model, we create simple simulated
mock catalogues on which to test the Positional Update and Matching Algorithm, and find that Positional Update and
Matching Algorithm can reliably find the correct spectral indices of sources, along with being able to recover ionospheric
offsets. Finally, we use this sky model to calibrate and remove foreground sources from simulated interferometric data,
generated using OSKAR (the Oxford University visibility generator). We demonstrate that there is a substantial im-
provement in foreground source removal when using higher frequency and higher resolution source positions, even when
correcting positions by an average of 0.3 arcmin given a synthesised beam-width of ∼2.3 arcmin.
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1 INTRODUCTION

Over the past decade, a new generation of low wide-field
radio-frequency (≤∼ 1 GHz) radio telescopes (e.g. LOFAR,
van Haarlem et al. 2013; MWA, Tingay et al. 2013; PAPER,
Parsons et al. 2010) has emerged that require fundamentally
different calibration and imaging techniques to traditional
radio astronomy. Gone are the days of a simple calibration
pointing at a single point source (see Smirnov & Tasse 2015);
with fields of 10 s of degrees there are no isolated point
sources, and instruments can become confusion limited in 10
s of seconds (Bowman et al. 2013). Indeed, new algorithms
to include wide-field effects have been developed (e.g. Rau
et al. 2009) and calibration techniques utilising multiple cal-
ibrators from across the sky have been employed (Kazemi
et al. 2013).

Creating an all-sky and reliable catalogue with which to
calibrate low radio-frequency astronomical data is then a nec-
essary task. The ideal calibration catalogue would span mul-
tiple frequencies, providing a reliable spectral shape for each
source. It would also be free from any ionospheric positional
offsets; it could then be used to correct for ionospheric refrac-
tion in future observations (e.g. Mitchell et al. 2008). To im-

prove our understanding of the radio sky, efforts are currently
under way to create ever deeper surveys below 250 MHz in
both the northern (MSSS, Heald et al. 2015; TGSS ADR11,
Intema et al. 2016, in press) and southern (GLEAM, Wayth
et al. 2015) hemispheres.

Each surveying instrument is limited in the frequencies
it can access however, so to gain more frequency coverage,
multiple catalogues must be combined. There are many ex-
amples of cross-matching techniques for radio wavelength
data in the literature (e.g. Kimball & Ivezić 2008; Naylor
et al. 2013; Fan et al.2015). Each method seeks to overcome
the difficulty in matching sources found from surveys ob-
served with varying instruments and frequencies. Not only
does each telescope have its own resolution and sensitivity,
but the morphology of each source may change with fre-
quency. Furthermore, each catalogue employs its own source
finding algorithm, which inherently has its own strengths and
weaknesses. Sophisticated cross-matches are also prevalent
in the optical literature (e.g. Haakonsen & Rutledge 2009;
Pineau et al. 2011; Bilicki et al. 2016), which use their own

1 The first alternative data release of the TIFR GMRT sky survey—see http:
//tgssadr.strw.leidenuniv.nl/doku.php
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probabilistic positional matching. These cross-matches often
focus on finding one single true cross-match between two par-
ticular catalogues however, and as such are often necessarily
bespoke as to fold in known catalogue selection effects and
to achieve the desired science. There are also generic cross-
matching tools [such as provided by SExtractor (Bertin
& Arnouts 1996)], but of course these are designed to work
with optical magnitudes, and so take work to feed radio wave-
length catalogues into.

There is a further need for highly accurate radio sky mod-
els, for the current generation of low radio-frequency arrays
attempting to measure the 21-cm Hydrogen emission line dur-
ing the Epoch of Reionisation (EoR) (e.g. MWA, LOFAR,
PAPER). For these experiments, local galactic and extra-
galactic radio sources act as foreground objects, masking the
desired signal, and must be removed with exquisite preci-
sion (see Furlanetto et al. 2006; Morales & Wyithe 2010;
Pritchard & Loeb 2012, for reviews). As ionospheric off-
sets are expected to scale with ∼λ2 (e.g. Intema et al. 2009),
and resolution scales with 1/λ, higher frequency observations
should have higher positional accuracies. If high frequency
instruments can be used to gain precise positional informa-
tion, allowing accurate removal of these foregrounds, this
has a direct bearing on the design and implementation of
new instruments for studying the EoR, such as the upcom-
ing SKA_LOW telescope (Dewdney et al. 2013). Using the
red-shifted 21-cm line over a range of frequencies allows a
probe of spatial scales parallel to the line of sight, as well as
over cosmic evolution. It is essential then to also accurately
capture the spectral behaviour of foreground sources, as an
incorrect subtraction in the frequency domain can affect any
derived EoR signal.

The Positional Update and Matching Algorithm (PUMA)
was created to meet the needs outlined above. With this soft-
ware, an approach is developed that utilises both source posi-
tion and spectral information as matching criterion. Positions
can be matched through probabilistic cross-identification, as
described in Budavári & Szalay (2008). The desirable qual-
ity of the approach outlined in Budavári & Szalay (2008)
is that it can easily be scaled to any number of catalogues.
Spectral information can be used as a second identification
criteria, assuming a spectral model. By focussing purely on
low radio frequencies, emission through synchrotron pro-
cesses can be assumed, allowing the use of a simple power-
law model. PUMA has also been created to be as generic
as possible, to facilitate an all-sky cross-match that can then
have further constraints applied to for any particular science
goal.

The rest of the paper is organised as follows. In Section 2,
we outline the theory of Bayesian probabilistic cross-
identification. In Section 3, we detail the functionality of
PUMA, and in Section 4 we use PUMA to create a cross-
matched catalogue using real data. Using the outcomes of
this cross-match, we create mock catalogues to test the accu-
racy of PUMA in Section 5. In Section 6, we introduce the 2D
Power Spectrum (PS) and test the effects of inaccurate cat-

alogue positions in foreground subtraction when measuring
the EoR signal. We discuss our results in Section 7.

2 BAYESIAN POSITIONAL CROSS-MATCHING

In a Bayesian analysis, an hypothesis H can be related to its
complementary hypothesis K through the Bayes factor

B(H, K|D) = P(H |D)/P(H )

P(K|D)/P(K )
, (1)

where D is some measurement set (MS). For this application,
D is a set of source positions from multiple catalogues, H
is the situation where each catalogue is reporting the same
astrophysical source, and K is where they are not. The larger
the value of B(H, K|D) then, the stronger the support for
the hypothesis H , which in this case indicates a good cross-
match. When matching n catalogues, it can be shown (see
Budavári & Szalay 2008, for further details) that the Bayes
factor is given by

B = 2n−1

∏
wi∑
wi

exp

(
−

∑
i< j wiw jψ

2
i j

2
∑
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)
, (2)

where ψ2
i j is the angular separation between sources in the ith

and jth catalogues, and wi is the weighting for the ith cata-
logue. This is given by w = 1/σ 2, where σ 2 is the astrometric
precision. This is calculated as

σ 2 = σ 2
RA + σ 2

Dec, (3)

where σRA, σDec are the errors on right ascension and decli-
nation, respectively. These errors are usually quoted directly
in each source catalogue. The Bayes factor can be related to
the posterior probability through

P(H |D) =
[

1 + 1 − P(H )

BP(H )

]−1

. (4)

For multiple catalogues, the prior may be calculated
through

P(H ) = ν�∏
νi

(
�overlap

4π

)(1−n)

, (5)

where the scaled full sky number of sources in each cata-
logue ν is given by νi = 4πNi/�i, with Ni the number of
sources in the sky area �i. ν� is the scaled full sky num-
ber of sources in the final matched catalogue, with �overlap

the region of sky where all matched catalogues overlap. This
calculation simply accounts for the source density of each
catalogue and how much of the sky all catalogues cover as a
way of estimating the prior. The true P(H ) depends also on
the selection effects of each catalogue; for example, if one
catalogue is more sensitive to diffuse emission, the final cat-
alogue may be biased towards brighter flux densities as it is
able to detect more emission. There is no simple way for the
user to enter these subtle selection effects however, and in the
low radio-frequency regime, each catalogue should see sim-
ilar astrophysical skies, hence this simple prior is retained.
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PUMA 3

Positionally match all original catalogues to base
catalogue using an angular separation cut-off

Combine initial catalogues to create cross-matches, calculating
a posterior probability for each cross-match combination

Apply positional matching
criteria (Algorithm 1)

Eyeball; retain for
further investigation

Only one cross-match
combination possible;
apply single source
test (Algorithm 2)

Multiple cross-
match combinations

possible; apply
spectral dominance
test (Algorithm 3)

No spectral
dominance; apply
source combining
test (Algorithm 4)

Components separation
greater than specified
limit; apply splitting
test (Algorithm 5)

Accept; create cross-match
and add to catalogue

Reject; discard/edit
source information

§3.1

§3.2

§3.3

Figure 1. The steps and outcomes of the matching process are shown. Yellow boxes represent steps with no criteria applied, cyan
represent criteria being applied, and all other colours represent final points. Each cyan box refers to a specific Algorithm, as detailed in
Algorithms 1–5. The section labels on the right refer to Sections 3.1–3.3, which detail each step. Each section is performed by a separate
script.

