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1. Introduction

We use standard graph notation and definitions, as i [1]: in particular K, is
the complete graph on n vertices and K, ,,is the regular complete bigraph of order 2n.

Given a graph G, a factor of G is a spanning subgraph of G and a factorization
is a sequence of edge-disjoint factors whose union is G. A one-factor is a factor
which is a regular graph of degree 1; a one-factorization is a factorization whose
factors are all one-factors. It is well-known that K,, and K, , always have one-
factorizations. If K,, has vertex-set {1,2,---,2n} then [1, p. 85] 4,, = {G,, G, -,
G.-y} is a one-factorization where

(1) Gl= {(2",1)}U{(i"],l+_])'_]=1,2,',n—l},

i —jand i + j being taken as integers modulo 2n — 1 in the range {1,2,---,2n—1}.
If the vertices of K, , are written as 1,,2,,+--,n,,1,,2,,---,n, where the induced
subgraph of 1,,2,,---,n, is null then &, = {X, X5, -, X, } is a one-factorization if

0) X, ={((-i+1)):j=12,--,n},
j — i+ 1 being taken as integers modulo n in the range {1,2,---,n}.

Two factorizations # and #’ of G are isomorphic if there is a permutation
of the vertices of G which sends each member of % into a member of #'. It is
easy to see that, up to isomorphism, K ,, K, and K, have unique one-factorizations.
There are six non-isomorphic one-factorizations of Kg. We shall prove

THEOREM 1. When n = 4, there are two non-isomorphic one-factorizations
of K,,.
Given any positive integers i,k and n, we shall write d,, for the greatest
common divisor (i — k,2n — 1) of i — kand 2n — 1, and
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= will denote congruence modulo 2n — 1,

2. Divisions

Suppose F; , F,, -+, F;, are members of a factorization & of a graph G. We
say that they form a t-division if F; U F;, U --- U F,, is a disconnected graph, and
refer to the vertex-sets of the components of the union as the components of the
division. If F;, F;,---,F;, are a t-division then F;, F; will necessarily be a 2-
division if « # f, and each component of the t-division will be a vnion of the
components of the 2-division.

If # is a one-factorization of G then F; U F;, U -+ U F,, is regular of degree
t. Therefore each component of a t-division contains more than ¢ vertices. In
particular if G is of order 2n then an (n — 1)-division has two components of order
n; no n-division can occur. (In fact no (n — 1)-division can occur when n is odd,
as the components have one-factors and consequently must be of even order.)

LeMMA 1. If G;and G, are any two factors in %,, then G; U G, consists of a
cycle of length vy + 1 and 4(d;;, — 1) cycles of length 2v,.

Proor. Since G; U G, is a regular graph of degree 2, it is a union of disjoint
cycles. If one such cycle is

Yos Y155 Vo»

where y, = y,, it is necessarily true that {yo, 71}, {72,73}> s {¥2xo Y2x41}s -+ are
all in the same one-factor. The edge {y,_;,7o} cannot be in this one-factor,
because y, cannot have degree 2 in a one-factor. So all the cycles are of even
length, and the edges are alternately in G; and G,.

Suppose the cycle containing vertex 2n is of length 2m; write it as

(3) Xy Xpy s Xy 15 X2

where oy = a,, =2n. Without loss of generality we can assume o, =i and
Uym-1 = k. Since (3) is a cycle, o,,—; # k when 0 < x < m. The edge {a,,, 3,4}
belongs to G,, and from (1) the typical edge of G; (other than {2n,i}) has form

{j,2i —j}, so
4 Uzppy = 20 — gy,
and similarly
&) Uz =2k — tlpx—1,
provided «,, is not 2n and «,,_, is not i or k. So

Opysr = 200 — k) + azy
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= 2x(i—-k)y+i,

provided 1 < x £ m — 1. In particular

6) Oy.+1 =k if and only if 2x + 1)(i—k) =0,

provided that o, # i,k or 2n for 1 <t <2x+ 1. Since x =m — 1 is to be the
smallest positive solution of a,, ., = k, and 2x + 1 = v, is the smallest positive
solution of (2x + 1)(i — k) =0, we have 2m = v, + 1, and the cycle (3) is of
length v, + 1.

Now consider any z not in the cycle (3). Suppose that the cycle containing z
in G; U G, if of length 2/; call it

(7) BO!BI,""ﬁZb

where z = B, = f,,. Without loss of generality we may assume {B,, $,} € G; and
{B21-1, B2} € Gi. Analogously to (4) and (5) we obtain

ﬁ2x+1 = 2i— ﬁZx’

Bax = 2k — Bre-1s
and consequently

2x ==K+ Bryer-

Since none of i, k or 2n can occur in this cycle, we need place no restriction on this
equation, provided the subscripts 2x + 1 and 2y + 1 are reduced modulo 2k, so

®) Bax+1 = Pay+1 if and only if 2(x — y)(i — k) = 0.

