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Few studies have examined the impacts of ground water quality on residential
property values. Using a unique data set of well tests, we link residential real
estate transactions to home-specific contamination and conduct a hedonic
analysis of sales in Lake County, Florida, where pollution concerns relate
primarily to agricultural run-off. We find that recent testing and contamination
of ground water there correspond to a 2–6 percent depreciation in home values,
an effect that diminishes over time. Focusing on nitrogen-based contamination,
we find that prices decline mainly when concentrations exceed the regulatory
health standard, suggesting as much as a 15 percent depreciation at levels twice
the standard.
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Estimating the value of ground water resources and the services they provide is
critical to formulating policies meant to protect and improve water quality. One
of the most crucial services provided by ground water is that it is an important
source of drinking water. In the United States, ground water is the source for 77
percent of community water systems, and about 15 percent of the population
rely on private wells for water (Environmental Protection Agency (EPA)
2012a, 2012b). Private wells are particularly susceptible to potential
contamination because they are not regulated under the Safe Drinking Water
Act and are not required to undergo regular monitoring and treatment to
ensure water quality standards are met. Furthermore, households that rely
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on private wells tend to be in rural areas where local aquifers are potentially
vulnerable to contamination from nearby agricultural activities.
Hedonic property value methods are useful for estimating welfare impacts

from changes in ground water quality. Private wells and the quality of the
water in the local aquifer are inherently linked to the housing bundle—the
collection of characteristics that contribute to the value of the property—so a
change in quality, at least as perceived by buyers and sellers in the market,
should be capitalized in the price of a home. In theory, any impacts on
property values reflect changes in the present value of the future stream of
expected utility derived from the housing bundle. Given the number of
household activities that depend on safe water, a contaminated well could
have a direct impact on home prices.
Although there are multiple applications of the hedonic property value

approach to surface water quality, there are very few rigorous hedonic
studies of ground water quality. We attribute this gap in the literature largely
to a lack of appropriate data and difficulties associated with linking measures
of ground water quality to individual homes. The results of well tests
typically are not publicly available so most prior studies of ground water
have used distance or spatially aggregated measures as proxies for
contamination. We use a unique, comprehensive data set of ground water
contamination tests conducted by the Florida Department of Health (FDH).
We use the data set to link residential property transactions to home-specific
levels of contamination in private potable wells and conduct a hedonic
analysis to examine how property values respond to ground water pollution
in Lake County, Florida, where a large proportion of such pollution stems
from pesticide and fertilizer run-off from orange groves and other
agricultural activities.
To our knowledge, this is the first hedonic study to link data on water quality

in private potable wells to individual homes and to have a data set rich enough
to examine the relationship between the concentration of pollution in ground
water and residential property values. Furthermore, this is the most rigorous
hedonic study to date to examine the impact of agriculture-related ground
water pollution on residential property values.
Using a data set of residential transactions from 1990 through 2013, we

empirically examine four primary questions. First, are home values
systematically lower in the presence of ground water pollution? Second, if so,
how does the price differential vary over time? Third, does the price
differential vary with the type of contaminant? Finally, do home prices vary
with the magnitude of pollutant concentration?

Literature Review

Since Rosen (1974) first established the underpinnings that connect hedonics
to welfare analysis, there has been a flurry of hedonic studies of the
relationship between property values and a variety of environmental
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amenities and disamenities.1 Studies of the link between water quality and
property prices date back to the 1960s (David 1968), but water quality
monitoring has only recently begun to be comprehensive enough to facilitate
widespread analysis. Since 2000, federal, state, and local monitoring efforts
have increased significantly and expanded the amount of available data.
Several earlier studies found a significant relationship between water quality

and property values (Michael, Boyle, and Bouchard 2000, Poor et al. 2001,
Gibbs, Halstead, and Boyle 2002). Many of the studies from that time used
available data on water clarity in northeastern U.S. lakes. Recent studies have
expanded the types of waterbodies analyzed (Artell 2013, Netusil, Kincaid,
and Chang 2014), the water quality parameters used (Bin and Czajkowski
2013, Walsh and Milon 2015), and the populations affected (Poor, Pessagno,
and Paul 2007, Walsh, Milon, and Scrogin 2011) but have focused almost
exclusively on surface water. Surface waters provide numerous services to
local residents, including aesthetics, recreation, and potable water. The
results of hedonic studies of surface water quality can reflect improvements
in any of the services provided.2 Ground water, on the other hand, provides a
much more limited set of services to local residents with the primary (and
sometimes exclusive) service being a source of potable water.
The literature on the effects of ground water quality on residential property

values consists of only a few rigorous studies.3 Contamination of ground water
is often difficult to detect, and its impacts on health are often negligible for
individuals whose homes rely on public water supplies. In early studies,
Malone and Barrows (1990), Page and Rabinowitz (1993), and Dotzour
(1997) found no significant relationship between contaminated ground water
and property prices. Those studies make valuable contributions, but their
econometric identification strategies—simple case study comparisons, two-
sample t-tests of mean prices, and limited regression analyses of cross-
sectional data—are now fairly dated. In addition, the ground water data
available at the time were relatively scant, leading to issues associated with
small sample sizes and coarse measures of water quality.
More recently, Case et al. (2006) used a hybrid repeat-sales/hedonic

technique and found an average decrease of 4.7 percent in prices for
residential condominiums impacted by ground water contamination but only
after knowledge of the contamination was public. Boyle et al. (2010) found a
temporary but significant 0.5–1.0 percent decline in home values for each
0.01 milligrams per liter (mg/l) of arsenic above the regulatory standard at