Future releases could potentially include a way to incorporate
custom selection effects.

3 PUMA

PUMA is an openly available code2 which is free to use.
The flow of the matching algorithm is shown in Figure 1.
The following sections expand upon the methodology of each
step.

As explained in Section 2, P(H |D) gives the posterior
probability of a single match, based purely on the positions,
positional errors, and source densities of each respective cat-
alogue. However, this does not take in to account the reso-
lution of the differing instruments and surveys used to cre-
ate each catalogue. It may be the case that a catalogue with
lower resolution is indeed describing the same astrophysical
source, but averaging over many components, thus measur-
ing a combined flux density and position. Comparing these
two catalogues may then yield a very low probability that
they are exactly the same source. To account for this, PUMA
uses both positional and spectral data to evaluate matches,
and allows multiple sources from the same catalogue to be
considered in a single cross-match. In this way, any number
of catalogues can be matched, but at the cost of using a desig-
nated catalogue as a base to cross-match to. In the following
section, the following terminology is used:

source – a single entry in a catalogue

base catalogue – the catalogue upon which all positional
cross-matching is performed

2 PUMA is stored in a repository here: https://github.com/JLBLine/PUMA

cross-match combination – defined as a cross-match of
sources including only one source from each catalogue

repeated catalogue – if more than one source from a single
catalogue is matched to a base source, that catalogue is
termed a repeated catalogue

The following steps broadly describe the operations carried
out by PUMA; they are elaborated upon in Sections 3.1–3.3,
respectively:

1. Positionally cross-match all catalogues individually to a
base catalogue to some user defined cut-off separation.
Retain all cross-matches for each base source.

2. For each base source, use the cross-matched tables to
create every possible cross-match combination including
the base source. Calculate P(H |D) for each cross-match
combination.

3. Apply positional and spectral criteria to each base source
and set of matched combinations to identify the best
cross-match combination.

Each of these steps is carried out by the scripts
cross_match.py,calculate_bayes.py, andcre-
ate_table.py, respectively. This allows the user greater
flexibility in modifying parameters at any stage.

3.1. Initial positional match

The script cross_match.py supports the standard FITS
and VOTable formats. Each input catalogue is cross-matched
with a designated base catalogue. The final matched cata-
logue will have a similar source density to the base catalogue,
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so the user should select the base catalogue that suits their
needs. cross_match.py performs two functions. First,
relevant information from each catalogue is formatted in a
standard way. The user must specify the column names and
units of the catalogue, which are then converted and saved in
to a ‘simple’ fits table. The required information taken from
each catalogue is Source Name; RA J2000 (deg); Error on
RA (deg); δ J2000 (deg); Error on δ (deg); Flux density (Jy);
Error on Flux density (Jy). Optionally, the user can supply
Major Axis (deg); Minor Axis (deg); Position Angle (deg);
Flags; Field IDs. The two latter columns are included for
the information of the user, but are currently unused by
PUMA. These standard tables are then used to perform a
positional cross-match within a given cut-off distance us-
ing the STILTS3 package (Taylor 2006). STILTS is the
command line version of the cross-matcher used in TOP-
CAT. cross_match.py uses the information given by
the user to create a matched catalogue, where every pos-
sible match of the specified catalogue to a source in the
base catalogue is saved. Each catalogue is matched to the
base catalogue individually, so any number of combina-
tions of catalogues can be used bycalculate_bayes.py
(see Section 3.2). calculate_bayes.py needs two fur-
ther things; the source density of each catalogue, and the
sky coverage of each catalogue, in order to calculate P(H )
[Equation (5)]. cross_match.py internally calculates the
sky coverage of each catalogue, fully taking into account the
continuous nature of RA co-ordinates. To calculate the source
density, the user specifies an area on the sky, bound by lines
of RA and Dec for each catalogue. cross_match.py then
simply counts the number of sources within this lune. These
data are stored in the meta-data of both the individual ‘sim-
ple’ tables and the final matched table in a standard way, al-
lowing calculate_bayes.py to automatically read the
data. The sky lune to measure the source density within is
left to the user’s discretion; an example is shown in Figure 2.

3.2. Bayesian match calculation

The theory outlined in Section 2 is implemented in cal-
culate_bayes.py. This script uses any number of the
matched tables created by cross_match.py, combines
them, and then calculates a posterior probability for ev-
ery possible cross-match combination involving each base
source.

To calculate the posterior probability [Equation (4)] for
each combination, B [Equation (2)] and P(H ) [Equation (5)]
must be calculated. For the weights in B, the quoted po-
sitional errors from each catalogue are used as shown in
Equation (3). The rest of the calculation of B is straight for-
ward. To calculate P(H ), the number of sources scaled to
a full sky coverage for each catalogue νi, as well as that of
the final matched catalogue ν�, must be known. These values
have already been calculated by cross_match.py, and

3 STILTS documentation—http://www.star.bris.ac.uk/∼mbt/stilts/

Figure 2. All sources in the VLSSr (Lane et al. 2014) catalogue are plotted.
To calculate the source density of the catalogue, cross_match.py takes
given RA and Dec bounds, and counts the number of sources within that
area. In this example, the limits are represented by the cyan lines. It is left to
the user to pick an area that will give a representative source density of the
entire catalogue. For example, if too small an area, or a particularly under-
dense area such as that at RA, δ = −4h, 40◦, is selected, an unrepresentative
source density will be calculated.

are read in automatically. Once a combination of potential
matches has been formed, calculate_bayes.py iden-
tifies the present catalogues, uses the sky coverages measured
by cross_match.py to calculate �overlap (which may dif-
fer depending on which catalogues are involved in the match),
and uses the applicable νi to calculate P(H ). ν� is assumed
to be the source density of the base catalogue.

3.3. Matching criteria

The information generated by calculate_bayes.py is
used by make_table.py to create a final matched cata-
logue, by applying the steps shown in the lower section of
Figure 1.

The first criteria applied determines which cross-match
combinations are deemed as positionally possible. When run-
ning make_table.py, the user supplies two variables that
dictate what PUMA defines as a possible cross-match com-
bination: Pu and θr . Pu is a positional probability thresh-
old; if P(H |D) > Pu, the cross-match combination is deemed
possible regardless of the separation between the individual
matched sources. θr is the resolution of the base catalogue
(which is usually set to the FWHM of the instrument re-
sponse of the catalogue). As noted earlier, catalogues with
higher resolution may resolve multiple components within
the FWHM of a lower resolution catalogue. This may yield
low posterior probabilities even though these matches are
true; the original assumption in the bayesian treatment is that
each catalogue has one true match, and as such doesn’t take
into account blending of sources at lower resolutions. PUMA
therefore considers any cross-match combination where all
sources lie within the resolution of the base catalogue plus
error to be possible. Explicitly, any source lying within an
error ellipse defined as

(
�θRA

(θr/2) + σRA

)2

+
(

�θDec

(θr/2) + σDec

)2

≤ 1, (6)
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where �θRA, �θDec are the angular offsets of the source
from the base source in Right Ascension and Declina-
tion, respectively, is considered possible, regardless of the
positional probability derived by the bayesian treatment.
These positional criteria are initially applied by calcu-
late_bayes.py (Section 3.2). Any matched source from
a non-repeated catalogue will be present in all cross-match
combinations; as such, these sources are subjected to the
above test during the initial calculation of P(H |Di ) for
all cross-match combinations associated with a single base
source. If all P(H |Di ) < 0.5, matched sources from a non-
repeated catalogue are tested using Equation (6). If they
fail, the matched sources are discarded, and P(H |Di ) is
recalculated.
make_table.py then uses Algorithm 1 to apply these

positional tests to matched sources from repeated cata-
logues, to discard any unlikely cross-match combinations.
(All algorithms used in make_table.py can be found in
Appendix A).

The successful candidate cross-match combinations are
then passed through the following criterion. PUMA splits
the matching in to three main regimes; these are explained in
more detail in Sections 3.3.1–3.3.3:

1. isolated: These are matches where only one cross-
match combination is present. These either occur natu-
rally, or when all other cross-match combinations fail the
positional matching criteria. PUMA will accept an iso-
lated match if P(H |D) is above some probability thresh-
old, or if the spectral data of the matched sources fit a
power law spectral model. If neither of these criteria are
met, the match is flagged as rejected.

2. dominant: If there are multiple sources from a repeated
catalogue that are deemed as possible, each cross-match
combination is tested for dominance. This is defined
as when the residuals of a fit to a power law spectral
model of one combination of sources are at least three
times smaller than all other combinations, and the prob-
ability of that one combination is larger than all other
combinations.

3. multiple: If no dominant source is found, the multi-
ple sources from a repeated catalogue are combined in
to a single source. These new combined flux densities
are then fit with a power law. If the fit is good, the match
is accepted with the new combined flux density and po-
sitions, generated by combining the sources in the same
catalogue. If the combined source fails the spectral test,
it is flagged for visual inspection.

