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Abstract

We find the atoms of certain subclasses of varieties of finite semigroups and the corresponding
varieties of languages. For example we give a new description of languages whose syntactic monoids
are ^trivial and idempotent. We also describe the least variety containing all commutative semi-
groups and at least one non-commutative semigroup. Finally we extend to varieties of finite
semigroups some classical results about semilattice decomposition of semigroups.

1980 Mathematics subject classification (Amer. Math. Soc): 20 M 35, 68 D 30.

Following Eilenberg [4] we define a variety of finite semigroups to be a class of
finite semigroups closed under taking quotients, subsemigroups and finite direct
products. Eilenberg has shown the existence of a one-to-one correspondence
between varieties of finite semigroups and certain classes of recognizable lan-
guages, called varieties of languages.

The main purpose of this paper is to detail this correspondence for some small
varieties of semigroups (or monoids) where the term "small" refers to the
inclusion ordering. Indeed a classical question in the theory of varieties of
semigroups in the sense of Birkhoff was to find the atoms of certain subclasses of
the whole lattice of varieties [6]. Fortunately most of these results on atoms
proved for varieties in Birkhoff s sense are easily adapted for varieties of finite
semigroups [3, 6, 9, 15]. The next step is to find the corresponding varieties of
languages. This is already known for the atoms of the class of all varieties [4].
Here we investigate three new examples. First of all we consider the class of all
non-commutative varieties, that is varieties containing at least one non-commuta-
tive semigroup (or monoid). The atoms of this class are described in [8]. We
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complete these results by giving equations of these atoms (except for the minimal
varieties of groups) and new descriptions of the corresponding varieties of
languages. We show in particular that the variety generated by the monoid U{
(three elements: one unit and two left zeros) is in fact the variety R, of ^tr ivial
and idempotent monoids. Furthermore we show that the syntactic monoid of a
language L is in R, if and only if L is a disjoint union of languages of the form
a,a*a2 {«i» ^2}* ' ' ' an{a\>- • -'an}* where the a,"s are distinct letters. Of course
the dual variety Rr, is also an atom in the class of non-commutative varieties. We
go a step further and give equations for the variety R, V Rr, and describe the
corresponding languages. As a byproduct we obtain a result of Tamura [14]
showing that there exists no variety between R, and R, V Rr,. Finally we extend
to varieties of finite semigroups a result stated in [6] for varieties in the sense of
Birkhoff: the variety defined by the equations xlx2x3 = x]ax2ax3a for all permu-
tations a of {1,2,3} is the least non-commutative variety containing all commuta-
tive semigroups. A description of the corresponding variety of languages is also
given.

The last section is independent of the rest of the paper: we show that there
exists an order-preserving mapping from the subvarieties of the variety of finite
nil-simple semigroups to the subvarieties of the variety of finite monoids whose
regular ^-classes are subsemigroups. This result extends to varieties of finite
semigroups some classical results [13] about semilattice decomposition of semi-
groups. We also give some well-known examples of this correspondence.

1. Preliminaries and notation

Following Eilenberg [4] we define a variety of finite semigroups (monoids) to be
a class of finite semigroups (monoids) closed under taking subsemigroups (sub-
monoids), quotients, that is morphic images, and finite direct products. If V is a
variety, Vr denotes the reverse of V which is the variety consisting of the reverse
semigroups Sr, S G V. Varieties are ordered by inclusion and form a lattice under
the operations of intersection and join: the join V, V V2 of V, and V2 is the
smallest variety containing V, and V2.

In the sequel the term "finite" is often omitted and thus "variety of semi-
groups" means " variety of finite semigroups".

If 6 is a class of semigroups we denote by (<3) the variety of semigroups
generated by C. If 6 is a class of monoids we denote by (6) ((G)s) the variety of
monoids (semigroups) generated by 6. If 6 consists of only one semigroup S we
shall use the notation (S) instead of ({5}).

