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ELLIPTICUNITSAND CLASSFIELDS
OF GLOBAL FUNCTION FIELDS

SUNGHAN BAE AND PYUNG-LYUN KANG

AssTracT.  Elliptic units of global function fieldswerefirst studied by D. Hayesin
the case that deg oo is assumed to be 1, and he obtained some class number formulas
using elliptic units. We generalize Hayes' resultsto the case that deg oo is arbitrary.

0. Introduction. Let K be aglobal function field over afinite field Fq. Let oo be
a fixed place of degree 6, and A the subring of K consisting of those elements which
are regular outside oo. For a nontrivial character W of Pic A the value Lg (0, W) can be
expressed using the invariants £(c) of ideals ¢ of A. (See Hayes [5] for thecased = 1
and Gross and Rosen [2] for arbitrary 6.)

In this note we define elements (a | b) and [a | b] for some pair of ideals a and
b which generalize those in [4] for the case § = 1. Then we show that [a | A] (resp.
(a | A)) not only liesin the Hilbert class field Ha (resp. normalizing field Ha) of A, but
also generatethe extension Ha (resp. Aa) over K. Thisis nothing but the analogue of the
fact that the ring classfield of an imaginary quadratic field is generated by the quotient
A(a) /A(R) of discriminant functions ([10]). Finally using the elliptic units we get class
number formulas generalizing those obtained by Hayes in [5]. Oukhaba ([7], [8], [9])
also studied the elliptic units of function fields assuming that oo is totally split.

1. Preliminaries. By anéelliptic A-module we mean aDrinfeld module of rank one
on A. Let Hp be the Hilbert class field of A asdefinedin [3]. Let K., be the completion
of K at oo and C the completion of the algebraic closure of K,,. Then Ha isthe smallest
extension field of K with the property that every elliptic A-module defined over C is
isomorphic to an elliptic A-module defined over Ha. We denote by Pic A the group of
all the isomorphism classes of fractional ideals of A and ha its order. Let hg bethe class
number of thefield K. Then ha = hkd. Denote by x(00) the residuefield at co.

Let p be an elliptic A-module. We say that p is normalized if the leading coefficient
s,(X) of px belongsto x(co) for any x € A\ {0}. Fix asign function sgn: K%, — x(oc0)*.
We say that an elliptic A-module p is sgn-normalized if p is normalized and s, is equél
to a twisting of sgn. Then every elliptic A-module is isomorphic to a sgn-normalized
elliptic A-module. For details see [6]. Let I be an A-lattice of rank 1 in C. We say that
an A-lattice I is special if its associated elliptic A-module p" is sgn-normalized. For an
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A-lattice I" in C define £(I") to be an element of C* so that £(M)I" isspecial. Then &(IN) is
determined up to the multiplication by elements of x(co0)*.

For an integral ideal a of A, let p, be the a-isogeny defined in [3]. Then the elliptic
module a * p is defined to be the unique elliptic module satisfying (a * p)x - pa = pa - Px-
Then we have the following lemma whose proof is straightforward.

LEMMA 1.1. i) For x € R, wehave (x) * p = S,(X)~1ps,(X).
i) (W pw)e = w " pow, for any w € C and any integral ideal a of A.
i) Swxp = 0% o s, where isthe gth power map and a is an ideal of A.

LEMMA 1.2. Let p; and py be two isomorphic sgn-normalized elliptic A-modules.
Then

Spr = Spy-

PROOF. Pick ¢ € C* such that p, = ¢ 1p;c. Then ¢! € k(o0)*. Writea = c¥ 2.
Then s,,(X) = adeox/ %s,,(x). Since their corresponding sign functions are the same, a
must be 1 by Lemma 4.2 of [6].

LEMmA 1.3. For each eliptic A-module p there exist exactly % distinct sgn-
normalized elliptic A-modules which are isomorphic to p.

PROOF. Let p be asgn-normalized elliptic A-module. For each o € x(c0)*, a tpa
is sgn-normalized. From the proof of the above lemma any sgn-normalized elliptic A-
moduleisomorphicto p isof thisform. Now theresult follows from thefact that o2 par =
B tppifandonlyif o/ 3 € Fy.

Let p be a sgn-normalized elliptic A-module. Then there exists w € C* such that
p' = wpw L is defined over Ha. Thenw?—2 € Ha. Let wo = WAL, and Ha = Ha(Wo).
We call Ha the normalizing field with respect to (A, sgn, co). Then every elliptic A-
module over C is isomorphic to a sgn-normalized module defined over Ha. Let PicA
be the quotient group of the group of fractional ideals modulo the subgroup of principal
ideals generated by an element x € K with sgn(x) = 1.