3.3.1. Isolated matches

If a base source is labelled as isolated by Algorithm 1,
it is passed to Algorithm 2. If P(H |D) ≥ Pu, the cross-
match combination is accepted without further investigation.
If P(H |D) < Pu, all sources in the cross-match combination
are tested using Equation (6). If all sources pass, the spectral

information is interrogated. The flux densities f at frequen-
cies ν are tested by fitting a linear model

ln( f ) = α ln(ν) + β (7)

using weighted least squares. This is done using the python
packagestatsmodels4. The residuals of these fits are then
investigated to ascertain the deviation of the data from a lin-
ear fit. The goal of this spectral fit is to identify large de-
viations from linearity in log space; it is designed to allow
for some curvature of the data. Over small enough frequency
ranges, most spectra are expected to follow the linear model
in Equation (7), but varying degrees of curvature may be in-
herent (see Torniainen 2008, and references therein). Given
that there are a limited number of low radio-frequency cat-
alogues to match, the number of data points are often low.
This rules out easily using models that account for curvature,
as the number of parameters to fit quickly outnumbers the
number of data points. As such, the spectral test detailed here
has been designed to be simple and robust, and tunable by
the user to meet any desired criteria as much as possible.

To test the ‘goodness’ of the fit, the reduced chi-squared
value χ2

red is typically inspected, e.g. Hogg et al. (2010). This
value sums the residuals of the fit in units of the variance of
the data, and scales for the complexity of the fitted model as

χ 2
red = 1

K

n∑
i=1

(
ln( fi ) − Fi

σi

)2

, (8)

where n is the number of matched catalogues, σi is quoted
error on flux density, Fi is the modelled fit of ln( fi), and
K = (n − p), with p being the number of parameters set
(p = 2 for a linear fit). As a general rule, a result of χ2

red <= 2
is considered a good fit, as the model lies within twice the ob-
served variance of the data. However, as explored in Andrae
et al. (2010), χ2

red comes with its own uncertainty which grows
as the number of data points reduces. Further to this, χ2

red is
reliant on the errors on each observations being drawn from a
Gaussian distribution. Given that each data set contains data
points subject to differing error analyses, the extent to which
this is true is difficult to ascertain. Practically, it has been
found that χ2

red works well at classifying the fit at low flux
densities, where the quoted errors are comparable to the mag-
nitude of the residuals. Conversely, a data set that displays a
similar curvature in log space at a much higher flux density
yields a far larger χ2

red value, as the errors are small compared
to the residuals of the linear fit. Using χ2

red with some cut-off
threshold then tends to reject the brightest sources, which are
the best sources to calibrate on (e.g. Mitchell et al. 2008). To
include the brightest sources, a second residual metric, ε, is
defined as

ε = 1

n

n∑
i=1

( | fi − exp(Fi )|
fi

)
. (9)

4 Statmodels documentation—http://statsmodels.sourceforge.net/devel/
index.html
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This residual is designed to test the deviation of a fit from
the data in units of the observed value5. By scaling ε by the
number of data points, ε describes the total deviation of the
data points from a linear fit as a fraction of the magnitude
of the data points. This metric performs well at high flux
densities, where the residuals of the fit are small compared
to the magnitude of the flux density, but poorly at low flux
densities where the residuals are comparable to or larger than
the flux densities. χ2

red and ε are then complimentary metrics.
Both are used with cut-off thresholds εu, χ2

red,u in all spec-
tral tests to accept a cross-match combination. These thresh-
olds can be adjusted by the user to suit their needs. For
an isolated match that has P(H |D) < Pu but satisfies
Equation (6), if either ε2 ≤ ε2

u or χ2
red ≤ χ2

red,u, the cross-
match combination is accepted. Otherwise, the information
is stored and labelled as a reject.

3.3.2. Dominant matches

If multiple cross-match combinations are deemed possible
by Algorithm 1, they are subjected to a ‘dominance’ test by
Algorithm 3. Some sources from a repeated catalogue may be
confusing sources that are not associated with the base cata-
logue source, even though they lie within the resolution of the
base source. To test if one single cross-match combination is
the correct match, the spectrum of each cross-match combi-
nation is fit using the model described by Equation (7). If the
residuals of the fit to one combination is three times less than
all other fits, it is flagged as possibly dominant. Another crite-
rion is demanded, being P(H |Di ) ≥ Pu and P(H |Di �= j < Pl),
where Di is the positional data of the possibly dominant cross-
match combination, and Di �= j the data of all other combina-
tions. Pl is again a threshold set by the user. These criteria
guarantee that the chosen combination has a best fitting spec-
trum, as well as the most likely positional information. If a
cross-match combination passes this test it is accepted and
labelled as dominant.

3.3.3. Multiple matches

A group of cross-match combinations that have no clear
dominant combination are passed on to Algorithm 4 for
a ‘combination’ test. It is possible that sources from a re-
peated catalogue describe components that are unresolved
by the base catalogue. Algorithm 4 tests this by combining
the flux density of the sources from the repeated catalogues.
It then tests the new spectral data by calculating both ε and
χ2

red of the new data. If the new combination has residuals
under the residual thresholds, the new cross-match combina-
tion is accepted and labelled as a multiple match6. For

5 Note that this residual is performed in the natural units of the flux density,
to ensure all flux density values are positive and a correct scaling is found.

6 There is a point to note with this test. If only one catalogue is matched
to the base catalogue, there are only two data points to consider in a fit;
a fit to two data points cannot have any residuals. Currently, for two data
points, both χ2

red and ε default to zero. This means for a repeated catalogue
match, a spectral dominance test (Algorithm 3) will never find a difference
between the residuals, and will always pass on to the combined source test

each repeated catalogue, a new combined position is found
through a weighting scheme described by

wi = fi∑n
i fi

, (10)

where n is the number of repeated catalogue sources, and f
the flux density of each source. These weights are applied to
create the new RA position and error as

RAnew =
n∑
i

wiRAi , σ 2
RA,new =

n∑
i

(wiσRA,i )
2; (11)

this is similarly applied for δ. If the combining test fails, the
group source information is labelled as an eyeball.

Splitting test – combining sources as described above
confines the output catalogue to the resolution of the
base catalogue. make_table.py also comes with an op-
tion to ‘split’ the combined sources, which is handled by
Algorithm 5. If the sources from each repeated catalogue are
separated by a distance greater than some user specified cut-
off, dsplit , PUMA will attempt to split the combined source in
to components. If there is more than one catalogue with re-
peated sources, PUMA currently requires that each repeated
catalogue have the same number of sources matched, simpli-
fying the matching of these repeated sources. The repeated
sources from each repeated catalogue are matched by dis-
tance, to create new cross-match combination components.
The flux density from each catalogue that had only one source
matched is then split in to components to match these new
cross-match combination components, based on the follow-
ing weighting scheme. For each catalogue m of n repeated
sources, weights are created and averaged as

wk = 1

m

m∑
j

w j,i , (12)

where w j,i is the wi [Equation (10)] weight in the jth cata-
logue. The flux density of each single catalogue match source
is then split as

fk = fswk, (13)

where fs is the flux density of the source, and wk is a vec-
tor of length n of weights wk. Applying the weights in this
manner uses all the information from the repeated catalogues
to create an accurate spectral energy distribution (SED) for
each component.

Once an SED has been created for each component, they
are spectrally tested as in Algorithm 3. If all components pass
the spectral test, the sources are accepted. Each component is
given a name based on the position of the original base source,
with a letter appended to distinguish between components. If
one or more components fail the spectral test, the source is
flagged to investigate by eye.

(Algorithm 4). Combining the sources will still give residuals of zero, so
this case will always pass the combination test, and be given an updated
weighted position.
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Table 1. Details of the content of the final matched catalogue output by make_table.py

Column name Description

Name A name of the source based on the updated J2000 coordinates and a prefix supplied by the user.

*base*_name The name of the source from the original base catalogue. Replace *base* with whatever prefix
was chosen during creation.

updated_RA_J2000,
updated_DEC_J2000,
e_updated_RAJ2000,
e_updated_DECJ2000

The new J2000 RA and Dec given to the source (deg), chosen from a preferred catalogue as
selected by the user. In the case of a combination of sources, the position and errors are
calculated through Equation (11).

original_RA_J2000,
original_DEC_J2000,
e_original_RAJ2000,
e_original_DECJ2000

The original base catalogue source position and error (deg).

S_*freq*, e_S_*freq* The flux density and error reported by each catalogue (Jy) for a match, where *freq* is the
frequency of the observation in MHz.

Match_type The type of the match as defined in Section 3.3; either isolated, dominant, or
multiple.

SI, e_SI The spectral index and associated error to a weighted linear fit to the data (α in Equation (7)).

Intercept,
e_Intercept

Optional: The intercept and associated error to a weighted linear fit to the data (β in
Equation (7)).

S_*freq*_ext,
e_S_*freq*_ext

Optional: The flux density (Jy) at the frequency of the base catalogue, as extrapolated by the
parameters of the linear fit. These are calculated through Equation (14).

Number_cats The number of catalogues in the cross-match combination, and hence the number of data
points available to fit models to.