Let 2 + be the free semigroup over a denumerable alphabet 2 and let w = t; e
2 + . We say that a semigroup S satisfies the equation u = v if u<f> = v<p for all

https://doi.org/10.1017/S1446788700022084 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700022084


[ 3 ] Small varieties of finite semigroups and extensions 271

morphisms <j>: 2 + -> S. It is easy to see that the class of all (finite) semigroups
satisfying the equation u = v is a variety of semigroups, denoted V(w, v).

Let (un, vn)n>0 be a sequence of pairs of words in 2* and let us consider the
following varieties: Vn = V(MH, vn), V = n n > 0 V n and V" = liminf Vn =

We say that V (V") is defined (ultimately defined) by the equations un = vn

(n > 0): this corresponds to the fact that a semigroup is in V (V") if it satisfies
the equations un = vn for all n (for all sufficiently large n).

Replacing 2 + by 2*, the free monoid over 2 , we can define in the same way
equations for varieties of monoids. The main result on equations, due to Eilen-
berg and Schiitzenberger [5] is

PROPOSITION 1.1. Every variety of semigroups (monoids) is ultimately defined by
a sequence of equations. Every variety of semigroups (monoids) generated by a finite
number of semigroups (monoids) is defined by a sequence of equations.

Here is a list of varieties which play a role in the sequel. In this list we denote
by E(S) the set of idempotents of a semigroup S.

Varieties of finite semigroups

Nil nilpotent semigroups.
K (Kr) left (right) nil-simple aperiodic semigroups (or reverse definite (definite) semigroups [4]). A

semigroup S is in K if and only if eS = e for all e G E(S).
K, (K,) left (right) simple aperiodic semigroups.

LI nil-simple aperiodic (or "locally trivial", "generalized definite" semigroups [4]). A semigroup
S is locally trivial if and only if eSe = e for all e E E(S).

LI, simple aperiodic semigroups.
LG nil-simple semigroups. A semigroup is nil-simple if and only if it is locally a group, that is if

eSe is a group for all e E E(S).
LG, simple semigroups.

Varieties of finite monoids

J J-trivial monoids. A monoid M is J-trivial if and only if MaM = MbM implies a = b, for all
a,b.

R (Rr) ^.-trivial (IE-trivial) monoids. A monoid is ^tr ivial (IE-trivial) if and only if aM = bM
(Ma = Mb) implies a = b, for all a, b.

J, idempotent and commutative monoids, or semilattices.
R j (Rr|) 61-trivial (IE-trivial) and idempotent monoids.

DA monoids whose regular ^-classes are aperiodic semigroups.
A j idempotent monoids, or bands.

DS monoids whose regular ^-classes are semigroups.

DS, monoids which are union of groups.
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We conclude this section by giving some useful notations. If u is a word of A*
and a is a letter of A , IM^ denotes the number of occurrences of a in «. The
integer \u\— 2aeA | u ^ is the length of u. If u = a, • • • an where the a,'s are
letters, the reverse of u is the word u = an • • • « , . Two words u and v are
commutatively equivalent if and only if |«L, = | » | o for all a 6 A . Commutative
equivalence is a congruence on A*. A language L is commutative if it is saturated
with respect to this congruence; that is, if L is a union of congruence classes.

If S is a semigroup we denote by Sl the monoid constructed as follows: S1 = S
if 5 is a monoid and S1 = S U {1} where 1 is a unit added to S if S is not a
monoid.

2. Small varieties

Varieties of finite semigroups or monoids are ordered by inclusion. In this
section we study varieties which are "small" relative to this ordering i.e. varieties
which are minimal elements of certain subclasses of the class of all varieties. We
first summarize some well-known results. (Some of them, see Evans [6], were
formulated for varieties in the sense of Birkhoff but can be easily adapted for our
purpose.)

Let 6 be a class of varieties. A variety V is minimal in Q if W C V and V e 6
implies W = V.

PROPOSITION 2.1 [5, 6]. The minimal non-trivial varieties of monoids are
(1) the variety J, of idempotent and commutative monoids,
(2) the variety (Zp) for every prime p.