1 Boyle and Kiel (2001) and Jackson (2001) provide somewhat dated but comprehensive
literature reviews.
2 A notable exception is Des Rosiers, Bolduc, and Theriault (1999), who specifically examined
the impact of advisories regarding the quality of public drinking water on home prices.
3 Others have explored the impact of contaminated ground water on agricultural parcels where
irrigation is the primary concern (Buck, Auffhammer, and Sunding 2014).
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the time of 0.05 mg/l. Due to data constraints, both studies relied on spatially
aggregated measures of contamination.
In contrast, Guignet (2013) compiled a unique set of data on tests of private

ground water wells and linked the tests to individual home sales. The water
quality tests serve as a clear signal to households and provide a clean home-
specific measure of the disamenity. Guignet found that simply testing a
home’s well for contamination reduced the value of the home by an average
of 11 percent regardless of whether contamination was found. A somewhat-
larger 13 percent depreciation was found when the tests revealed levels of
contamination that exceeded the regulatory standard, but caution is
warranted when interpreting this result because there were only ten such
transactions.
The current study builds on past works by using a rich data set of well-

contamination tests conducted and compiled by FDH for the state of Florida
from the 1980s through 2013. These data allow us to link ground water
contamination levels in private wells to individual homes and thus conduct a
detailed investigation into how home prices vary with home-specific
pollutant concentrations. To our knowledge, this is only the second hedonic
study (the other is Malone and Barrows (1990)) of how total nitrate and
nitrite, along with other contaminants associated with surrounding
agricultural activities, affects home values.

Background: Agriculture and Ground Water in Florida

Approximately 90 percent of Florida residents depend on ground water for
drinking water (Southern Regional Water Project (SRWP) 2015). Florida is
also particularly vulnerable to ground water contamination because the
hydrology of the state is characterized by a high water table and thin layer of
surface soil (SRWP 2015). Contributing to the risk are numerous point and
nonpoint sources of pollution throughout the state, including a considerable
threat posed by agriculture-related activities (SRWP 2015).
Florida is an important contributor to overall agricultural production in the

United States and ranks among the top states in production of citrus crops
and other fruits and vegetables (Florida Department of Agriculture and
Consumer Services (FDACS) 2012). We analyze Lake County, which has a
long history of citrus farming and other agricultural activities (FDACS 2012,
Furman et al. 1975). The county sits in the central region of the state, which
produces the majority of Florida’s citrus crops (FDACS 2012). In 2012, Lake
County produced the tenth largest volume of citrus crops in Florida and
ranked eleventh in terms of acres devoted to commercial citrus production
(FDACS 2012). About 5% of the land area (32,207 acres) in Lake County is
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devoted to citrus groves and another 5% (30,956 acres) to row/field crops.4

Although the county’s soils are suitable for citrus groves, they do not offer
enough nutrients to citrus crops without heavy fertilization and, as in
surrounding counties, the soils are highly permeable and allow ground water
to percolate quickly into the aquifer (Furman et al. 1975).
According to the FDH’s database of potable-well tests, the most common

pollutants found in ground water in Lake County are total nitrate and nitrite
(NþN), ethylene dibromide (EDB), and arsenic (see Figure 1), all linked to
use of agricultural fertilizers, pesticides, herbicides, and/or soil fumigants
(Chen et al. 2001, Harrington, Maddox, and Hicks 2010, Solo-Gabriele et al.
2003, EPA 2014a, 2014b), as well as other sources.
Sources of NþN in ground water include human wastewater and animal

manure but fertilizer use is the most prominent contributor (Harrington,
Maddox, and Hicks 2010). Infants exposed to high levels of NþN in drinking
water can suffer from blue baby syndrome, a blood disorder that leads to low
oxygen levels and can be fatal (EPA 2014b). Consequently, EPA and the State
of Florida have set a health-based maximum contaminant level (MCL) for
NþN in drinking water of 10,000 parts per billion (ppb).
Sources of arsenic in Lake County include run-off from agriculture,

production of electronics, and erosion of natural arsenic deposits. EDB enters
ground water through spills of leaded gasoline, leaking storage tanks, and
wastewater from chemical production; but EDB was also used at one time as
a pesticide (EPA 2014a) and incidents of EDB contamination in the county
are often attributed to agricultural activities (Florida Department of
Environmental Protection (FDEP) 2014). Consumption of water contaminated
with high levels of EDB and arsenic increases the risk of a number of adverse
health conditions, including cancer, skin damage, and circulatory, digestive,
and reproductive problems (FDH 2014, EPA 2014a). Florida’s current MCLs
are 10 ppb for arsenic and 0.02 ppb for EDB (stricter than the 0.05 ppb
standard for EDB set by EPA).
If contamination in a well is found to exceed the MCL or Florida’s health

advisory level (HAL) for any contaminant, households are advised not to
consume the water, and FDEP’s Water Supply Restoration Program takes
actions to expeditiously restore or otherwise provide safe potable water and
covers the cost of those actions, which include temporary provision of bottled
water followed by more-permanent solutions such as installation of a filter or
provision of a connection to the public water line (FDEP 2014).

4 The land areas are calculated using geographic information system (GIS) data from the
Florida Fish and Wildlife Conservation Commission (see http://ocean.floridamarine.org/
TRGIS/Description_Layers_Terrestrial.htm#ag).
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Empirical Model

We estimate hedonic regression models of property values in which the
dependent variable is the natural log of the transaction price for home i in
neighborhood j when it was sold in period t (pijt). The hedonic price is
estimated as a function of characteristics of a house’s structure (e.g., its age,
interior square footage, and number of bathrooms), the parcel (e.g., lot
acreage), and its location (e.g., the distance to urban centers and agricultural
sites and whether it is located on the waterfront), all denoted by xijt. The
price of a home also depends on overall trends in the housing market, which
are accounted for by annual and quarterly dummy variables (Mt). Of
particular interest are measures of contamination in the potable well at home
i, which are denoted by f(testijt, ppbijt), a function of an indicator variable for
whether the well at home i was recently sampled and tested (testijt) and the
vector of pollutant concentration results (measured in ppb) from those tests
(ppbijt). The equation to be estimated is

(1) ln pijt ¼ xijtβþMtαþ f (testijt; ppbijt)þ vj þ εijt

where εijt is a normally distributed error term. In some specifications, we
include block-group-level spatial fixed effects (vj) to absorb all of the time-
invariant price effects associated with neighborhood (the block group) j and