Number_matches,
Retained_matches

Optional: The number of possible cross-match combinations found by the positional
matching criteria performed by cross_match.py and calculated_bayes.py, and
the number retained after applying Algorithm 1.

Match_stage Optional: The final decision point or data with which PUMA chose the cross-match
combination; either position if matched purely by position, spectral if the spectral
data was used, combine if any sources were combined or split if any sources were
split. As an isolated source can be accepted through either position or spectral,
this helps distinguish the two cases for any statistical analysis.

Chi_sq_red Optional: Returns the χ2
red value for the fit.

*matched-cat*_names Optional: Returns a string of the names of all the matched catalogue sources. Replace
*matched-cat* with whatever catalogue name was supplied by the user.

3.4. Final matched table

Once make_table.py has applied the algorithms de-
scribed in Section 3.3, a list of accepted sources is left. These
are output to a either a FITS or VOTable, the contents of which
are described in Table 1. Two positions are reported; that of
the original base source, and an ‘updated’ position. The user
supplies a ranking of all matched catalogues. The position
of the highest ranked source in a cross-match combination is
then reported as this updated position. This ranking can be set
to the needs of the user, but the highest rank would usually
be given to the catalogue with the highest angular resolu-
tion and least affected by ionospheric effects. If this highest
ranked matched source was created by combining sources as
described in Section 3.3.3, the flux density weighted centroid
given by Equation (11) is reported.

As described in Equation (7), a model of ln( f ) = α ln(ν) +
β is fit to each combination. When this fit is performed, the
frequencies are entered in MHz and the flux densities in Jy.
When performing the linear fit, the package statsmodels

also outputs the standard error of the fitted parameters σ 2
β , σ 2

α .
The spectral index and error, α and σα are both reported in
the final matched catalogue. If desired by the user, the fit is
used to extrapolate a flux density and error at the frequency
of the base catalogue through the equations:

fext = eβνα, σ 2
f = 1

f 2
ext

(
σ 2

β + σ 2
α [ln(ν )]2

)
, (14)

where again the frequency is in MHz.
The final table only includes sources that were accepted.

For all base sources classified as reject or eyeball, all
possible cross-match combinations are printed out to a text
file, which can be used for further investigation. If selected,
PUMA will print out a summary of the matching statistics to
a text file. The PUMA package also comes with a plotting
script, plot_outcomes.py, which has multiple search
criteria in built (for examples, see Figures 4–8). For detailed
information on the running of, the outputs, and plotting ca-
pabilities of PUMA, refer to the online documentation.
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4 CREATING A COMBINED CATALOGUE

During the first incarnation of PUMA, the MWA had been
collecting EoR data for months already. The software being
used by the Australian MWA EoR pipeline, the Real Time
System (the RTS; Mitchell et al. 2008, in preparation), re-
quires an input source catalogue to generate a sky model for
visibility calibration and source subtraction. Previously, the
Molonglo Reference Catalogue (the MRC, Large et al. 1981)
was used. Being a shallow and directed survey, the MRC is
only complete to ∼1 Jy beam−1, and reports a single fre-
quency of 408 MHz. The MWA observes between 80 and
300 MHz, so an assumed spectral index of −0.7 was used to
extrapolate the sources to the desired frequencies.

The MWA Commissioning Survey (MWACS, Hurley-
Walker et al. 2014) was undertaken to provide a better model
of the sky at these frequencies, during the commissioning
phase of the MWA, when the instrument had less elements
and thus less sensitivity and poorer resolution. Given that ac-
curate positions were unobtainable with shorter baselines and
a new array to calibrate, MWACS was limited in its accuracy,
and therefore a prime candidate for testing PUMA.

To best calibrate and remove sources from a target field,
a source catalogue must cover the entire field. The first sci-
ence field targeted for EoR by the MWA was labelled EoR0,
centred at 0h, −27◦. Due to the large primary beam of the
MWA tile response (e.g. Tingay et al. 2013), good knowl-
edge of the sky is needed to at least 2h distance from field
centre (see Figure 3). Further, due to the grating side lobes of
the primary beam, power from sources as far as the horizon
can enter the visibilities, necessitating a catalogue that covers
the entire sky. MWACS unfortunately only extends up to a
declination of ∼ −15◦ . To get the best combination between
depth and coverage at the correct frequencies, it was decided
to use MWACS as the base catalogue, and fill any missing
sky coverage with MRC as a base.

The following catalogues were used to cross-match: The
74 MHz Very Large Array Low Frequency Sky Survey re-
dux (VLSSr, Lane et al. 2012); the 843 MHz Sydney Univer-
sity Molonglo Sky Survey (SUMSS, Mauch et al. 2003); and
the 1.4 GHz NRAO VLA Sky Survey (NVSS, Condon et al.
1998). These surveys were selected due to their frequencies
and sky coverage (see Figure 3 and Table 2).

4.1. Running PUMA

PUMA was run first using MWACS as a base and matching to
all other catalogues, then again using any MRC sources ly-
ing outside of the MWACS field as a base. In both cases,
the following parameters were used: Pu = 0.95; Pl = 0.8;
χ2

red,u = 10; εu = 0.1. These settings were decided upon after
investigating matching outcomes; the chosen spectral fitting
cut-offs allow for some inherent curvature of the SED, whilst
still failing for large deviations from linearity. For an explo-
ration of the effect of these parameters on the PUMA clas-
sifications, see Appendix B. As the splitting test outlined in

(a) Overall sky coverage

(b) The EoR0 field with example MWA beam

−
−

−

−

−

−

−

−

−

−

−

Figure 3. The overall sky coverage of each catalogue is shown in (a). Apart
from MRC, all catalogues only partially cover the MWACS field, which is
emphasised by the zoom in on the EoR0 field shown in (b). A contour plot
shows the MWA primary beam at 180 MHz, with EoR0 at zenith. The first
four grating side lobes are clearly visible outside the dashed circle which
represents 2h from field centre.

Section 3.3.3 only covers the most simple cases of repeated
catalogue matches, this option was not invoked during this
analysis. The order of catalogue position preferred was set as
NVSS; SUMSS; MWACS/MRC. VLSSr was not selected as
a correcting catalogue as it suffered from ionospheric effects
and has already been positionally fit using NVSS (see Co-
hen et al. 2007; Lane et al. 2014, for details). The matching
statistics from both runs are shown in Table 3, showing that
overall 98.6% of sources were accepted by PUMA and au-
tomatically matched. Table 2 also shows that some MWACS
or MRC sources found no match at all with other catalogues.
After investigation, the vast majority of these sources were
found to lie near the galactic plane in the southern hemi-
sphere. SUMSS does not cover the sky over |b| < 10◦; as only
SUMSS and MRC extend below δ = −40◦, this accounts for
the missing matches. Given the galactic plane lies more than
4h away at the declinations applicable to the EoR0 field, these
sources were ignored.
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Table 2. General characteristics of the base and cross-matching catalogues. The
quoted beam widths for MWACS and MRC and indicative only, as they vary across
the sky and with frequency.

Catalogue Frequency (MHz) Beam width Number of sources Image rms (mJy)

VLSSr 74 75 arcsec 92 696 100
MWACS 180 ∼3 arcmin 14 110 30
MRC 408 ∼2.7 arcmin 12 141 30
SUMSS 843 45 arcsec 211 050 1.25
NVSS 1 400 45 arcsec 1 773 484 0.4

Table 3. The settings used and matching statis-
tics obtained when running PUMA on real data.
The number of sources shows the number of
base catalogue sources for each case, and the
number of matches the instances where a match
to at least one catalogue was found.

Parameter MWACS base MRC base

Resolution (arcmin) 03:00 02:48
Number sources 14 111 9 488
Number matches 13 995 8 880
accept 13 785 8 691

as isolated 10 486 6 649
as dominant 1 301 904
as multiple 1 998 1 138

reject 20 25
eyeball 190 164

4.2. PUMA outcomes

Of the 22 476 automatically accepted matches, 76% were
classified as isolated, 10% as dominant, and 14% as
multiple. Figures 4–8 show example PUMA outcomes
for each classification. In each Figure, the two left-hand plots
show the positional and spectral information fed into PUMA.
If a catalogue included Gaussian fit parameters for sources,
these are plotted for instruction only; they were not used by
PUMA during the cross-matching process. The plots on the
right-hand side then show each cross-match combination of
the matched sources, with the pertinent matching probability
and spectral fit residuals.

4.2.1. SI distribution

To check for any systematic biases in the differing match-
ing classifications, the SI distributions of each classification

Figure 4. An example of an accepted isolated match. As there is only one possible combination of sources, and that combination has
P1 > Pu, the cross-match combination is accepted without investigating the SED.
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10 Line et al.

Figure 5. An example of an accepted dominant match. There are two NVSS sources well within the resolution of the base MWACS source.
Given the positional error on the MWACS source, both cross-match combinations yield high positional probabilities. The SEDs of both cross-match
combinations are investigated, and it is found that P1 > Pu, P2 < Pl as well as cross-match combination 1 having far lower residuals to a power law
than cross-match combination 2. This results in match 1 being selected as the correct match.