PROPOSITION 2.2 [6]. The minimal non-trivial varieties of semigroups are
(1) the variety J, of idempotent and commutative semigroups,
(2) the variety (Zp)sfor every prime p,
(3) the variety K, of left simple aperiodic semigroups,
(4) the variety K\ of right simple aperiodic semigroups,
(5) the variety (N2) where N2 is the two-element nilpotent semigroup.

Equations for these varieties are also well known.

J, xy = yx and x = x2.

(Zp) xp = 1 andxy = yx.

K, xy = x.

K\ yx = JC.

(N2) xxx2
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The following result is more involved. Recall that a variety V is noncommuta-
tive if it contains at least one non-commutative semigroup.

PROPOSITION 2.3 [8]. The minimal non-commutative varieties of semigroups are
(1) the variety Ku

(2) the variety K,,
(3) the variety (N) where N is the syntactic semigroup of the language {ab} over

the alphabet {a, b),
(4) certain varieties of the form (G)s where G is a group whose derived group is

commutative.

PROPOSITION 2.4 [8]. The minimal non-commutative varieties of monoids consist
of

(1) the variety (U2),
(2) the variety (U{),
(3) the variety (N1) where Nl is the syntactic monoid of the language {ab} over

the alphabet {a,b},
(4) certain varieties of the form (G) where G is a group whose derived group is

commutative.

The classification of minimal non-commutative varieties of groups has not been
completed. In particular equations of these varieties are not yet known (see [2] for
recent progress on varieties of finite groups). For the other minimal varieties
however we have some more precise results. Edmunds [3] has shown that the
variety (TV1) is defined by the equations x2 = x3 and x2y = yx2 = xyx. Again
this was originally formulated for varieties in the sense of Birkhoff.

The equations of the varieties (U2) and {U{) are probably also well-known.
However these equations are not explicitly given in the classical papers [3,6,9,15].
Thus for the convenience of the reader we give here a complete proof.

PROPOSITION 2.5. (a) (l/2) = Rr,, the variety of idempotent and Srtrivial monoids,
defined by the equation xyx = yx.

(b) (U{) = R,, the variety of idempotent and ^-trivial monoids, defined by the
equation xyx = xy.

By duality it is sufficient to prove (b). Let V = (U{),. By Proposition 1.1, V is
defined by a sequence of equations. Since U{ G R1( V is contained in R, and thus
satisfies the equation

(1) xyx = xy of R,.
If V ^ R,, one can find an equation

(2) u = v
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satisfied by V which cannot be deduced from (1). Choose such an equation with
| w | +1 v | minimal. Then neither u nor v contains a factor of the form xyx with
x ¥= 1. Otherwise one could use (1) to get an equation u' = v' with \u'\ + | u ' | < | u |
+1 v | . Therefore both w and v contain at most one occurrence of each letter. Let
x be a letter of u. Settingy — 1 for ally =fc x in (2) yields x — x^-\ Since V is not
trivial | v \x ¥= 0 and thus x occurs in t;. The same argument shows that every letter
of v occurs in u. Thus u and v contains the same letters and therefore u — xi • • • xn

and v = xu • • • xna where the x,'s are all different and a is a permutation of
{\,...,n}. If a is not the identity, one can find two indices i<j such that
ya~' < /a~' . Taking xk — 1 for k ¥= i,j in (2) yields xix] = XjX,. Thus V satisfies
the equation xy = yx, a contradiction since U{ is not commutative. Therefore
V = R,

The next theorem summarizes some properties of the variety R,. Equivalences
(2)-(3) and (l)-(4) were known to Eilenberg [4]. The new statement (5) provides a
useful unambiguous description of languages in "51,, the variety of languages
corresponding to R,. Note also that the proof below furnishes a new demonstra-
tion of Proposition 2.5 and of Eilenberg's results.