Figure 1. Most Frequent Ground Water Contaminants Detected in Lake
County, Florida
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allow εijt to be correlated within each block group. The coefficients to be
estimated are β, α, and vj and coefficients related to testijt and ppbijt, which
vary depending on the functional form.
A common criticism of hedonic applications is that it is not always clear

whether home sellers and buyers actually consider or are even aware of the
environmental disamenity of interest and the measure employed on the right-
hand side of the hedonic price equation (Guignet 2013). If they are not, there
is no reason to think that prices capitalize the disamenity. In our context,
however, at least some households are aware of ground water pollution in
private wells through cases identified by FDH. When FDH suspects the
presence of contamination, it asks for permission from homeowners to test
the wells in person and mails the results of the tests to the homeowners,
along with a letter that explains how to interpret the results. In addition,
sellers in Florida who obtain drinking water from a private well are required
by law to disclose the source of the home’s drinking water, the date of the
last water test, and the results of that test (Florida Association of Realtors
2009). Thus, testijt and ppbijt are directly observed by sellers and likely by
buyers as well.
Previous studies have found that regulatory standards for contaminants can

serve as points of reference for households and that property values respond to
the level of contamination in groundwater relative to the standards (Boyle et al.
2010, Guignet 2012, 2013). When FDH sends the results of a well test to a
homeowner, it categorizes the results as (i) exceeding either the federal MCL
or Florida’s HAL, (ii) exceeding Florida’s secondary drinking-water standards,
which reflect nuisance-based concerns unrelated to health, and (iii) exceeding
the detectable limit but falling below the current standards.
In our base models, we therefore model f(·) following a similar categorization

scheme involving a series of indicator variables:

(2) f (testijt; ppbijt ) ¼ testijtθtest þ θDL1(ppbijt > 0)þ θMCL1(ppbijt >MCL)

where 1(ppbijt> 0) is an indicator variable equal to one when any
contaminants were found to be present (exceed the detectable limit) and
zero otherwise and 1(ppbijt>MCL) denotes whether any contaminants were
at levels that exceeded the corresponding MCL or HAL.5 The variables
testijt, 1(ppbijt> 0), and 1(ppbijt>MCL) are based on all tests taken within a
temporal window of Δt years before the transaction, and the variations of θ
are coefficients to be estimated.

5 We do not account for the secondary standards because some contaminants are not subject to
a secondary standard and there were few observations in which a concentration exceeded the
secondary standard but fell below the MCL/HAL.
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We calculate the percent change in home sale price associated with testing of
wells and the results of those tests as6

(3) %Δptest ¼ (eθtest � 1) × 100:

(4) %ΔpDL ¼ (eθtestþθDL � 1) × 100:

(5) %ΔpMCL ¼ (eθtestþθDLþθMCL � 1) × 100:

The hedonic analysis focuses on all homes that had been tested at any point
prior to the sale. Therefore, %Δptest is the percent change in the price of
homes for which wells had been recently tested and no contamination had
been found relative to homes for which the wells had been tested in the
more distant past, all else constant. Similarly, %ΔpDL and %ΔpMCL are the
percent changes in prices associated with tests that found that at least one
contaminant exceeded the detectable limit or the MCL/HAL, respectively.
Again, this is relative to homes for which wells had been tested for
contamination in the distant past but not recently. When contamination is
found, FDH continues to test until the situation is resolved (i.e., the levels
remain below the MCL/HAL for an extended period of time or a permanent
uncontaminated water supply is provided). Consequently, we argue that tests
are no longer warranted for this counterfactual group of homes because
ground water contamination is no longer a concern.
We can also change the counterfactual for the price comparison—for

example, the impact on property values of contamination exceeding the
detectable limit relative to homes that had been tested recently and no
contamination had been found:

(6) %Δptest!DL ¼ (eθDL � 1) × 100

Equations 1 through 6 are estimated using several variants of the hedonic
regression. One specification incorporates spatial (block group) fixed effects

6 Calculation of the percentage changes is based on Halvorsen and Palmquist (1980) and is
necessary with a logged dependent variable and a binary independent variable. Alternative
calculations include those of Kennedy (1981), who developed an approximate unbiased
estimator of the percentage impact of a dummy variable, and of van Garderen and Shah (2002),
who developed an exact unbiased estimator. We also estimated the percentage change in price
using those approaches and found only miniscule differences in the results.
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and another distinguishes between contamination that exceeds the minimum
detectable limit and contamination that exceeds the MCL/HAL.
As with most hedonic applications, there is concern that there may be

spatially dependent unobserved influences that affect property values. For
example, many neighborhoods are built within a particular time period with
several set home configurations, using similar building materials, and where
the housing bundles are defined by similar local amenities and disamenities.
Additionally, lenders use recent comparable sales of nearby homes to
determine the value of a property for mortgage purposes. Failure to control
for such spatial dependence can result in potentially biased or inconsistent
estimates.
To test for spatial dependence, we use the robust Lagrange multiplier test of

both the spatial error and the lag format (LeSage and Pace 2009). The spatial lag
of the dependent variable takes the following form:

(7) ln pijt ¼ ρwp[ijt] þ xijtβþMtαþ f (testijt; ppbijt)þ vj þ εijt

where ρ is a spatial lag parameter to be estimated and wp[ijt] is the
corresponding element from the n × 1 vector obtained after multiplying the
spatial weight matrix (SWM), W, by the price vector, P. In other words, wp[ijt]
is the spatially and temporally weighted average of neighboring prices
allowed to influence the price of home i sold in period t. The spatial error
model instead models unobserved spatial dependence in the error term as

(8) ln pijt ¼ xijtβþMtαþ f (testijt; ppbijt)þ vj þ εijt

where εijt ¼ λwε[ijt] þ uijt:

In this specification, λ is the spatial autocorrelation parameter to be estimated,
wε[ijt] is the corresponding element from the n × 1 vector obtained after
multiplying W by the vector of error terms ε, and uijt∼N(0, σ2).7

Robust versions of the spatial lag and error Lagrange multiplier tests were
used to test for spatial dependence and to choose between the lag and error
models. In all cases, the null hypothesis of no spatial dependence was