Figure 6. An example of an accepted multiple match. In this example, both cross-match combinations 2 and 12 yield P > Pu and so there
is no dominant match. Instead, all flux densities are combined, and the new SED tested with a power law fit. As the fit is deemed to be good, the
source is accepted, and the weighted NVSS position (orange star) is used as the corrected position.
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Figure 7. An example of an reject position match. Both SUMSS source lie outside of the resolution of the MWACS catalogue plus the
positional error of the MWACS source. As P1,2 < Pu, all cross-match combinations are deemed improbable and are rejected. Further investigation
of cross-matches such as these are best diagnosed in conjunction with postage stamp images such as shown in Figure 11.

Figure 8. An example of an eyeball multiple match. Many cross-match combinations lie outside of the resolution plus error of the base
MWACS source, with no dominant combination. A sum of the flux densities of the matched sources that passed the positional criteria yields a
poor fit to a power law, and so the MWACS source is not accepted and labelled to eyeball. Again, further investigation of cross-matches such as
these are best diagnosed in conjunction with postage stamp images such as shown in Figure 11.

PASA, 34, e003 (2017)
doi:10.1017/pasa.2016.58

https://doi.org/10.1017/pasa.2016.58 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2016.58
https://doi.org/10.1017/pasa.2016.58


12 Line et al.

Figure 9. (a) kernel density estimate of the SI distribution of each PUMA
classification. The median and absolute median deviation of each distribu-
tion is quoted in the legend. (b) A histogram of the offsets of MWACS
sources to either NVSS or SUMSS found by PUMA, including all match
types except from eyeball and reject. We find similar positional offset
behaviour from NVSS and SUMSS as is described in Hurley-Walker et al.
(2014).

were compared in Figure 9a. The isolated and multi-
ple classifications report near identical distributions, with
the dominant resulting in a similar distribution centred at
a slightly steeper SI. There are multiple factors that could
account for this offset, two contributory factors of which
are: the dominance test could consistently choose dom-
inant sources when it should be combining flux densities,
thus under-estimating flux densities at high frequencies;
the weighted least squares fit is strongly biased to higher
flux densities due to the smaller associated errors, and so
small changes in flux density at those frequencies greatly
affect the fit. To do any accurate modelling of spectra (e.g.
Callingham et al. 2015), it is essential to remove confusing
sources. This possible steepening is further investigated in
Section 5.2.

4.2.2. Positional offsets

The positional offsets found when considering only cross-
matches with MWACS as a base that were accepted by PUMA
are shown in Figure 9b. The positional offsets for all iso-

lated sources surrounding the EoR0 field are shown in
Figure 10. PUMA classifications are most useful in this in-
stance for quickly flagging out confused cross-matches; the
isolated matches can then be used to investigate inherent
catalogue properties.

4.3. eyeball and reject sources

399 sources were not automatically catalogued by PUMA. As
this matching process was run with the EoR0 field in mind,
it was decided to include sources within 2h of the EoR0 field
centre, leaving 74 sources to investigate. For each flagged
source, postage stamp images of available relevant catalogues
were obtained and plotted. These were used in conjunction
with catalogue information to make an informed decision
on a cross-match. An example of this process is shown in
Figure 11. The MWA data simulated in Section 6 was taken
when the MWA had greater resolution (∼2.3 arcmin) than
when MWACS was created. For this reason, any MWACS
source that was matched to multiple components that were
separated by an angular distance that would be resolved at
2.3 arcmin were split into multiple catalogue entries in a bid
to reduce residuals after source subtraction when using real
data.

5 TESTING PUMA

To test the fidelity of PUMA, it is necessary to know the true
sky. The known positional and SI distributions can then be
used to compare to the positional corrections and SI distri-
bution derived by PUMA. In this section, a point source sky
model is created using the NVSS catalogue. It is used to cre-
ate simulated sky images as seen by the five telescopes for
the catalogues matched in Section 4. Source-finding is then
applied to these images to create five mock catalogues on
which to test PUMA. The two criteria used to test PUMA is
the recovery of accurate positions and SI.

5.1. Mock catalogues

5.1.1. NVSS sky model

NVSS catalogued positions and flux densities were selected
from a fiducial lune of sky, bounded by 0.0◦ ≤ RA ≤ 30.0◦

and −40.0◦ ≤ δ ≤ −30.0◦. This patch of sky was chosen as
it lies in the overlap region between SUMSS and NVSS, and
to generate enough sources to have statistical significance
when testing PUMA. To get a realistic SI for each point
source, a simple positional cross-match was performed to
SUMSS, with a cut-off of half the beam width of the NVSS
survey (22.5 arcsec). Any NVSS source without a match was
assigned a random SI, drawn from a gaussian distribution
with μ = −0.8, σ = 0.2, to reflect the SI distributions seen
in Figure 9a.
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Figure 10. The positional offset found to either NVSS or SUMSS from either MWACS or MRC is shown. The edge
of the MWACS field is clearly seen at δ = −15◦. The positional agreement with MRC is excellent, most likely due to
MRC only containing bright sources. As explained in Hurley-Walker et al. (2014), the positional offsets to MWACS
vary with RA. The MWACS survey was taken over two declination strips, the effect of which appears to be visible in
the plot, with the decrease in offset density at around δ = −37◦. There are hints of an overall north-east offset in the
upper declination strip; this is further investigated in Carroll et al. (2016). Coherent patches of positional offsets are
consistent with a phase gradient introduced by ionospheric effects. As these would vary over a night, the offsets seen
here could well be ionospheric.

5.1.2. Simulated sky images

The selected NVSS sources were used to populate a point
source sky array model at the frequencies of the five cata-
logues listed in Table 2, extrapolating the flux densities using
the assigned SI. The astropy.convolution7 python
library was then used to convolve the sky array with a Gaus-
sian kernel, set to have a full width half maximum value
equal to the beam width listed in Table 2. In doing so, the
restoring phase of a CLEAN (Högbom 1974) image process
is mimicked8; this process is typically applied to interfero-
metric radio data to remove the instrument response from the
image, with the restored image then used for source finding.
Gaussian noise was added to the image based on reported im-
age rms from the literature of each catalogue (see Table 2),
to make the source finding as realistic as possible. Figure 12
shows a comparison the simulated NVSS to sky to the real
data, as well as the simulated MWACS image.

5.1.3. Source finding and SI derivation

Source finding was performed using the PyBDSM package9,
which is designed to perform source finding on radio in-
terferometric images, and is capable of fitting Gaussians,
Shapelets, and Wavelets to an image. In this analysis, only
Gaussians were fit to the mock catalogues. To derive the SI

7 astropy convolution documentation—http://docs.astropy.org/en/stable/
convolution/

8 Normally, the projection of the synthesised beam is applied to the restoring
Gaussian; however, for simplicity a symmetric Gaussian kernel is used.

9 PyBDSM documentation—http://www.astron.nl/citt/pybdsm/

of sources found for the mock MWACS catalogue, five ex-
tra sky images were made at 74, 180, 408, 843, and 1 400
MHz, without any noise. The Gaussian fit parameters found
by PyBDSM for the mock MWACS catalogue were then used
to measure the flux density for each source in the noiseless
images, by summing the pixels that were bound by the Gaus-
sian fit. These measured noiseless flux densities were then fit
using least squares to calculate an expected SI. To ensure that
flux densities used to estimate the SI and those used to test
PUMA in Section 5.2 are consistent, the method of generat-
ing a noiseless image and directly summing to measure a flux
density was applied to all the mock catalogues; all positional
information and errors derived by PyBDSM were retained.

5.2. PUMA comparison

PUMA was run using the mock MWACS catalogue as a base
in the same way as described in Section 4.1. The match-
ing outcomes are summarised in Table 4. The source posi-
tions and SI found in Section 5.1.3 for the mock MWACS
sources were taken to be the ‘true’ source characteristics on
which to compare the outputs of PUMA to. To test the ro-
bustness of the positional offset recovery, PUMA was run a
second time, after random positional offsets were added to
the mock MWACS catalogue. The derived positional offsets
from the PyBDSM positions and calculated SI are shown for
each PUMA classification in Figure 13. For comparison, the
derived SI from running a simple nearest-neighbour cross-
match within 90 arcsec, approximating the FMHW of the
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14 Line et al.

Figure 11. An example of the matching process for extended sources is shown. The two upper left panels show all information given to PUMA. The
bottom three panels show postage stamp images of the three matched catalogues, with the reported catalogues over-plotted, along with the MWACS
source. In this case, the source reported in the VLSSr catalogue does not realistically match the VLSSr image. This artificially creates a curved SED,
which causes PUMA to label this match an eyeball. Given the doubt cast on the VLSSr source, it is ignored in the cross-match, and the SUMSS
and NVSS sources that seem positionally reasonable are combined and matched. This gives a realistic positional match as well as spectra.

mock MWACS beam, is shown. This highlights the power of
combining high resolution catalogue data; PUMA reliably re-
trieves the correct SI for mulitplematches, whereas a sim-
ple nearest-neighbour match consistently retrieves a steeper
SI. Figure 13 shows that PUMA behaves the same in the

presence of unaccounted positional errors, on top of those
quoted by PyBDSM, given the same positional and SI distri-
butions retrieved in both runs. The positional offsets found
for isolated sources are small, and are smaller than the
PYBDSM errors. Given this, in conjunction with the coher-
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Table 4. The matching classifications found by
PUMA when matching the mock catalogues (No
offset), along with the case where positional errors
were introduced into the mock MWACS catalogue
(With offset).