THEOREM 2.6. Let L be a language of A* and let M = M{L) be the syntactic
monoid of L. The following conditions are equivalent

(1) M belongs to (U2
r).

(2) M belongs to R,.
(3) For all x, y E M, xy = xyx.
(4) L belongs to the boolean algebra generated by languages of the form B*aA*

where a E A and B C A.
(5) L is a disjoint union of languages of the form

arfa2{au a2}*a3{ai, a2, a3}* • • • an{ax, a2,...,an}*

where the a^'s are distinct letters of A.

PROOF. (1) implies (2) since (// 6 R,.
(2) =» (3). Let x, y E M. Since M is idempotent xy = (xy)2 and thus xy%xyx.

But M is ^ t r iv ia l and therefore xy = xyx.
(3) => (5). Let p: A* -» A* be the function which associates to any word u the

sequence of all distinct letters of U in the order in which they first appear when u
is read from left to right. For example if u = caabacb then up — cab. In fact p is a
sequential function: a sequential transducer [1] realizing p is Q — (2A, A, 8, X, 0 )
where the transition function 8 and the output function X are defined by

(B,a)8 = BU { a } ,

For example for A = {a, b), (3 can be pictured as in Figure 1.
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> l

FIGURE 1

Define an equivalence ~ on A* by u ~ v if u ~ v if up = vp. It is not difficult to
see that the equivalence classes of A* are the (disjoint) sets

Lau...*n = a\a*a2{<1\>a2}* •••an{ax,a2,...,an}*

where {ax,...,an} C A. Thus if u ~ v, then u and v belong to some language
La A . Let a EL A. If a = at for some /, then ua, va G La> a and au, av G
L a a i a i f l + On. Thus ua~va and au~av. If a £ {a , , . . . , a B } , then wa,
ua G Lai a^ a and au, av G Lo a On and thus again ua ~ va and aw ~ av.
Therefore ~ is a congruence on A*.

Let TJ: A* -> M be the syntactic morphism of L. If « G Lfl| ^ then M =
axuxa2 • • • anun where M, G {a, , . . . ,a ,}* for i = 1,...,« and thus by (3) MTJ = (a,
• • • an)i}. It follows that u ~ v implies MTJ = vi) and therefore L is a (disjoint)
union of equivalence classes of ~ , that is of languages of the form La ...a .

(5) =» (4). It is sufficent to observe that

= 0 .

(4) =>(1). By [4, Proposition 2.2 page 189], it is sufficient to show that U{
recognizes B*aA*, where B <Z A and a B A. Let U{ — (1, x, y} and let <>:
A* -» U{ be a morphism defined by

b<f>= 1 for 6 G 5 \ { a } ,

a<t> = x,

b<j> = y forb £A\(B U {a}).

Then xi/r1 = (B\{a})*aA* = 5*a^4* which proves the claim.
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Of course a dual statement holds for the variety R\.

THEOREM (2.6)r. Let L be a language of A* and let M = M{L) be the syntactic
monoid of L. The following conditions are equivalent

(1) M belongs to (U2).
(2) M belongs to R\.
(3) For all x, y £ M, xyx = yx.
(4) L belongs to the boolean algebra generated by languages of the form A*aB*

where a £ A andB C A.
(5) L is a disjoint union of languages of the form

{al,...,an)*an{ax,...,an_x}* • • • a*a]

where the ak's are pairwise different letters of A.

The join variety R, VR, also admits many characterizations.

THEOREM 2.7. Let M be a finite monoid. The following conditions are equivalent
(1)M£ R, VR\.
(2) M satisfies the equations x — x2 and xyxzx — xyzx.
(3) M divides a direct product S,1 X • • • XS* where the Sf's are simple aperiodic

semigroups.
(4) M is idempotent and for all s, t £ M and x £ M'xsM~x D M~xtM~x sxt = st.
(5) M is idempotent and for all s, t £ M and x £ SM'1 D Af"'r sxt = s(t).