THEOREM 1.4 ([6] SECTION 4). i) Gal(Ha /K) isisomorphicto PicA, and
L
[HA.K]_m-hA.

i) I:|A/ K is unramified at any finite places.

iii) I:|A/HA istotally ramified at oo with the inertia group isomorphic to K (00)* /Fg.

iv) Afinite place p splits completelyin HA~/K if and only if p = xAwith sgn(x) € Fg.

V) Let B be the integral closure of A in Ha. Then for a sgn-normalized elliptic A-
module p and an ideal a of A, the extended ideal aB is a principal ideal and generated
by the constant term D(p,,) of p,.

Let m beanideal of Aand p asgn-normalized module. Let A,, bethe set of m-torsion
points of p. Put K,;;, = Ha(/\,;;) be thefield generated by m-torsion points of p over Ha.
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THEOREM 1.5 ([6] SECTION 4). i) K,, is abelian over K, and independent of the
choice of the sgn-normalized module.
i) Gal(Ky /Ha) =~ (A/m)*.
iii) Let A\ € Ay, and o, be the Artin automor phism of GaI(IZm /K) associated to the
ideal a. Then
A% = pa(A).

iv) Let G, bethe decomposition group of K., /K at 0o. Then G, istheinertia group
at oo and isomorphic to x(oo)*.

V) LetH,, bethefixedfield of K,, under G,, andN; : K, — H,, bethecorresponding
normmap. Then N;(R;ﬁl) consists of totally positive elements. Here an element x is said
to be totally positivef sgn(c(x)) = 1, for any automorphismo over K.

vi) For A € Ayando € Gal(l~<m/K), A°~1is a unit in the ring of integers of
Hu = HaHu, thefixed field of F; € Gal(K /Hp).

2. Elliptic units. We know that Gal(l:|A/K) acts transitively on the set Sof al the
sgn-normalized elliptic A-modules via p — p?, for o € Gal(l:|A/K). Now fix a sgn-
normalized elliptic A-module p from % sgn-normalized elliptic A-modules associated
to the lattice A. Then the map o — p° sets up a one-to-one correspondence between
Gal(Fa/K) and S. If weidentify Pic A with Gal(Ha /K) viathe Artin map a — 7, then
it isshown in [3] that p™ = a * p for integral ideals a of A. One can define a * p for
any fractional ideal a of A from this property. This sets up a one-to-one correspondence
between PicA and S

For two ideals a and b with a integral, we define

(a| ) = D(oi") = D(((at) %p), ).

and

=Y

-1

[a]b] = (a] b)wT,

where D(p,) is the constant term of p,.

PrOPOSITION 2.1. i) (a | b) € Ha and generatesthe ideal aB.
ii) For x € K, we have

<(I | Xb> = S(a[l)*l*p(x)qdega_:L(a | b>'

and
[a | xb] = [a | b].

iii) If ¢ isanintegral ideal, then
{ac [ b) = {a ] b)(c [ ab).

iv) For anideal ¢,
(a] b)" = (a|be™).
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V) [a ] b] liesinHy, infact, [a | b] = NHA/HA«“ | b)).
vi) If x € a3, then

X
Xa| by = ————(a | b),
alb)= ——lal®)

and

g1
[xa | b] = x*T[a | b],
wherex = %.

vii) Let}} beaprimeideal of Ha and 7y, be the Artin automor phismin Gal(l:|A/HA)
associated to the ideal 3. Let Xy, € A be any generator of the principal ideal N(3) of
A. Then

(a| b)™ = S(ab)flx,,(xqs)lfqdeg%a | b),
and
[a | 6] = [a | b].

PROCF. i) isclear from definition. ii) follows from
((xab)txp) = ((x’l) % ((ab) ™ % p))a

= Saiy 1T ((@B) 5 ) Sy ()
Since
((abe)™t ,o)m_ = (¢ * (abe) ™t = p)a((abc)*1 %),

((ab)’1 * p)a((abc)’l * p)c,

we get iii). iv) follows from

((@b) ™ xp)" = (c % (ab) ™ xp) = ((abe™) P xp) .
v) follows from the propertiesii) and iv). The first statement of vi) follows easily from
the definitions and Lemma 1.1. For the second statement, let Sqy)-1,,(X) = sgn(x)®, for
somei. Then

! 5 g1 @-1 $-1

(sgn()¥) ™ = (sgn()¥ ) 7 (sgn(x)) 7T = sgn(x) ¥T,

sincesgn(x)¥ 1 = 1. vii) follows easily from the fact that 743 (p) = S,(X3) 1S, (xy) ([6],
Proposition 4.7).