Matching class No offset With offset

accept 2 129 2 119
as isolated 1 781 1 771
as dominant 129 127
as multiple 219 221

reject 20 31
eyeball 32 32

Figure 12. A comparison of a real NVSS postage stamp image (upper panel)
and a simulated NVSS postage stamp (central panel), created as described
in Section 5.1.2. The same area of sky is also shown as simulated to mimic
an MWACS postage stamp (lower panel).

ent ionospheric offsets found in the MWACS catalogue, as
well as the coherent offsets found by PUMA in Carroll et al.
(2016), it is clear that for isolated sources, the positional
corrections are indeed improving the positional accuracy of
the source, whilst reliably reported the correct SI.

If dominant cases are purely discriminating chance
alignments of physically unrelated sources, we might expect
the positional offsets derived for isolated and domi-
nant to be the same. The distributions are indeed similar,
however the dominant distribution shows a median offset
of around double that of the isolated cases. This is likely
due to the confusing source(s) contributing some flux den-
sity to the lower resolution catalogue sources; this blending
skews the positional of the base catalogue source. The dom-
inant distribution is closer to the isolated distribution
than themultiple distribution however, which lends confi-
dence that thedominant class should be kept separate to the
multiple. As seen in Figure 9a, a slight steepening of the
SI distribution is shown for dominantmatches. This is also
likely due to some blending of sources, which would manifest
as an over-estimation of the lower resolution (usually lower
frequency) flux density, naturally causing a steepening in the
SI. However, as the dominant component should be driving
the spectral behaviour of the source at the base catalogue
frequencies, this reported SI should realistically describe the
behaviour of the source as seen by the base catalogue.

Figure 13 shows that the positional offsets found for mul-
tiple matches are comparatively large. As defined in
Section 3.3.3, the positional offsets here are derived from
the flux density weighted centre of the combined higher res-
olution catalogue sources: These offsets can then be domi-
nated by the differences in morphology at differing frequen-
cies. As such these positional corrections may not actually
be improvements at the frequency of the base catalogue. The
method clearly works when estimating the SI however, so it
remains up to the user as to which position is appropriate for
their desired science case.

6 SIMULATIONS OF FOREGROUND REMOVAL
TOWARDS AN EOR DETECTION

The red-shifted 21-cm Hydrogen emission line (HI line) is
a tracer of neutral hydrogen (HI) and as such can be used
to measure the effect of ionising radiation on HI during the
EoR, and can be used to constrain the timing of the epoch
as well as the nature of the first ionising sources. As stated
in Section 1, extra-galactic radio sources emit at the same
frequencies and must either be removed or avoided to make
a detection. The MWA EoR pipelines have opted for direct
foreground removal in the case of point sources (Jacobs et al.
2016). In this section, we create simulations to investigate
how subtracting point sources with inaccurate astrometric
information will effect a measurement of the EoR signal.

Current generation low-frequency radio arrays are not
sensitive enough to directly image the HI line from the EoR.
Instead there is a focus on making a statistical measurement
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Figure 13. The positional corrections (left column) and SI distributions (right column) derived by PUMA when
matching mock catalogues, split in to isolated, dominant, and multiple (top, middle, and bottom rows,
respectively). For every distribution, the median and median absolute deviation is quoted in the legend. In the left-hand
column, the PUMA positional corrections found when using the PyBDSM mock MWACS positions (no offset) and
with positional offsets added (with offset) are shown. The added positional offsets (injected offsets), as well as the
PyBDSM reported errors are also plotted. In the right-hand column, the PUMA SI distributions are again shown for both
the PyBDSM MWACS and the perturbed positions, compared to expected SI distribution as derived in Section 5.1.3,
by finding the flux density from noiseless mock MWACS images. An SI distribution is also shown by performing a
nearest neighbour match to the PyBDSMMWACS positions to within 90 arcsec. The PUMA classifications were taken
from the match with the original PyBDSMMWACS positions; only matches which were accepted by both PUMA runs
(offset and no offset) are plotted for a direct comparison.

through a PS analysis of the emission of large sky areas.
The final measurement will be a 3D spherically averaged10

to 1D PS, but the 2D PS serves as a useful instrument and

10 As this spherical averaging occurs over k-modes derived from frequency
measurements, it has to be limited to frequency ranges which correspond
to �z � 0.5. This limits the effect of cosmic evolution, during which time
significant changes to the distribution of HI can occur due to on-going
ionisation, fundamentally changing the derived PS.

data diagnostic tool. The 2D PS plots variations in measured
power across the frequency response of the instrument
against its angular response across the sky, and as such
different instrumental effects as well as astrophysical signals
should inhabit different parts of the 2D PS (e.g. Morales et al.
2012). Of particular interest in the literature is the ‘wedge’
(see Datta et al. 2010; Parsons et al. 2012; Vedantham et al.
2012; Hazelton et al. 2013), a region in which the emission

PASA, 34, e003 (2017)
doi:10.1017/pasa.2016.58

https://doi.org/10.1017/pasa.2016.58 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2016.58
https://doi.org/10.1017/pasa.2016.58


PUMA 17

of point sources is expected to be confined [although some
power from point sources should exist outside of this wedge,
i.e. Thyagarajan et al. (2013)]. The area most devoid of
foreground contamination is known as the ‘window’, and is
targeted for an EoR detection.

A PS estimation of the EoR requires removal or avoidance
of bright foregrounds including point sources at the same fre-
quencies as the red-shifted 21-cm line. If implemented with
sufficient accuracy, direct point source removal promises to
open up the largest measurement space in the 2D PS (Pober
et al. 2014). Trott et al. have studied the effect of point source
removal in the presence of inaccuracies in the data set it-
self (Trott et al. 2012). Given the need for accuracy outlined
here, this analysis investigates the effect of positional inaccu-
racies in the calibration and source removal catalogues on the
2D PS. The focus here is to probe where power is removed
from the 2D PS, and how that could affect any possible EoR
detection. The drawbacks to testing on real data are numer-
ous; however, a real instrument can introduce random and
systematic errors; the ionosphere is a constantly changing
source of error; the true sky brightness distribution is actu-
ally unknown, and consists of point like and diffuse emission
with varying spectral behaviours. The latter is the biggest
obstacle for this experiment, so simulated visibilities were
created using OSKAR11 (Mort et al. 2010). In this manner,
the input data could be completely understood and so the
effects of positional inaccuracies be isolated.

To achieve this, two source catalogues were created from
the PUMA outputs; one using the original MWACS posi-
tion12, and a second with the updated PUMA position. We
refer to these as the MWACS source list and the PUMA
source list, respectively. Both source lists were given exactly
the same spectral information. The Australian MWA EoR
pipeline was used: all calibration and source subtraction was
run using the RTS (Mitchell et al. 2008), and all 2D PS were
made using the Cosmological HI Power Spectrum Estima-
tor (CHIPS, Trott et al. 2016). The RTS utilises clustered
source calibration (Kazemi et al. 2013), and can either peel
(individually calibrate and subtract a source) or subtract as
many sources as required.

In Section 6.1, we outline the MWA observations that
were the basis of our simulations; simulating real observa-
tions allowed comparison with data as shown in Figure 14.
In Section 6.2, we detail the OSKAR simulations used to gen-
erate MWA-like data. In Section 6.3, we present the results of
our analysis and the effects of positionally inaccurate source
subtraction on the 2D PS.

6.1. The MWA

The MWA telescope consists of 128 elements, each of which
is made of 16 cross-dipole antennas in a 4 × 4 grid. The
dipoles in each of these ‘tiles’ are electronically beam-

11 http://oskar.oerc.ox.ac.uk/
12 In the case where an MWACS source was split into multiple components

(Section 4.3), the same position was used in both catalogues.

formed, forming a quantised set of primary beam pointings.
The signal path of the MWA extracts 30.72 MHz of band-
width, which it splits into 768 fine channels of 40 kHz in a
Polyphase Filterbank (PFB). These data are combined and
averaged to 0.5 s in the correlator (see Ord et al. 2015, for
further details).

The MWA is located on the Murchison Radio Observatory
site, which is extremely radio-quiet (Offringa et al. 2015;
Allison et al. 2015); even so some radio interference remains
so all data was flagged using COTTER (see Offringa et al.
2015). Due to the bandpass imparted by the PFB, 5 out of
every 32 fine channels are also flagged.

A fiducial night of data was selected to test the reduction
pipelines employed by the MWA EoR analysis team (see
Jacobs et al. 2016, for details). A subset of 1 h of these obser-
vations were selected for testing here, chosen for balance be-
tween integration time and processing costs. The EoR0 field
stays within one pointing of the MWA for approximately half
an hour, giving two pointings (and therefore two beam pat-
terns) in the dataset. The zenith pointing (e.g. Figure 3b) and
one pointing 6.8◦ off zenith were chosen, as the MWA beam
is best understood at zenith (Neben et al. 2015).