7 We explored a variety of SWMs used in spatial econometrics to exogenously specify the spatial
relationships between neighboring home sales. We favored SWMs that identified neighbors based
on distance and time so that nearby and more-recent home sales would be given nonzero weights.
We used time constraints of six, twelve, and eighteen months prior to a transaction and included
three months after a transaction to account for delays between contracts and sales. The spatial
radii used to identify neighbors were 800, 1,600, and 3,200 meters. The inverse distance
between two homes is used as the individual entry in the matrix, which is row-standardized so
the weights corresponding to each transaction sum to one (LeSage and Pace 2009).
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rejected and the spatial error models in each format had significantly larger
Lagrange multiplier coefficients, supporting use of the spatial error format.
Due to concern about simultaneous lag and error dependence, we also
estimated the general spatial model (LeSage and Pace 2009), which includes
both a spatial lag of the dependent variable and a spatially correlated error
term. In all cases, the spatial lag parameter ρ was insignificant while the
spatial error parameter λ was significant at the 99 percent level. Together,
these tests demonstrate that the spatial error model best reflects the spatial
nature of the underlying data-generation process.8

Data

We analyze transactions of single-family homes in Lake County (just west of
Orlando) from 1990 through 2013. Lake County was chosen because
concerns there about ground water pollution relate primarily to the run-off
of chemicals associated with agricultural activities, and a preliminary
examination of the data suggested that Lake County provided a sufficient
number of well tests for the regression analysis.

Well Test Samples

FDH regularly tests ground water wells for contamination and maintains a
database of all wells identified and tested and the results of those tests. The
tests are conducted for a variety of reasons, but in most cases FDEP notifies
FDH of potential contamination caused by human activities.9 FDH then asks
for permission from the property owner to test the well and cannot test it
without the owner’s consent. Given these procedures, testing of wells in the
sample may potentially be endogenous. Owners who plan to put their houses
on the market and believe that contamination exists, for example, could
refuse to allow the wells to be tested because they would then have to
disclose contamination to potential buyers. If this is a common occurrence,
the hedonic estimates could be biased since the level of contamination and
probability of a test would be correlated. Some owners have refused, but the
vast majority of them have agreed to have their wells tested.10

8 Following LeSage and Pace (2009), we selected the SWM with the highest log-likelihood in the
majority of the models, which used a radius of 3,200 meters and a temporal window of twelve
months. However, the differences between SWMs were all minimal.
9 FDH’s water testing program focuses on contamination caused by human activities and
generally does not investigate contamination from natural causes. Some issues are later
determined to have had a natural cause.
10 Of the 6,619 private drinking-water wells in Lake County identified by FDH, only 365 had no
recorded tests (5.5 percent). The lack of testing for those wells could be related to owners who
refused testing. These untested wells could also belong to homes that had multiple wells and
only one well was tested.
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Our analysis focuses only on homes that were tested at some point prior
to being sold, which essentially circumvents selection concerns. The
comparisons in our regressions are of homes that FDH had already identified
in terms of potential contamination, and the owners had an incentive to
continue to allow testing until the water was found to be clean or an
alternative clean water supply was provided.
In any case, it is clear that the well test data used in this study are not random

and should not be interpreted as a representative sample of ground water
quality. Nonetheless, these data are useful for identifying how property
values may respond to contamination in private wells.
We carefully matched tests at private potable wells to corresponding

residential parcels and transactions. The data-matching procedure relied on
both an address-matching algorithm that linked wells to parcels based on
similar address fields and spatial matching that exploited the relationship
between well coordinates and parcel boundaries. The techniques were used
together to provide the most accurate links possible. Using this procedure,
we were able to match 6,619 private potable wells to a home.11 A total of
6,652 water samples had been taken from those wells, the earliest in 1983
and the most recent in 2013 (several wells were sampled more than once).
As shown in Figure 1, NþN, EDB, and arsenic were the three most
commonly detected contaminants.

Residential Transactions

There were 124,859 arms-length transactions of single-family homes in Lake
County from 1990 through 2013.12 Of those unique sales, 5,738 involved
parcels for which a well had been tested at any time. Our final data set was
comprised of the 1,730 transactions where a well had been tested prior to
the sale. We use this subset rather than the broader set of transactions for
two reasons. First, there is an observed level of contamination, even if zero,
for every transaction in the sample. Testing under other programs could
reveal contamination, but that information was not available and could
otherwise confound the results. Prior hedonic studies of ground water
contamination have taken a similar approach (Malone and Barrows 1990).
Second, a series of t-tests comparing the sample means across all of the
observed house and parcel characteristics suggested that the tested homes
were significantly different from the homes where wells had never been
tested. Similar, but slightly less stark, differences were found when we

11 See the appendix in Guignet, Northcutt, and Walsh (2015) for details.
12 The data on the residential parcels, their characteristics, and the transactions were obtained
from the Lake County Property Appraiser’s Office. Transactions of homes that were shown as
having more than twelve bathrooms or that had plots exceeding 50 acres were omitted, as were
sales for which the real price in 2013 U.S. dollars was in the top or bottom one percentile.
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compared our sample of home sales to those that were tested only after they
were sold. If such differences also exist with respect to unobserved
attributes, the results could be biased. Our sample of 1,730 sales consisted of
a relatively homogenous set of homes.13

Table 1 shows that 1,135 of the 1,730 transactions had tests that revealed
concentrations of contaminants that exceeded the detectable limit (denoted
as above DL). The concentration of at least one of the contaminants exceeded
the applicable MCL or HAL (hereafter denoted simply as above MCL) for 180
of those transactions. The number of identifying observations decreases
when we consider shorter temporal windows in terms of the number of
years prior to the transaction (0≤ Δt≤ 1, 2, or 3 years). The main hedonic
analysis focuses on ground water pollution found within three years (0≤
Δt≤ 3) of the transaction date. This timeframe was chosen based on the
number of identifying sales available for statistical analysis versus the
amount of time one can reasonably expect contamination information to
remain available and relevant to buyers and sellers.14 Nonetheless, we also
investigated the most appropriate temporal window. Descriptive statistics for
the maximum concentrations of the three most common contaminants found
three years prior to the sale dates are shown in Table 2.
To identify impacts on property values properly, we must control for other

characteristics of the housing bundle that may influence price. We include
the following home structure characteristics: age and quality of the home,
number of bathrooms, interior square footage, land area of the parcel, and
whether the house has a pool and air conditioning. Recognizing that a home’s
location relative to amenities and disamenities also explains variations in
home values, we include several location characteristics: the number of gas
stations within 500 meters; distances to the nearest primary road, golf
course, and protected open space; whether the home is a lakefront property;
and whether it is located in a floodplain. To control for confounding factors
associated with proximity to likely sources of pollution, we include the
inverse distance to two types of agricultural land—citrus groves and row/
field crops.15 We also account for whether a home is located in the service