PROOF. (1) => (3). Let V be the variety generated by all monoids Sl where 5 is a
simple aperiodic semigroup. Clearly U2 and U{ belong to V. By Proposition 2.4,
(U2) - Rr

t and (U{) = R, and thus R,, Rr, and R, V R\ are contained in V.
Therefore every M £ R, V Rr, satisfies (3).

(3) => (2). Let M = S1 where S is a simple aperiodic semigroup. Then clearly M
is idempotent. Moreover let x, y, z £ M. If x, y or z = 1 then clearly xyxzx = xyzx.
If x, y, z £ S then xyxzx = x = xyzx by the Green-Rees theorem.

(2) => (4). Since x = x2 holds in M, M is idempotent. Moreover if x £
M~]sM~] D M~ltM~] then 5 = axb and ? = cxd for some a, b, c, d E M. There-
fore by (2) sxt — axbxcxd = axbcxd = st.

(4) =. (5). Trivial.
(5) => (2). Since M is idempotent, M satisfies the equation x — x2. On the other

hand since x £ {xy)M'x n A/"'(zx), xyxzx = xyzx.
(2) => (1). We shall use the notations introduced in the proof of Theorem 2.6.

Moreover we shall denote by ua the set of letters appearing in a word u:
ua = [a £ A || u ^ > 0}. Let <t>: A* ^> M be a surjective morphism. We claim that
for all uEA*

(1) u<i> = (up[(ur)p]r)<l> where ur denotes the reverse of the word u.
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First we introduce the following lemma.

LEMMA 2.8. Letu,v E (A\a)* with va C ua. Then

(uava)(j> =

PROOF (induction on |t>|). Since a<f> = a2<f> the case | u | = 0 is trivial. Assume
v = bv' for some b £ A\a. Since va C ua, there exxist u0, ux E (A\a)* such
that u = uobux. NOW we apply the equation xyxzx = xyzx twice to obtain the
equalities

(uava)(f> — (uobuxabv'a)<t> = (uobuxbabv'a)<S> — (uobuxbabav'a)(j>.

But (fca)<f> = (ba)2<j> and thus (Maua)<> = (ubav'a)<j> — (ubv'a)^> by induction.
Thus (uat>a)<J> = («ua)<|> as required.

We now prove the claim (1) by induction on | u | . The result is clear for | u |= 0.
Consider the word ua.

First case: a E Ma. Then up = a, • • • an, urp = bt • • • bn and a = a: = bj for
some i and j . Therefore (ua)p = a, • • • an, {ua)rp = abx • • • bj-ibJ+l • • • bn and
finally (ua)p[(ua)rp]r = a, • • • a , - , aa , + , • • • anbn • • • bJ+lbj_l • • • bxa. Using the
equation xyzx = xyxzx we obtain

((ua)p[(uaYp]r)<p= ( a , • • • a , _ , a a , + 1 • • • anbn-• •bj+xabj_x • • • bxa)<t>

= [(up)(urp)ra]<j> = (u<

Second case: a £ wa. Then (ua)p = (up)a, (ua)rp = a(urp) and («a)p((Ma)'p)''
= (up)a(urp)a. Since wpa = M p̂a we can apply Lemma 2.8. Thus
[(ua)p((uaYp)r]<j> = (upurpa)$ = u<j>a<j> = (ua)<f> and this proves the claim.

It follows from (1) that if up = vp and urp = vrp then «<(> = u<J>. Therefore M
divides A*/'~ XA*/~r where ~ r is the congruence on A* defined by u ~r v if
and only if urp = vrp. But A*/~ satisfies the equations x = x2 and xyx = xy and
thus y<V~ e R i - Dually ^ * / ~ r E If, and therefore M E R, V R7,.

COROLLARY 2.9. R, V R , is the smallest variety containing all monoids S1 where
S is a simple aperiodic semigroup.

The next proposition shows that there exist no varieties "between" R, (resp.
R r , )andR, V IT,.