By definition f,,,, = B,,+ if and only if 2 divides (2x + 1)—(2y + 1), that is,
if and only if ! divides x — y. But 2(x — y)(i — k) = 0 if and only if v, divides
2(x — y), that is, if and only if v, divides x — y (since v, is odd). So [ = v, and
the cycle (8) has length 2v,,.

We have shown that G; U G, has one cycle of length v, + 1 and all other
cycles of length 2v,. Since G has 2n vertices, the number of cycles of length 2v,
must be

ﬂ2x+l

2n — Vik — 1
2vy

that is 3(dy — 1).

THEOREM 2. When n > 2, 9,, cannot contain an (n — 1)-division.

PrOOF. An (n—1)-division would have two components of order n. Suppose
n>2,sothat n — 1 2 2, and let G; and G, be two difterent factors in an (n — 1)-
division. The 2-division {G;, G,} has one component of size v; + 1 and (d;;—1)
components of size 2v;. So one of the components of the (n — 1)-division must be
a union of disjoint sets of size 2v,. So v; divides n; since v, also divides 2n — 1
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we have v, =1 and d;, =2n — 1, which is impossible since 1 £i, k<2n—1
and i # k.

TBEOREM 3. If n # 5, no 2-division of 9,, has a component of order 2n—4.

Proor. Consider the 2-division {G,,G,} whose components have sizes 2v,
and v, + 1. Since v;, divides the odd number 2n — 1 and as observed in the above
proof vy >1, v, =3. If vy +1=2n—4 we have vy, =2n— 5|2n -1, v, |4,
which is a contradiction. If 2v; = 2n — 4 then v, [(2n—4, 2n— 1), s0 v, |3; so
ve=23 and n=>5.

3. Proof of theorem 1

We shall exhibit:

(A) a one-factorizations#,, of K,, which contains an (n — 1)-division, for every
even n;

(B) a one-factorization .%,, of K,, which contains a 2-division with a component
of order 2n — 4, for every odd n greater than 5;

(C) two non-isomorphic one-factorizations of K.

Theorem 2 together with (A) proves Theorem 1 for even n, Theorem 3
together with (B) proves Theorem 1 for odd n greater than 5, and (C) completes
the proof.

PART (A). In this case n is even, so K, is one-factorable. Label the vertices
of K;,as 14,2,-,ny, 15, 2;,--,ny,and let F, |, F, 5,---, F, ,_; be the factors in
some one-factorization of the K, with vertices 1,,2,,---,n

Then write

H =F ;UF,;, i=12-n—1
H =X, i=nn+1,-,2n-1

a

where X; are as defined in (2). Write ##,, = {H,,H,,---,H,,_,}. Then clearly
M ,, is a one-factorization of K,, and contains an (n — 1)-division

{HI,HZ""’Hn-l}'

PART (B). When n is odd, write n =2m + 1, and write the vertices of
Kymez as 14, 24,,Cm + 1)1, 15, 2,,-,2m + 1),. Write G, 5, G,2,"*, Gy 2m
for the factors in the one-factorization 9,,,, of the K ,,, with vertices
14, 24+, (2m + 2),, as defined in (1), for « =1,2; write G for G,; with (i,,
(2m + 2),) deleted; and write

L = Gl VG5, V{(i,,i)}.
Now carry out the vertex-permutation defined by
@Cm+2-1), & (20),

i+, » Qi+1),
1, » 1,
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fori=1,2,---,mand a = 1,2, writing L, for the result of applying the permutation
to LY. Then L,,L,,--,L,,., are edge-disjoint one-factors of K,,,,, and their
union contains all the edges of the form (j,, k;) and (j,, k,) where j # k and all
the edges (j,,j,), but no edge of the form (j,, k,) with j # k. Now define

Li=X_omi=2m+2,2m+3,---, dm + 1
where X are as defined in (2) with n replaced by 2m + 1.
PLamsz = {Li, Lo,y L4y} is a one-factorization of K,,,, ,. Now
L, {(11,15),(21,31), ++, (2%)1, (2x + 1)), -+, (Qm) 1, 2m + 1)),
(22,32), 5 ((2x)2, (2x + 1)2), -+, ((2m),, 2m + 1))},
Lymea = {(1,,2m = 1),),(2,,(2m);), (31, 2m + 1)5), (44, 1), -+, (2m +1),,
2m —2),)},

and L, UL,,,, contains the cycle

14,12,41,51,25,35,64,7,-++,2m — 1),,1,
of length 4m — 2, that is 2n — 4.

PART (C). Suitable {-factorizations of K,, are G, which contains the
3-division {F,,F,,F,}, and

(1,10, 2,3, @495, (67, 69}
{210, (L4, G,9, 66, (7.8}
{1, 18, @49, 6D (69}
{410, (1,3, (6. (8, (79}
{510, (1,9, @7, (38, @6}
(6,10, (1,5, (29, G743}
{7,100, (1,2, G4, G99 (69}
{810, 1,70, 25, 66, @9,
6,10, (1,6, 28, G5 4D},

which contains no 3-division.
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