6.2. OSKAR simulations

OSKAR was primarily created to simulate data from SKA-
like interferometric arrays. Accurately simulating visibilities
is a computationally expensive endeavour, due to multiple
Fourier Transforms and gridding steps. OSKAR deals with
this by assigning each point source in the sky model to a
thread on a GPU, greatly speeding up the process. Impor-
tantly, OSKAR takes into account wide-field effects (caused
by the curvature of the sky), which are necessary given the
>30◦ field of view of the MWA.

OSKAR is capable of beam-forming groups of receiver
elements, such as those in an MWA tile. To be explicit, for
these simulations, OSKAR was given the 4 × 4 grid pattern of
an MWA tile, and told there was a cross-dipole antenna at each
point. OSKAR then uses an analytic model for each cross-
dipole and combines the response of all 16 antennas with
appropriate delays to mimic the MWA primary beam. This is
slightly different from the model use by the RTS (Sutinjo et al.
2014), which includes mutual coupling between the dipoles.

OSKAR simulations were set up to exactly mimic the
MWA observations detailed in 6.1; the one difference being
the correlator was set to sample at 2 s rather than the half sec-
ond in the MWA data, which reduced the computational load
by 4. The PUMA source list was used as an input sky model.
When supplying the RTS with a calibration or peeling source
list, the RTS reads in given flux densities at specified frequen-
cies, and then extrapolates a sky model to the frequency of
the data by fitting a power law spectral model between the
two closest given frequencies. To ensure perfect source sub-
traction when using the PUMA source list positions, the sky
model input to OSKAR was extrapolated in the same way to
all frequencies.
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Figure 14. Four ‘dirty’ (with the synthesised interferometric beam still convolved with the sky brightness) naturally weighted images are shown for an
integration of 64 s of data across the entire 30 MHz bandwidth. The left-hand column shows OSKAR simulations, with the right hand showing MWA
data. The top row shows calibrated data, and the bottom data with the same 1 000 sources from the PUMA sky model created in Section 4 subtracted.
(a) and (b) reveal the excellent agreement of the synthesised beam created by OSKAR and the real MWA. (c) and (d) reveal the biggest difference in
the sky, that being the diffuse emission clearly visible in (d); diffuse emission is mostly due to synchrotron emission from cosmic rays interacting local
with galactic field lines (Ginzburg & Syrovatsk 1969).

A number of steps were necessary to run RTS on OSKAR
simulations. OSKAR outputs either a native binary format
file or a CASA MS13. The RTS is capable of reading either
native MWA outputs or UVFITS14 files. Routines already
exist in casapy to transform a MS into a UVFITS file.
Due to differing coordinate definitions and a frequency re-
lated issue however these UVFITS files still need editing
(achieved here using python), leaving the final pipeline as:

OSKAR
MS

OSKAR
UVFITS

RTS
UVFITS

casapy python

13 See http://casa.nrao.edu/Memos/229.html
14 See Memo 117 http://www.aips.nrao.edu/aipsmemo.html

One final complication is that the MWA correlator is
slightly unusual in the fact that is does not fringe track—
this being the procedure of adding phase delays within the
signal path to ensure the data is fully coherent in the pointing
direction (see Ch.2, Taylor et al. 1999, for the theory of phase
tracking). The correlator in OSKAR is hard-coded to phase
track, and so these phase rotations must be undone in the fi-
nal python script. Furthermore, each simulated MWA tile
is beam-formed in the direction of the phase centre, which
is specified in RA, δ. As the real MWA beam only points
to a specific HA, δ during an observation, a new RA, δ must
be entered for each time step. This combined with the fre-
quency editing means OSKAR has to be run separately for
every fine channel and time step. Given an input catalogue of
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Figure 15. Two 2D power spectra are shown (left and centre), both created using the XX polarisation and the entire simulated hour of data. Each plot
shows amplitude as a function of k-modes perpendicular to the line of sight (derived from angular scales on the sky, k⊥) horizontally, and k-modes
parallel to the line of sight (derived from frequency response, k‖) vertically. The plot on the left shows the power before source subtraction, and the
centre after 1 000 sources have been subtracted. The plot on the right shows the difference plot of the 2D power spectra, with the 1 000 source spectra
subtracted from the spectra without source subtraction. Blue in this case shows more power being present before source subtraction. The absolute
scale shown here is not the most instructive part of these plots as an interferometer naturally measures variations about a mean; the relative power
as a function of k-space however informs us where foreground power is being removed from.

22 618 sources, it takes ∼6 h using 24 NVIDIA Tesla C2090s
GPUs15 to simulate a 2 min MWA observation. A compar-
ison between real MWA data and an OSKAR simulation is
shown in Figure 14.

6.3. Results

The left and central plots in Figure 15 show 2D PS obtained
after processing the OSKAR simulations through the Aus-
tralian MWA pipeline. Each plot shows the power as a func-
tion of k-modes derived from angular scales upon the sky
(k⊥) and those derived from the frequency response of the
instrument (k‖). The solid diagonal line is set to represent
the expected location of foregrounds within the main lobe of
the MWA primary beam, and the dashed diagonal line the
contribution of foreground sources at the horizon limit.

Given that the visibilities only contain point sources
the calibration solutions were excellent when calibrating
both with the PUMA and MWACS source lists. The PS
in Figure 15 display the characteristic wedge shaped power
from point sources, apparent in the saturated bottom right cor-
ner of each plot. The horizontal bands of power in the EoR
window are due to the spectral behaviour of the flagged fine
channels (see Section 6.1) convolving with the power from
the wedge. When searching for calibration or data analysis ef-
fects in the 2D PS, it is often instructive to create difference
plots, that being one 2D PS subtracted from another (e.g.
Beardsley et al. 2016, in press). An example difference plot
is shown on the right in Figure 15.

After processing through CHIPS with various subsets of
the simulated data to demonstrate the effect of subtracting

15 On the gSTAR super cluster http://supercomputing.swin.edu.au/
about-green-ii/

sources with positional inaccuracies, we discovered a com-
peting differencing effect inherent to the data: Each pointing
observed a fundamentally different sky. For this reason, we
split our results into zenith and off-zenith pointings. We in-
clude a comparison of zenith and off-zenith simulated data
in this section for completeness.

The effect of subtracting sources with positional inaccura-
cies is shown in Figure 16. This shows the difference between
subtracting sources from the PUMA and MWACS source list.
The PS are compared pointing by pointing to negate the point-
ing effect described above. The behaviours observed at low
k⊥, k‖ are inconsistent, which is likely due to the poor sam-
pling that exists here; this part of the PS corresponds to large
angular and spectral scales, which are limited due to the field
of view and bandpass. For the rest of the PS, it is seen con-
sistently over each pointing and polarisation that subtraction
with exact source positions not only overall removes more
power from the wedge, but also from the window as well. As
stated, the absolute value of the power in the 2D PS shown
here are not instructive, but the relative differences in power
seen in the window are within ∼1–2 orders of magnitudes of
that seen in Figure 1516. Given that the EoR signal is thought
to be ∼3 orders of magnitude dimmer than these foregrounds,
this highlights the need for the best possible foreground mod-
els to reduce the leakage of point sources from the wedge into
the window (i.e. Offringa et al. 2016).

The differences in the sky seen by differing pointings is
shown in Figure 17. These plots demonstrate that the sky
is fundamentally sampled differently through the zenith
and off-zenith pointings, due to a combination of the beam

16 It should be noted however that these PS are made with only half an hour
of data, so these orders of magnitude should be taken as indicative only;
an actual detection requires on order of ∼1 000 h (Beardsley et al. 2013).
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Figure 16. Four difference PS are shown to contrast data processed with the PUMA source list to the MWACS source list: (a) Zenith
pointing, PUMA source list—MWACS source list, XX polarisation; (b) Zenith pointing, PUMA source list—MWACS source list, YY
polarisation; (c) Off-zenith pointing, PUMA source list—MWACS source list, XX polarisation; (d) Off-zenith pointing, PUMA source
list—MWACS source list, YY polarisation. In each case, blue represents more power for data with exact positional source subtraction
opposed to offset positional subtraction, and red less power.

pattern differing between pointings, creating grating side
lobes which contribute power at different amplitudes from
different parts of the sky, along with a sky that is changing
with time. This is perhaps most apparent in Figures 17c
and d, shown by the diagonal blue stripe bound by the

solid and dashed lines. Power in this area of the PS comes
from sources close to the horizon (see Pober et al. 2016,
and references therein); the differences caused here by the
changed horizon between pointings become apparent after
subtracting the 1 000 brightest sources.
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Figure 17. Four difference PS for data processed using the PUMA source list only, each representing half an hour of data: (a) No peeling,
zenith—off-zenith, XX polarisation; (b) No peeling, zenith—off-zenith, YY polarisation; (c) 1 000 sources peeled, zenith—off-zenith, XX
polarisation; (d) 1 000 sources peeled, zenith—off-zenith, YY polarisation. In each case, blue represents more power in a zenith pointing,
and red less power. The top row shows there is overall more power seen for the zenith pointing before source subtraction, and the bottom
rows show there is overall less power after subtracting the 1 000 brightest sources. Again, the absolute value of the power is less important
than the distribution of power throughout k-space.