For anideal a of A one can definetheinvariant £(a) to be an element of C* such that

¢(a)a is the lattice associated to the elliptic A-module a=! * p. Then this ¢(a) is well-
defined up to the multiplication by Fy. Fix {(A) from g — 1 possible values so that {(A)A

-1
is the lattice associated to the elliptic module p and define n(A) = £(A) «*. We can fix
&(a) (resp. n(a)) to be the element of C* such that

€A _ UG
5((’() - <C( I A> (reSp 'I](C[) [C( | A])1

for each ideal a of A.
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PropPosITION 2.2.  We have

€) n(a)
é(ab) - <b | C(> (reSp 77(ab) - [[) | C(])'
e @) e @\ nlac?
SCAT ac nia) ‘ _n ac™
@) -~ e (m) = ey

Let N be a subgroup of G = Gal(Ha/K) of order n. Let L = HY and q. be the
number of constants in L. Define |y to be the group of ideals a of A with associated
Artin automorphism 7, € N, Py the G-submodule of H} generated by 7(A) /n(a) with
a € N, and Ey = Py N B*, where B isthe integral closure of A in Ha. Put P = Pg and
E = Eg. We call the elements of Py the elliptic numbers of level N and the elements of
En thedlliptic unitsof level N. Themap a — 7 1: Iy — G makesH3 into an ly-module.
Define

fN: IN — Py

by fu(a) = n(R)/1(a). Thenit is easy to see that fy(ab) = fy(a)fu(0) . Let
M= {Y% :xe K}

It is clear from the definition that M is a subgroup of K* and contained in Py for every
N. Thenit is not hard to seethat Ey "M = {1} and so the natural map Exy — Pn/M is
injective. Let Sy be aset of n— 1 prime ideals of A which maps bijectively ontoN \ {1}
viathe Artin map, and P} be the subgroup of Py generated by fn(p) with p € Sy. The
following are simple generalizations of those givenin [5];
N1. Form € Pyand o € G, 7771 € Ey, and so the composition fy of fy with the
natural map Py — Py /En is agroup homomorphism.
N2. Py = PyMEy and P = PgM.
N3. Py isafree group freely generated by fn(p), » € Su.
N4. Py/MEy ~ N.
N5. The elliptic numbers are totally positive, and so PNFy = ENFy = {1} and
PNK* =M.
N6. Each element of P°~1 isthe (q — 1)-st power of a unitin Ha for any ¢ € G.
The proofs are mostly the same as in [5], so we only prove N6. Let p be a prime
ideal of A. Let \ beany root of p;"l. Let Ny: Ky — Fa, Nt Ky — Ha, Nyt K, — Hy,
N;: — Ha, and N: Hy — Ha be the norm maps. Then from the definition,

(0| A)=Ru()).
From v) of Proposition 2.1 we have[p | A] = N({(p | A)). Thus
f(0) = N(R, () = No() = N (N; (V) = N (A9

Hencef (p)"~! = Nj(A\“1)4~%, since A’ liesin H,. Therefore N6 follows.
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3. voo(g(c)) and the value of L-function at 0 and generatorsof classfields. Fix
avaluation v,, on C extending the normalized valuation of K at co. For anintegral ideal
¢ of A definethe partial zeta function

G(s) = Z |X|;os_

Put S= g 5. Then
MOEFACED o

Xec

Itisshownin ([1], (4.10)) that
Voo (£(0)) = —Z/(1) /6.

Now we are going to evaluate Z(1) for any integral ideal ¢ of A with degreec.
For each integer i we define

i*=inf{n:n>i,n=0()}
and
i =sup{n:n<i,n=0()}.

Leem=m = (c+2g— 1)*andn = n. = 1 — g+ m— ¢, where g is the genus of the
smooth curve associated to K. Let

0©) = — 3 BIRE),
t=0

where Fi(c) = {x € ¢ : degx = t§ + ¢, }. Using the equation (2.5), Chapter |11 of [1],
oq
/ _ e —mat
Z(1)=—L(c)—cc—mqg™ + T-1
Therefore we get

ProrPosITION 3.2.  We have
sq
Voo (£(6)) = £(c) +C, + Mgt — —1

q¢-1

Now let W beanontrivial character of Gal(Ha /K). Thenwe canview W asafunction

ontheidealsa of A. Let
W(p) )1
La(s, W) = 1—-—= .
o= T (1- 5o
Then La(s, W) = (1 — q~*)Lk(s, W). It isshown in [2] Proposition 7.9 that

Lp0.9) = — =5 3 W0 dege — v (609 ).

Then using L' hospital’s rule we see that
1 _
L0 W) = 5o W0 (6v-o (£(0)) — dege ).
Here ¢ runs over any set of representatives of PicA. Define A(c) = 6voo(£(c)) — dege.
Then A(¢) dependsonly on the classof PicA.
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THEOREM 3.3. Let W beanontrivial character on Pic A. Then we have

LO.W) = 5255 S POAC)

where the sum runs over a complete set of representativesof Pic A.