PROPOSITION 2.10 [14]. 7/R, c V C R, V Rr, (R\ c V C R, V Rr,) then V = R,
(Rr,)orV = R, VR; .

https://doi.org/10.1017/S1446788700022084 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700022084


278 Jean-Eric Pin, Howard Straubing and Denis Therien [ 10 ]

PROOF. Assume R, C V C R, V Rr, and R, ^ V.Then there exists M £ V\R,.
M is idempotent but not ^trivial and thus there exist in M two elements a and b
which are ^related. It follows that {\, a, b] is a copy of U2 which divides M.
Therefore U2 E V and Rr, C V by Proposition 2.5. Since R, C V, R, V Rr, C V
and finally V = R, V R\. The statement in brackets is dual.

We turn now to non-commutative varieties of (finite) semigroups which contain
all commutative semigroups. The next theorem extends to varieties of finite
semigroups a result stated in [4] for varieties in the sense of Birkhoff.

THEOREM 2.11. There is one and only one minimal variety V in the class of
non-commutative varities of finite semigroups containing all commutative semi-
groups. V is defined by the equations xxx2x3 — xiax2ax3a for all permutations a of
{1,2,3}. The corresponding variety of languages "V is described as follows: a
recognizable language belongs to A + <Yif and only if L D A2A + is a commutative
language.

PROOF. Let Com be the variety of all commutative semigroups and let W be a
non-commutative variety containing Com. Let % be the corresponding variety of
languages. Since W is non-commutative, there exists an alphabet A such that
A + % contains a non-commutative language L. That is there exist two commuta-
tively equivalent words u and v such that u G L and v £ L. Now A^ is a
commutative language and thus /4'"'£ A + % since Com C W. Therefore L n /I1"1

is a finite non-commutative language contained in A + 6HS. It follows [10] that W
contains N. Thus V = Com V (N) is the smallest non-commutative variety con-
taining Com. Let U be the variety defined the equations (1) xxx2x-i = x]ax2ax3a

for all a E S3 (the symmetric group on three letters). Since N and every commuta-
tive semigroup satisfy these equations, V is contained in U. We also note that the
equations (1) imply xt(xj+l • • • xJ_l)xJ — Xj(xi+l • • • xj_l)xi and thus x, • • • xn

= xu • • • xnT for any transposition T. Since Sn is generated by the transpositions
xx • • • xn = xla • • • xna holds in U for all a £ Sn, n > 3. It follows that if a
language L is recognized by a semigroup S E U then L n A2A + is commutative.

Conversely let L be a language such that Lx = L D A2A + is commutative. Then
L is union of L, and of languages of the form {w} with | w |< 2. If w — a or a2 for
some a £ A,- {w} is a commutative language and if w = ab for some a J= b, {w} is
recognized by N. Since L, is also commutative, we have shown that L belongs to
the variety of languages corresponding to V. Thus U is contained in V and this
concludes the proof of the theorem.
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3. Extensions of idempotent and commutative semigroups

In this section we study an operation on varieties which is closely related to the
semilattice decomposition of a semigroup. We first summarize some definitions
(see the Chapters XI and XII of [4], written by Tilson, or [10] for more details).

A relational morphism between two semigroups S and T is a relation r: S -» T
such that

(1) 5T # 0 for all s e 5 ,
(2) O,T)O 2 T) C O,S 2 )T for all su s2 E S.

If T is a subsemigroup of T, then T'T~1 = {s E S | ST D V ^ 0 } is a sub-
semigroup of S'. Let V be a variety of finite semigroups. A (relational) morephism
T: 5 -» 7 is a (relational) V-morphism if and only if for all subsemigroups 7" of T,
r e V implies F T " 1 £ V.

If W is a variety of finite monoids we denote by V"'W the variety of finite
monoids M such that there exists a relational V-morphism r: M -> N for some
N E W. It is not difficult to prove that V"'W is generated by the finite monoids
M such that there exists a V-morphism T: M -> N for some N E W. Here we
consider the case W = J,.