13 The 1,730 homes where testing took place prior to the sale were more homogenous than the
broader sample, but significant differences remained for the sample means of eight of the eighteen
variables shown in Table 3. There also could have been differences in unobserved attributes.
However, we found that our hedonic estimates were robust when we used matched samples
based on several propensity score matching techniques, including nearest neighbor with and
without replacement and kernel matching.
14 In a hedonic analysis of potable well contamination, Boyle et al. (2010) found that housing
prices rebounded after three years.
15 The variables were derived from GIS data from Lake County and the Florida Fish and Wildlife
Conservation Commission, the U.S. Census Bureau’s 2010 TIGER/Line files, Navteq 2009 and 2012
auto service data, the U.S. Geologic Survey’s 2012 Gap Analysis Program, and FEMA’s 2012
national flood hazard layer.
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area of an existing public water system.16 Descriptive statistics for the housing-
structure and spatial characteristics are presented in Table 3.

Results

We estimated hedonic regressions using all 1,730 transactions from 1990
through 2013 where data on potable well contamination prior to the sale
were available. This is a rather long period over which to impose a single
hedonic surface (and thus a constant equilibrium), but we viewed it as an
acceptable tradeoff given the relatively small size of our sample. All
regressions included year and quarter dummy variables to account for
overall housing market trends.

Impacts of Ground Water Contamination on Property Values

The results of the base hedonic model for wells tested within three years prior
to sale are presented in Table 4. All of the variables from Table 3 were included

Table 1. Number of Sales in which Private Wells Were Tested

Time before Sale Date

Number of Wells
0–1
Year

0–2
Years

0–3
Years

Any Time
before Sale Date

Tested 413 615 793 1,730

Above detectable limit 287 411 524 1,135

Above maximum contaminant level 24 38 48 180

Table 2. Summary of Pollutant Concentrations in Parts per Billion

Contaminant Observations Average Min. Max. MCL / HAL

Total nitrateþ nitrite 477 3,746.187 15 22,000 10,000

Ethylene dibromide 20 0.0701 0.0027 0.46 0.02

Arsenic 22 4.0706 0.1160 23.6 10

Note: These figures consider transactions in which the potable well was testedwithin three years prior to
the sale date and concentrations of the corresponding contaminant were detected.

16 In some areas of Florida, a number of homes within public water service areas are not
connected to public water and use private wells instead. The data on public water service areas
were obtained from the St. Johns River Water Management District.
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in the regressions but we report only the estimates of interest.17 The other
coefficient estimates all displayed the expected sign or were insignificant. The

Table 3. Descriptive Statistics for Home and Location Characteristics

Variable
Number of

Observations Mean
Std.
Dev. Min. Max.

Price of home in 2013
U.S. dollars

1,730 257,203 120,984 20,713 571,359

Age of home in years 1,701 12.53 15.30 0 123

Number of bathrooms 1,730 2.20 0.69 1 7

Interior square footage 1,730 2,032 780 396 6,558

Lot size in acres 956 2.10 2.40 0.13 15.16

Quality of construction
(50–950)

1,730 583.49 79.06 100 710

Air conditioning 1,730 0.9751 0.1557 0 1

Pool 1,730 0.3260 0.4689 0 1

Distance to urban cluster
in kilometers

1,730 17.3645 5.9100 0.2083 27.8515

In 100-year flood plain 1,730 0.0688 0.2532 0 1

Number of gas stations
within 500 meters

1,730 0.0491 0.2241 0 2

Waterfront home 1,730 0.1156 0.3198 0 1

Distance in meters to:

Nearest protected area 1,730 1,874 1,504 12.7204 6,553

Nearest primary road 1,730 1,1177 6,415 150 24,140

Nearest lake or pond 1,730 340 271 0 2,132

Nearest citrus grove 1,730 365 385 0 5,816

Nearest row/field crop 1,730 250 241 0 1,735

Nearest golf course 1,730 2,645 2,786 19 17,722

In public water system
service area

1,730 0.1844 0.3879 0 1

N¼ 1,730 sales

Notes: All characteristics are dummy variables unless otherwise noted. Construction quality is based on
county assessor gradings in which 50 is poorest quality and 950 is best quality.

17 The only exception is that the distance to the nearest major road was excluded due to
concerns about multicollinearity; the estimates of interest are robust to that exclusion. Lot size
and interior square footage entered in log form, and we used the inverse distance to the
nearest citrus grove, row crop, and golf course instead of linear distance. Companion dummy
variables were included to account for missing values for lot size, number of bathrooms, and
age of the home.
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Table 4. Base Hedonic Regression Results: Tested Zero to Three Years Prior to Sale

Variable

Base Model Base Model plus Additional Interaction Term

OLS FE SEM SEMþ FE OLS FE SEM SEMþ FE
(A) (B) (C) (D) (A1) (B1) (C1) (D1)

Tested �0.0239 0.0021 �0.0220 0.0022 �0.0239 0.0020 �0.0220 0.0020

(0.0189) (0.0188) (0.0172) (0.0170) (0.0189) (0.0189) (0.0172) (0.0170)

Tested × Above DL �0.0146 �0.0276 �0.0150 �0.0277 �0.0145 �0.0288 �0.0150 �0.0289

(0.0181) (0.0173) (0.0182) (0.0179) (0.0181) (0.0177) (0.0185) (0.0181)

