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A primitive group ring

Warren Brisley and R. Groenhout

An explicit construction is given for a primitive group ring,

together with an explicit construction of a faithful irreducible

module for it.

Until Formanek and Snider established sufficient conditions [/] for a

group to generate a primitive group ring, there were some doubts about the

existence of such objects. Their proof of primitivity uses the "internal"

characterisation of primitivity in terms of the existence of a certain

maximal one-sided ideal. By contrast, it seems worthwhile to construct a

particularly easily-described group ring, together with an explicit

faithful irreducible module for it; this provides an actual example, in

which the primitivity is displayed in its "external" characterisation.

1 . The group

Let I be the group of permutations, on the non-negative integers

N , generated by {on, O , a , ... } , where a. is defined by:
U 1 2 t-

{no.) is the number1 obtained from n by changing the digit for

21 in the binary representation of n .

(Thus, a interchanges each even integer with its successor, a

permutes N to 2, 3, 0, 1, 6, 7, **, 5, ... , and in general, a,

interchanges (rigidly) blocks of length 2 .) Clearly £ is singly

transitive, any element of E is specified completely by its action on
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0 , and E is isomorphic to C x C x C x ... .

Let A be another copy of C?
 x c„ x C x .,. generated by commuting

involutions {ar,> a-. » a o ' •••} a n d split-extend /i by I using the

automorphisms a. : a. v^> a, where k = [io .1 . The result is the group

G = <{aQ, a , a , ...} u {x , x , x , ...}> with the relations

(i) all x. are of order 2 and commute pairwise,

(ii) all a. are of order 2 and commute pairwise,
Is

(iii) for each i, j pair, x.a.x. = a, where k = [io.) .

By the transitivity of X , G is generated by {a } u {x, x , xp, ...} .

Further, by the block action of elements of E , G is locally finite;

and by the transitivity of Z , any normal subgroup of G must be

infinite. (As an aid to calculation, note that any element of G can be

written as ax , with a € A , x i X , where X is generated by

{xQ, xv x2, ...} .)

2. The group ring

Let F be any field: the group ring F(G) consists of elements

(formal sums) of the form £ a.g. with a. € F , g. € G ; addition and

multiplication are defined in the natural way, using the multiplication in

G and collecting terms.

In this particular case, we require that F not have characteristic

2 . We note that for this particular group ring, any element r of F((7)

can be written

where

(i) each X. is an element of X , and all the X. are

different,

(ii) each A. is an element of F(4) , and so it can be written
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(with e the unit element of G ) :

Ai = B e + V o + V l + W l + ••• + B 0 1 . . . / 0 a i ••• an

where the re a re 2 terms for some n . (Some, "but not

a l l , of the B's may well be zero : each (3 i s in F . )

3. The module

Let V be the vector space over F with basis (independent) elements

{b , b , b , ...} : that is, V consists of finite formal sums £ a .b. ,
U -L c. "V %

with the a. in F . We need only define the action of G on V (in

fact, on the "basis elements) in such a way as to make V into a G-module,

and then V will be an F(£)-module in the natural way.

Assuming the existence of a certain set

S = (2, 5, 6, 7, 12, ...}

(whose existence, construction and use we will deal with later), we

specify:

b .x . = b. where k = [ia .1 ,

b .a_ = e .b. where e. = -1 if i (. S ,

£^ = +1 if i \ S .

This specification extends associatively to words in the generators of

G , and we obtain V as a G-module if the relations in G are

satisfied. Clearly the requirements of order and commutativity are

satisfied: for the other relations, we note that elements of E are

uniquely specified by their action on 0 , so if x. interchanges r and

3
n , and X interchanges 0 and r then x .X is precisely the element

V J 1"

which interchanges 0 and n . Thus b.[x.a x.) is b.ix.X aJL x.) ,

which is b-[[x.X )a [x .X )) , which is b .a . In either case, the result

is z.b • , where x .X interchanges i and t .

V is now an F(G)-module in the natural way.
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4. Faithfulness and irreducibi1ity

The set 5 i s selected using the following array:

0 1 2 3 l t 5 6 7 8 9 . . .

1 0 3 ' 2 5 h 7 6 9 8 . . .

2 3 0 1 6 7 1 * 5 10 1 1 . . .

3 2 1 0 7 6 5 1* 11 10

where the entry e.. in row i , column 3 i s 30 , where O i s that
1-3

unique element of E which interchanges 0 and i . (The rows and

columns are numbered from zero.) Clearly, i f e . . = n , then the action of
1-3

a. on b. is given "by:
1 3

b .a. = -b . if and only if b a = {-b } , that is if n t S ,
3 ^ 3 ti v n

b .a. = +b . if and only if n is not in S .
3 1- 3

The array is symmetric, since by the definition of E , e.. is calculated
1*3

from j using the difference between the binary expression of zero and

that of i ; this is equivalent to using the non-zero binary digits of 3

to mark which of the binary digits of i, to change; thus e . . = e •. .
1-3 31-

We now need a lemma:

LEMMA. The set S can be ahosen in such a way that, given n > 0 ,

the set of part-aolumns of length n + 1 :

'03

, 3 = 0, 1, 2, ...