7 DISCUSSION

We have developed software that is capable of automati-
cally cross-matching ∼99% of the MWACS catalogue to
other radio-wavelength catalogues of differing resolutions,

necessitating the need to deal with confused matching. Us-
ing simplistic simulations, we tested the matching results
of PUMA and found it able to reliably recover a known SI
distribution, and to be robust to typical ionospheric positional
offsets prevalent in low radio-frequency observations. This
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high fidelity of matching is important for the current gener-
ation of low radio-frequency surveys (such as GLEAM and
MSSS), which will produce catalogues on orders of ∼105

sources, and more so for future SKA-type surveys which may
produce ∼106. With this in mind, the software has been de-
signed to be tunable to the needs of the desired application,
with several manually adjustable parameters. Even so, these
algorithms will need to be further developed to save manu-
ally inspecting over 104 sources17 (although these numbers
of sources are routinely inspected spread over a large team
for a wide-field optical survey).

After applying PUMA, the impact of gaining more pre-
cise positional information from higher frequency radio cat-
alogues was investigated through OSKAR simulations. This
was achieved by studying the effects of removing sources
from interferometric visibilities and investigating the re-
sulting 2D PS. It was found that when subtracting sources
with exactly correct positions, more power was not only
subtracted from the wedge but also from the window, the
measurement space in which an EoR detection could po-
tentially be made. This adds weight to the growing argu-
ment in the literature to the most accurate possible sky
models.

Whilst this paper concentrates on the benefits of this
methodology for creating foreground models for EoR sci-
ence, it of course has wider applications, particularly for
population studies of radio galaxies, and for verification of
sources during catalogue creation. It also has implications for
baseline configurations for future EoR arrays: If the true po-
sitions of sources can be established from higher frequency
information, longer baselines may not be necessary, reduc-
ing cost and allowing for more short baselines, increasing the
sensitivity of the array to the spatial scales at which the EoR
signal can be measured.
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A ALGORITHMS

Algorithm 1: Positional selection criteria for all cross-
match combinations associated with a base source.
Any catalogue with more than one match source is
labelled as ‘repeated’. The algorithm accepts a combi-
nation if it is either likely, or if the repeated source
is within the resolution of the base catalogue. The
retained combinations are then investigated through
Algorithm 3 and 4. Pu can be modified by the user.
At all stages, statistics of the matching process are
gathered to propagate through to the final matched
catalogue.

Record the number of combinations;
Work out which catalogues are repeated;
Create retained_combinations list;
Calculate the distance of the repeated sources to the

base catalogue;
for each combination i:

if P(H |Di ) > P:
accept combination; append to

retained_combinations
elif source from repeated catalogue is within

resolution of base catalogue source + error:
accept combination; append to

retained_combinations
else:

reject combination
Record the number of retained combinations;
if number of retained combinations == 0:

reject group; label as rejected positionally
else:

return retained_combinations
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Algorithm 2: Positional selection criteria for a single
source cross-match. If there is only one combination
possible, and it has a positional probability over a given
threshold, it is accepted without scrutinising the spec-
tral data. This avoids assuming any spectral model. If
the match is below Pu, all matched sources are checked
to be within the resolution of the base catalogue. As
there was only one possible match, a high positional
probability was expected, so a spectral test is applied.
If the residuals ε, χ2

red of a fit to a power law (as de-
tailed in Section 3.3.1) are below a certain threshold
ε2

u , χ2
red,u, the source is accepted. At all stages, statis-

tics of the matching process are gathered to propagate
through to the final matched catalogue.

Fit a power law to the spectral data;
Calculate the residuals of fit;
if P(H |D) > Pu:

label as isolated match;
accept combination

else:
Calculate the distance of all matched sources to the

base catalogue;
if all sources within resolution of base catalogue

source + error:
if ε2 > ε2

u and χ2
red > χ2

red,u:
reject combination;
label as rejected spectrally

else:
label as isolated;

else:
reject combination; label as rejected

positionally

B PARAMETER SPACE

As described in Section 3, there are five parameters that the user de-
clares when running PUMA: the resolution, θr ; an upper and lower
positional probability, Pu, Pl; two residual fitting metrics, χ 2

red,u, εu.
In practise, θr is set by the FWHM of the instrument response of
the survey, leaving four parameters to be selected by the user. In
Figures B1–B3, a range of parameters are run using the mock cat-
alogues created in Section 5. The numbers of each PUMA clas-
sification, as well as the median SI value, are then plotted as 2D
histograms. For each histogram, the mean is taken over the range of
parameters not being plotted. The results of Figures B1–B3 show
that all classifications are robust to the choice of both Pu and Pl

with the exception of when Pu = 1 or Pl = 1., which causes a sharp

increase in the number of sources rejected. As intended, as both
χ 2

red,u and εu increase, the number of accepted sources increases.
The choice of these parameters then comes down to the science
case of the user, and how important a fit to a power-law model is.
The median of the SI distribution is shown to be extremely robust
to the choice of parameters.

Algorithm 3: A test for spectral dominance. If one
combination has residuals that are at least three times
smaller than all other combinations, and is position-
ally likely whilst all other combinations are unlikely,
accept the source. Positional and spectral dominance
are required at the same time, to rule out chance align-
ment of sources with particular flux densities. Other-
wise, the combinations are passed on to Algorithm 4.
At all stages, statistics of the matching process are
gathered to propagate through to the final matched
catalogue.

create string pos_dom = “none”;
create string spec_dom = “none”;
for each combination i:

calculate residual ratio εi / ε j where i �= j;
calculate residual ratio χ2

red,i / χ2
red, j where i �= j;

if all residual ratios are <= 0.33 for either ε or χ2
red:

spec_dom = “combination i” “‘This means
the residuals for this
combination are at least 3 times
smaller than all other
combinations”’

else:
pass

if P(H |Di ) > Pu and all P(H |Dj ) < Pl where i �= j:
pos_dom = “combination i” “‘This means

that this one combination is
likely and all others are
unlikely”’

else:
pass

if pos_dom == spec_dom: “‘This means
combination i is positionally
most likely and spectrally
dominant”’

label combination i as dominant;
accept combination i

else:
pass retained_combinations on to Algorithm 4
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Algorithm 4: A test for source combining. If no one
combination passes Algorithm 3, try combing the flux
densities from the sources from the same catalogue. If
the combined flux densities pass a spectral test, cre-
ate a new position for the combined source, weighting
the RA and Dec of each source by its flux density. If
splitting is implemented, pass to Algorithm 5. Other-
wise accept the combined source. If the combination of
flux densities does not pass, send the combinations to
be investigated by eye. At all stages, statistics of the
matching process are gathered to propagate through
to the final matched catalogue.

combine the flux densities of the source from the same
catalogue;

combine the flux density errors;
calculate ε2 with the new combined flux density and

error;
if ε2 <= ε2

u or χ2
red <= χ2

red,u:
if distance between repeated sources > dsplit , and

splitting implemented:
send to Algorithm 5

else:
create a weighted RA, Dec, and errors as described

in Equation (11);
label as multiple;
accept combination with updated position, flux

density and errors;
else:

send source information to be investigated by eye;
label as retained after combining

Algorithm 5: A test for source splitting. If a source can
be combined, but the components to be combined are
separated by a distance larger than the user specified
dsplit, the combination is tested for splitting. If more
than one catalogue has repeated sources, the Algo-
rithm requires they have the same amount of sources.
Each set of repeated sources are then matched by dis-
tance to create components. An SED is constructed
for each component, and fit to the linear model. If
all components pass the spectral test, the cross-match
combination is split up in to multiple cross-matched
sources.

count number of repeated sources for each catalogue;
if all repeated catalogues have the same number of

sources:
match the components of the repeated catalogues;
split the flux density of the single catalogues as

described in Equation (12);
spectrally test each new component as described in

Algorithm 3;
if all components pass spectral test:

accept all components
else:

send source information to be investigated by eye;
label as retained after splitting

else:
return info to Algorithm 4 for combinational test
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Figure B1. An exploration of the effects of parameter space for isolated and dominant classifications. The bottom right panel of (a) shows
that χ2

red and ε have no effect on the number of dominant sources; this is because dominance is established using a ratio of residuals, rather than a
cut-off. (a) isolated cases. (b) dominant cases.
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Figure B2. An exploration of the effects of parameter space for multiple and eyeball classifications. (a) multiple cases. (b) eyeball
cases.

PASA, 34, e003 (2017)
doi:10.1017/pasa.2016.58

https://doi.org/10.1017/pasa.2016.58 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2016.58
https://doi.org/10.1017/pasa.2016.58


28 Line et al.

Figure B3. An exploration of the effects of parameter space for the reject classification and the median of the SI distribution. (a) reject cases.
(b) The median SI.
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