Tested × Above MCL — — — — �0.0007 0.0153 �0.0004 0.0155

— — — — (0.0400) (0.0379) (0.0367) (0.0354)

Lambda (λ) — — 0.1040*** 0.0490*** — — 0.1040*** 0.0490***

— — (0.0145) (0.0119) — — (0.0145) (0.0119)

%Δptest �2.36 0.21 �2.17 0.21 �2.36 0.20 �2.17 0.20

(1.84) (1.89) (1.68) (1.70) (1.84) (1.89) (1.68) (1.70)

%Δptest→DL �1.45 �2.73 �1.49 �2.73 �1.44 �2.84* �1.49 �2.85

(1.79) (1.68) (1.79) (1.74) (1.78) (1.72) (1.82) (1.76)

%ΔpDL �3.77*** �2.52** �3.63*** �2.52* �3.77*** �2.65** �3.63*** �2.65**

(1.32) (1.23) (1.31) (1.33) (1.35) (1.33) (1.35) (1.36)

%ΔpMCL — — — — �0.07 1.55 �3.66 �1.13

— — — — (4.00) (3.85) (3.47) (3.46)

Observations 1,730 1,730 1,730 1,730 1,730 1,730 1,730 1,730

Block-group fixed effects No Yes No Yes No Yes No Yes
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Table 4. Continued

Variable

Base Model Base Model plus Additional Interaction Term

OLS FE SEM SEMþ FE OLS FE SEM SEMþ FE
(A) (B) (C) (D) (A1) (B1) (C1) (D1)

No. of fixed effects — 65 — 65 — 65 — 65

R-squared 0.7981 0.7701 0.8001 0.8224 0.7981 0.7702 0.8001 0.8224

Note: The dependent variable is the natural log of the real transaction price (2013 U.S. dollars). Only coefficients of interest are shown, including Tested and
interaction terms capturing the incremental impact of contamination levels above the detectable limit (Tested × Above DL) and above the MCL (Tested × Above
MCL). *** denotes p< 0.01, ** denotes p< 0.05, and * denotes p< 0.1. Robust standard errors are provided in parentheses. In the block-group FE models,
standard errors are clustered at the block-group level. Models C, D, C1, and D1 are spatial error models (SEMs) in which the error terms are allowed to be
spatially correlated based on inverse-distance SWMs with a distance radius of 3,200 meters and a time constraint of twelve months (see the empirical
model for details).
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adjusted R-square ranged from 0.770 to 0.822, indicating a fairly good overall
statistical fit.
In the ordinary least squares (OLS) model (A), testing for contamination

within three years prior to the sale (tested) and contamination exceeding the
detectable level (above DL) are negatively correlated with home prices, but
both coefficients are small and statistically insignificant.
The second panel in Table 4 shows the estimated percent changes in price

(%Δp) as calculated in equations 3 through 6. Testing for (%Δptest) and
finding (conditional on testing) contamination (%Δptest→DL) do not
individually have significant effects on homes prices. When considered jointly
(%ΔpDL), however, their impact is statistically significant. Testing and finding
contamination within three years prior to the sale suggests a 3.77 percent
decline in price. Similar results are generated by the second model (B), which
incorporates block-group fixed effects (FE) to account for all time-invariant
price effects associated with a particular neighborhood (block group). In both
models, the only significant price differential is for %ΔpDL, which points to a
depreciation of 2.52 percent and 3.77 percent.18 Multiplying %ΔpDL by the
mean price of $258,238 for homes that were tested more than three years
prior to being sold and thus where any past contamination issues had since
been resolved (since FDH no longer deemed it necessary to continue to
monitor the well) suggests an average loss of $6,505 and $9,746.
Model C is a spatial error model (SEM) that better controls for the spatial

nature of the underlying data-generation process (LeSage and Pace 2009). It
incorporates a SWM with a distance constraint of 3,200 meters and a time
constraint of twelve months. The coefficients from this model are comparable
to the ones from the OLS model with minor differences in magnitude. The
significant spatial-autocorrelation coefficient λ demonstrates that the error
terms are spatially correlated. In this model, the combined impact of a well
being tested and contamination found (above the detectable level) is a 3.63
percent reduction in value, which amounts to a mean loss of $9,374 and is
significant at the 99 percent level. Model D adds block-group fixed effects to
model C, and the results are similar to those from the nonspatial FE
specification in model B.19

18 These results are robust to alternative temporal windows; 0≤ Δt≤ 1, 2, and 3 all yield
estimates for %ΔpDL of a 2.2 percent to 3.8 percent decline in value. When propensity score
matching techniques are used, the resulting estimates of the change in price are similar—losses
of 3.6 percent to 5.5 percent depending on the matching technique.
19 We also estimated block-group FE regression models that allowed the standard errors to be
clustered based on both the census block group and year to address concerns about correlation in
the same year and to follow recommendations of Boyle et al. (2012). Those coefficient estimates
were nearly the same as the estimates from the other FE models but had slightly larger standard
errors. The estimates of %ΔpDL were robust to this alternative clustering. The only difference was
that the previously marginally significant %Δptest→DL effect in model B1 became insignificant.
However, there were not enough clusters of both time and space to calculate the full model
using this specification so we did not carry it forward.
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In models A1 through D1, we add an interaction term to investigate whether
contamination that exceeds the MCL/HAL is associated with an additional
decrease in value.20 We find no statistically significant impacts from
contamination levels above the MCL/HAL. This is not necessarily surprising
since mitigating and averting actions can be taken, and are often performed
by FDEP at no cost to the homeowner when the MCL/HAL is exceeded (FDEP
2014). That said, the lack of significant results could be partially due to the
small number of transactions where the MCL/HAL was exceeded (48).
In all four models (A1 through D1), we find that %ΔpDL equals a depreciation

of 2.65 percent to 3.77 percent, again suggesting that recent testing and
detection of contamination in a private well corresponds to a small but
significant decrease in home values. Since the estimates from the spatial
models are similar to, and fall within the range of, the estimates from the
nonspatial OLS and FE models, we focus on the OLS and FE models in the
remainder of the analysis.