HJ.

n+1
contains at least one of each of the 2 possible patterns of +, -

produced by the e, , where k = e. . .
K 1-3

(Thus, with S as mentioned in the previous section, and with
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K = 1 , we have the p a t t e r n

Vo = -fc2J Vo = +\

V l = +ilJ V l = *bz) V l = ~hl "fl ~ ~"6

corresponding to columns 3=0, 2, k, 6 , and rows 0 and 1 for a.

and a. acting on those b . : for example, b,a = -b, since

elU € 5 •)

Leaving the algorithm to produce 5 until later, we now have:

(i) V is a faithful T(G)-module.

Proof. Take any r in F(G) , and assume Vr = 0 . Write r as in

Section 2. Then

b .r = b A X + bA X + . . . + b A1X1 = 0 for each j .
t7 t ? l l 3 c. c. 3 K K

This reads:

ci .2? X, + a^ i> X, + . . . + a, .b .X, = 0 ,
l , j j 1 2,3 3 2 k,3 3 k

where the a. . are in F . Since the X , ..., X, are all different, so
1,3 1 K

too are the b-X , ..., b -X, , by the properties of £ . Hence each a. .
t/ 1 J K 1 ,3

i s zero. Now any a. . i s produced from A. (b A. = a . .b.) by

for some n . Then

a . . = 6 ± Brt ± B. ± . . . ± 3 n .
t,j 0 1 01...n

where the ± signs depend on the allotment of the e, . Since each of the

2 patterns of ± which could be produced by the action of the a. ,

may be achieved by the use of some b . , by the lemma, we have the 2
3

equat ions
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M = 0

01...«

where the coefficient matrix M has mutually orthogonal rows. (indeed,

this production of possible ± patterns - setting a = ±1, a. = ±1, ...

in the monic words built from 1, a , a , ..., a , is one of the standard
0 -L Yl

ways of producing a Hadamard matrix of side 2 .) Thus, each of the

g's is zero, and A. is the zero of F(/l) for each i . Hence r is
Is

zero. The module is faithful.

(ii) V is an irreducible T{G)-module.

Proof. Take any element v = £ a.b. in V , in which not all the
i=0 V %

a. are zero - say cu f 0 . Then, by the lemma, and the symmetry of the

array, there is an a such that

{-b. for 3 = k ,

+b • for 0 2 3 < rz but 3 + k .

0

So v{e-a } = 2oc,i>, , so i>F(G) contains fc, , and since by the action of

Z , bjf(G) contains all basic elements of V , we have uF(ff) = 7 and

hence V is irreducible.

It only remains to describe the algorithm to produce S and hence

establish the lemma. We note first that if q = 2 , k > 0 , and

2 > q , then the blocks along the top row of the array

{2W, ..., 2 % - l ) , ( 2 % , ..., 2/"+2(?-l), (2
m+2?, . . . ) , ...

are "reflected", in the sense that the first q elements in the columns

headed 2 ; 2 +q; 2 +2q; ... are just these blocks, in the same internal

order. This follows since the permutations sending
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v
0 to 1, 0 to 2, ..., 0 to 2 -1 cannot change the binary digits past the

(k-l)
2 -digit. We start "by flagging 2, h, 5, 6, 7 as members of S : this

deals with n = 0, 1 and we have reached 7 as last flagged integer.

Assume we have flagged sufficient to justify the lemma for

k-l
n = 0, 1, 2, ..., 2 -1 , and that the last flag was placed at r . Set

7,

q - 2 . (To start, k = 2, r = 7 •)

(*) Find the next power of 2 , say 2 , such that 2 > r and

> q . Then allot flags within the next 2^ blocks of length q ,

[2m, 2m
+l, ..., 2 % - l ) , ( 2 % , ..., 2m+2q-l), ...

to produce one of each of the possible 2" patterns of flagging. This

could be done in "dictionary" order, the first block totally unflagged, the

last one totally flagged. We have now provided the £ for

n = 0, 1, 2, ..., 2 -1 . Set r to the last integer flagged, set

q - 2 , and return to (*). As noted in Section 3, this produces the

set:

5 = {2, 5, 6, 7, 12, 17, 22, 27, 28, 29, ...} ,

and, in fact, the algorithm produces a plethora of columns of each required

type for each n , and so the lemma is justified.

Consequently the irreducibility and fidelity of the module is

established.
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