Now following the same methods in the proof of Satz 2 of [10] replacing log by
logy, As (W) by 3 W(e)A(c), and & by 48, we can get without difficulty thefollowing
theorem.

THEOREM 3.4. Let Q be a subfield of Ha containing K and let 2 be the subgroup
of PicA correspondingto Q. If t € PicA\ %, then

Q = K(Ng~([a | AM),
for any integral ideal a € t and any positive integer n.
COROLLARY 3.5. Wehave
Ha = K([a | A]),
where a isany integral ideal of A which isnot principal.
COROLLARY 3.6. Letabeanintegral ideal of A of degreeprimeto é. Then

|:|A = K({a | A)).

ProoF. Clearly a is not principal. Since sign functions are surjective, part vii) of
Proposition 2.1 implies that

Ko | A): Ko | A = T2

SinceK((a | A)) C Ha and Ha = K([a | A]), we get the result.

4, Class number formulas. For a subgroup N of G, define S(N) = Y,en o0 and
en = %M Let Iy bethe augmentation ideal of Z[N] and | = Ig. Define

(:H; — Z[G]

by X — peg Voo (X))o, and
*: Hf_\ — QI

by X — (1 — eg)£(x). Thenfor x € B* we have ((X) = (*(X) € |. Define

w =3 (M) = AA)..

¢
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ProrPosITION 4.1.  We have

*(Pn) = meNZ[G],
and
Ker({*yNP =M.
Therefore (* gives an isomorphismof P/M onto {é—j)wlNZ[G].

Let gr be the number of constants of a function field F. Then it is well-known that
the function Z(s) = (gz° — 1)¢(s) hasthe value hg /(g — 1) at s = 0. Thusfor Galois
extension L of K we have

(o — Dh

N~ e L 01 1

d(q. — Dh ,\1;[1 <020
where x runs through the nontrivial characters of Gal(L /K) and d is the dimension of
Fq over Fg, . Thuswe get

h—1 (G — Dhy,
5P — Dhe’
by Theorem 3.3 viewing w asan endomorphism on the free group | of rank ha — 1. Then

we have the following theorems whose proofs are exactly the same asin [5] up to the

g¢-1
factor HCEIR

THEOREM 4.2. Py /M is G-isomorphic to InZ[G] and Ey is G-isomorphic to Inl,
and so Ey = P,.

detw = (5(q— 1))

THEOREM 4.3.  Every elliptic unit isthe (q — 1)-st power of a unit in Ha.

With the aid of Theorem 4.2 we can show that Exy = KerNy,, on Eand L N
E/Ny, JL(E) ~ un(G) /N, where 1n(G) is the subgroup of elements G whose orders
divide n. Theorem 4.3 enables us to define

En={xeC:x'eE\} CB.
Now we are able to give several class number formulas.
THEOREM 4.4. W\e have

(4.4.1) [0 :Fo (LNB)] = (o — 1)[“'“1“:%” qu__ll
(4.4.2) [0; - F;, Ny, L (B)] = (¢ — 1)[“K]1h—?fq1;_11-
4.43) [Of : i Ny, /L (B)] = (%)[L:KH% O?L__ll,
(4.43) [B" i FGENE"] = (¢ — )™ * TL:E;T ;;_11'

(4.4.5) [B": FyEnO] = (o — ™1 n[Lh—:hB ;;_11’
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and

o — 1)hA7[L:K1 n-Khg q—1

(4.4.6) [B": FLENO;] = (m e

PrROOF. Letq. = g®andd = &. Wefirst note that shx = ha, dh. = R hp_ and
detw|in = (8(0— 1))[L:K]71 @D \where R_istheregulator of O. Then

&a—1hk

(000 (LB = |1 %waﬂ
= I M £ M ) %waﬂ
— - detaln™ (M09 : ‘f e
:%detw||N|Gn|(5?; ;)M

Thuswe get (4.4.1) and (4.4.2) is an immediate consequence of (4.4.1) and the fact that
LN E/NHA/L(E) tn(G)/N. It isknown in the proof of Corollary 4.5 of [5] that

[F;Ny L (E) : FiNy, L (E)] = (g — 1)KL,

But it is easy to seethat

* = * c -1

[Fa Mo 1 B) - Py B)] = ]

and 1
[Fa Ny () £ Py (B)] = 7

Hencewe get (4.4.3) from (4.4.2). Exactly the same proof of Proposition 4.6 of [5] would
give (4.4.4). (4.4.5) follows from (4.4.1) and (4.4.4) with the equality that

[F500 : FREN =[O Fg EM.
(4.4.6) is an immediate consequence of (4.4.5) using the fact that
[F;ENO; : F ENO[] = [F En : FEnl]
= qul[EN : En]

— (q o 1)hA7[L:K]'
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