Impacts on Property Values over Time

We next investigate whether impacts of ground water testing and contamination
are permanent or diminish over time. We re-estimate models A and B, and
instead of including one effect for testing of zero to three years, we include
tested and above DL indicators for each of eight years prior to the sale date.
By accounting for the indicators in one-year increments using the same
hedonic regression, we examine how %ΔpDL varies over time. The estimates
are calculated following equation 4 and the results are presented in Figure 2.
The OLS and FE models suggest that a test and finding of contamination

within one year of the sale is associated with a 5.94 percent and 3.75 percent
reduction in the value of a home, respectively. In addition, we find a
significant 5.81 percent decline associated with testing and contamination
within two to three years prior to the transaction in the OLS model.
Otherwise, none of the price impacts are statistically significant. The
estimates are also not generally statistically different across the years. Only
one difference is significant. Pairwise nonlinear Wald tests of the %ΔpDL
estimates in year 1 in both models and year 3 in the OLS model suggest that
those estimates are statistically different from the insignificant estimates in
year 8. In general, as Figure 2 illustrates, the point estimates gradually tend
toward zero and the 95 percent confidence intervals widen when considering
testing and contamination found more than three years prior.21

20 Note that our notation commonly refers to the regulatory standard as MCL. We use MCL to
refer to both EPA’s MCL and Florida’s more stringent HAL when applicable.
21 Consistent with these results, we also explored specifications with a continuous “years since a
test” variable, which suggested a positive and marginally significant linear relationship with
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As previously noted, FDH generally continues to test private wells until the
level of contamination remains below the MCL/HAL for an extended period
of time or, in some cases, until a permanent clean water supply is provided
(such as by a connection to the public water system). Our results suggest
that property values are 3–6 percent lower for homes where recent tests
revealed contamination and provide some evidence that the decreases are
not permanent and potentially dissipate within a few years. The fact that any
price effects seem to diminish over time suggests that prices may rebound
once contamination issues have been resolved and perhaps that information
about contamination becomes less relevant and/or available to buyers and
sellers over time.

Heterogeneity across Contaminants

To examine whether impacts on property values vary based on the type of
contaminant, we re-estimate the OLS and FE models with a series of
additional interaction terms to allow the individual price effect of each of the
most common pollutants (NþN, EDB, and arsenic) to vary from the price
effect of contamination in general. The results are omitted for brevity, but in
short we find no statistically significant differences in the price impacts of
NþN, EDB, and arsenic relative to contamination in general. These results
must be interpreted with caution, however. As shown in Table 2, the number

Figure 2. Price Impacts of Testing and Contamination over Time
Notes: *** denotes p< 0.01, ** denotes p< 0.05, and * denotes p< 0.1. The figure presents estimates of
%ΔpDL by year from two hedonic regression models: OLS denoted by circles and block-group FEs
denoted by triangles. The x-axis denotes 0–1 years, 1–2 years, 2–3 years, … , 7–8 years. Vertical lines
represent the 95 percent confidence intervals.

coefficient size ranging from 3.5e-03 to 3.7e-03. Interactions with above DL and above MCL were
insignificant.

Guignet, Walsh and Northcutt Impacts of Ground Water Contamination on Property Values 311

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/a

ge
.2

01
6.

16
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/age.2016.16


of transactions available for statistical identification when looking at individual
contaminants is quite small, at least for EDB and arsenic.

Concentration of Total Nitrate and Nitrite

The data set included a relatively large number of transactions in which
detectable levels of NþN were found in tests within three years before the
sale dates (see Table 2), which allowed us to explicitly examine how the
impacts on price might vary with increasing levels of NþN in wells. We re-
estimated models A and B to include the maximum concentration of NþN
found within three years before a transaction

�
ppbNNijt

�
. Different functional

forms of the relationship between ln pijt and ppbNNijt are assessed, including linear
and piecewise-linear models.
Building on equations 3, 4, and 5, we use the coefficients from the re-

estimated models to calculate the corresponding percent change in price

%ΔpNNijt

� �
as a function of ppb of NþN. First, consider a hedonic model in which

the concentration of NþN enters linearly. The percent difference in price for
a home with a recently tested well in which NþN was detected relative to a
home with no recent test and no contamination detected is

(9)
%ΔpNNijt ¼ e θtest þ θDL þ

�
θNN × ppbNNijt

�� �
� 1

� 	
× 100

where θNN denotes the slope coefficient corresponding to the concentration of
NþN.
Figure 3 presents the estimated percent change in price as a function of NþN

ppbNNijt

� �
for the OLS and FE models. The linear specifications provide mixed

results. There is a generally insignificant price effect and, if any, a
counterintuitive positive relationship in the OLS model. The linear FE model,
on the other hand, suggests the expected negative relationship, but the
change in price does not become statistically different from zero until
roughly the 10,000 ppb MCL.
To examine whether the 10,000 ppb health-based standard serves as a point

of reference for buyers and sellers, we estimate piecewise-linear models where
the slope coefficients at concentrations of NþN below and above the MCL are
allowed to differ.22 The percent change in price in this case is estimated as

22 We also estimated models that allowed for a discontinuous break in the linear trend at 10,000
ppb and found no evidence of statistically significant price effects. In the OLS model, the point
estimates suggested a drop in price at 10,000 ppb but the counterintuitive positive slope
remained and the confidence intervals for N + N levels above the MCL were much larger
and clearly overlapped zero. This is due, at least in part, to the small number of sales for which
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(10)
%ΔpNNijt ¼ e θtest þ θDLþ

�
θNN × ppbNNijt

�
þ
�
θNN MCL ×

�
ppbNNijt �MCL

�
×1
�
ppbNNijt >MCL

��� �
� 1

� 	

× 100

where the additional parameter to be estimated, θNN_MCL, captures the change in
the slope once the 10,000 ppb MCL is exceeded, which is denoted by the dummy
variable 1

�
ppbNNijt >MCL

�
. As shown in Figure 3, the price differential is

generally insignificant when the NþN level remains below the MCL, but
once it exceeds the MCL home values decline significantly. When the NþN

Figure 3. Percent Change in Price and Concentration of Total Nitrate and
Nitrite: Tests and Contamination Zero to Three Years Prior to Sale
Notes: The concentration of total nitrate and nitrite (in ppb) is displayed on the x-axis, and the percent
change in price is displayed on the y-axis (see equations 9 and 10). Dotted lines denote the 95 percent
confidence intervals (derived using the predictnl command in Stata 14).