PROPOSITION 3.1. The mapping V -» V~'J, induces an order preserving mapping
from the varieties of semigroups contained in LG to the varieties of monoids
contained in DS.

PROOF. Let V be a variety of semigroups contained in LG and let <f>: S -» T be a
relational V-morphism with T E J,. Since the only subsemigroups of T which are
in V, hence in LG, are trivial, <j> is a relational V-morphism if and only if for every
idempotent e E T, e<ff' E V. Consequently if V, C V2 C LG, Vf'J, C Vf'J,.

Assume now that T: 5 -» r is a LG-morphism and let D be a regular ^-class of
S. Then for all s, t E D, JT^D^T and thus ST = /T = e. Therefore Dr = e and
D C er'K Since T is a LG-morphism, er'x is nil-simple and thus D is a
semigroup. It follows that 5 E DS and hence LG"'J, C DS.

The operation V -» V"'J[ is the extension to varieties of the well-known
"semilattice decomposition" of semigroups. Here are some classical examples (see
[13] for an overview in terms of semilattice decomposition):

PROPOSITION 3.2. The following equalities hold:

,, R' = (KT'J, ,(1) R = K-'J,, R' = (KT'J, , R! = Kl'J,, R', =
(2)J = NH-IJI,
(3) DA = LI'J,, DS = LG-'J,,
(4) A, = LIr'J,, DS, = LGj-'J,.
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PROOF. Let r e J , and let <£: 5 -» T be a K-morphism. Let R be a regular
<3l'Class of S. Then for all s,tGR, s<j>tflt<t> and hence s$ = t<j> = e. Thus # C e^r1

and since <f> is a K-morphism, er"1 G K. Therefore /? is trivial and S G R. It
follows that K~'J, is contained in R. The other inclusions of the type V"'J, C W
can be proved in the same way.

We now prove the opposite inclusions. Let S G R and let T — (2£(S), D) be the
semigroup of all subsets of E(S) with intersection as multiplication. Clearly
r e J,. Defines: S -» Thy

STT = [e G E(S)\es = e).

We claim that IT is a K-morphism. Indeed we have e G (sls2)ir if and only if
e = eS\S2. Since S is "^trivial this is equivalent to e = esl = es2. It follows that
(S,J2)7T = (5,ir)(j27T).

Since S is ^-trivial, hence aperiodic, there exists n > 0 such that s" = s"+l for
all s G S. Fix an element .4 G r and let x, y G i4ir"'. Then x" G ^TT = x, since
JC";C = JC". Therefore x"y = x" because A — yrr. It follows that the semigroup
An'1 satisfies the equation x"y = x" so Am'x G K. This proves the claim and the
inclusion R C K"'J, follows easily. Moreover if S G R,, m is clearly a K,-mor-
phism. Thus R, C Kj'J,. The inclusions W C (Kr)-'J, and Rr, C (K^-'J, are
dual. The inclusion J C Nir 'J, is obtained in the same way by considering for
S G J, the morphism -n: S -» T = (2£(S), D) defined sir = {e G £(5) | es - e =

For the inclusions DA C LI"'J, and A, C LI, 'J, we consider the morphism <n:
S -» T defined by SIT = {e G £(S) | eje = e}. Finally for the inclusion DS C
LG-'J, we consider the map TT: S -* T defined by sir = {e G £(5) | (ese)u = e)
where xw denotes the (unique) idempotent contained in the semigroup of S
generated by x. We claim that TT is an LG-morphism: we have e G (sxs2)7r if and
only if (es,s2e)<"> = e. But this condition implies esxe%e%es2e and hence (es{e)"
= (es^)" = e. Conversely if (es,e)" = (es2e)u = e, we get es^Slets2e and hence
esxe-fye. It follows es^e^Ce and thus (es^e )" = 6. Therefore m is a morphism.

Fix an element i e r and let x, y G y47r~'. Then x" G A since ( ^ " x ) u = JC"
and thus (xuyx"')u = x" since A —y-n. It follows that Am~x G LG and w is a
LG-morphism.
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