N + N exceeded the MCL (31). The corresponding block-group FE model showed little evidence of a
discrete drop in prices, supporting the possibility of a linear relationship. As with the OLS model,
the FE model produced much larger confidence intervals when N + N exceeded the MCL.
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level is twice the MCL, for example, the average loss in value is $38,900 in the
OLS model and $17,900 in the FE model.

Conclusion

As regulatory actions required by the Clean Water Act have further reduced
point-source pollutants, attention has increasingly shifted to contamination
from nutrients and other chemicals associated with agricultural fertilizers
and pesticides.23 Our hedonic study examines data for Lake County, Florida,
where significant concern about pollution of ground water stems from run-
off of chemicals associated with production of oranges and other agricultural
activities. The most frequently detected contaminants observed in the data
are total nitrate and nitrite (NþN), ethylene dibromide (EDB), and arsenic,
which have been linked to agricultural fertilizers, pesticides, herbicides, and
soil fumigants (Chen et al. 2001, FDEP 2014, Harrington, Maddox, and Hicks
2010, Solo-Gabriele et al. 2003, EPA 2014b). Human exposure to these
contaminants can increase infant mortality and the risk of developing a
number of adverse health conditions, including blue-baby syndrome, cancer,
and liver, stomach, circulatory, and reproductive issues (EPA 2014b).
Only a few hedonic studies have rigorously examined how home values are

affected by changes in ground water quality (Boyle et al. 2010, Guignet 2013).
We attribute this gap in the literature largely to a lack of appropriate data and
difficulties associated with linking measures of ground water quality to
individual homes and transactions. We use a comprehensive data set of
contamination tests of potable wells conducted by the Florida Department of
Health. Our dual data-matching procedure uses property and well address fields
with spatial coordinates and parcel boundaries to establish accurate matches and
ultimately link residential transactions to well tests and contaminant levels
relative to the sale dates. This unique data set allows us to investigate how
property values vary with home-specific levels of contamination in private
potable water wells, thus providing insight for benefit-cost analyses of policies
meant to improve and protect groundwater quality.
We compare sales for homes where the private wells have been tested for

contamination at some point prior to being sold using hedonic regressions.
We find that identification of contamination in a well within three years of a

23 In EPA’s 2000 National Water Quality Inventory (www.epa.gov/waterdata/2000-national-
water-quality-inventory-report-congress), states reported that agricultural nonpoint-source
pollution was the leading source of water quality impacts for surveyed rivers and lakes, the
second largest source of impairments to wetlands, and a major contributor to contamination of
surveyed estuaries and ground water. The most recent report (2004) does not go into as much
detail and simply labels the leading cause as “agriculture.” Furthermore, a recent survey of 40
private wells in New York found that several contained quantifiable traces of agricultural
pesticides (Richards et al. 2012). A review of recent studies of ground water contamination can
be found in Sudarshan and Venkataraman (2013).
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sale is associated with a 2–6 percent reduction in home values. The decrease in
value is not permanent, however, and seems to diminish a few years after the
contamination issue is resolved. This conclusion may also reflect, at least
partially, that information about the contamination becomes less relevant
and/or less available to buyers and sellers as time passes. Boyle et al. (2010)
identified a similar rebound effect a few years after public information about
ground water contamination was released.
We analyzed the three most common contaminants individually (NþN, EDB,

and arsenic) and found no significant heterogeneity in how the housing market
responds. However, those results are confounded by the small number of
identifying transactions available. Further study of the individual effects of
various contaminants could be valuable. If the price impacts are in fact
similar across different pollutants and perhaps even sources, this would
facilitate benefit transfer to other ground water contamination contexts, such
as leaking underground storage tanks, hydraulic fracturing and natural gas
extraction, and hazardous chemicals from superfund sites.
The significant number of wells in our data set that had been identified as

contaminated with NþN allowed us to explicitly model how changes in
home values vary at different concentrations of the contaminant. We found
no significant impacts from relatively low concentrations. Once the health-
based regulatory limit was exceeded, however, prices declined significantly.
At twice the regulatory limit, we estimated a reduction in value of 7–15
percent, which translates to an average loss of $17,900 to $38,900. These
results are in line with prior risk communication and valuation studies (Boyle
et al. 2010, Guignet 2012, Johnson and Chess 2003, Smith et al. 1990),
supporting the notion that given little knowledge of how pollution maps into
health risks, households use the regulatory standard as a reference when
forming their perceptions of risk. This finding also supports our overall
analysis by demonstrating that households respond to information provided
by regulators.
Our study adds to the small body of literature examining how residential

property values are affected by ground water pollution by using more
sophisticated statistical methods, exploiting both spatial and temporal
variations in contamination, including a more-exhaustive set of control
variables, and incorporating property-specific measures of contamination.
Still, as in past studies, some statistical issues remain, and caution is
warranted when interpreting the results. First, some of the conclusions are
based on a relatively small number of identifying sales. Second, the analysis
is limited to homes that were tested at some point prior to being sold. Our
data diagnostics suggested that this sample of homes may differ from homes
where the wells were never tested. Consequently, the external validity of our
results is unclear, and extrapolation of the results to a broader population of
homes may not be appropriate. Future studies could examine the potential
endogenous selection of private well tests and establish a more viable causal
link.
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Despite its limitations, this study provides evidence of how home values
might be impacted by ground water contamination and an estimated
magnitude of those effects. Our results are consistent with findings from
other recent studies in terms of magnitude and permanence (Guignet 2013,
Boyle et al. 2010). With the preceding caveats in mind, our results provide
useful information for policymakers considering actions to remediate ground
water contamination or employ alternative mitigating and averting actions.
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