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Abstract. Energetically eruptive events such as flares and coronal mass ejections (CMEs) are
known to generate global waves, propagating over large distances, sometimes comparable to the
solar radius. In this contribution EIT waves are modelled as waves propagating at a spherical
density interface in the presence of a radially expanding magnetic field. The generation and
propagation of EIT waves is studied numerically for coronal parameters. Simple equilibria allow
the explanation of the coronal dimming caused by EIT waves as a region of rarified plasma
created by a siphon flow.
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1. Introduction
It has been known for some time that sudden energy releases (e.g. flares, CMEs, ejec-

tae) can generate large-scale, propagating MHD waves in different layers of the solar
atmosphere. One of the most-studied large-scale coronal waves is the EIT wave, so-called
as they were first observed by the EIT instrument onboard SoHO. EIT waves are often
observed as circular fronts propagating away from the site of the associated energy release
with speeds of 200–400 km s−1 at an approximately constant altitude (Thompson et al.
1999). Given the poor time resolution of the EIT instrument, the nature of EIT waves
is still a matter of debate. By analysing TRACE data Ballai et al. (2005) showed that
EIT waves observed by the EUV instrument exhibit oscillatory behaviour with a period
of approximately 400 seconds. In contrast, Attrill et al. (2007) illustrated a model where
EIT waves are, in fact, a succession of reconnection events.

Another question about EIT waves is the connection of these waves to other global
phenonema. Flares are known to generate high-velocity chromospheric waves (Moreton
and Ramsey 1960) called Moreton waves propagating with speeds of 1 000–2 000 km s−1 ,
considered to be super-Alfvénic shock waves. Flares also generate MDI waves in the
photosphere, with speeds of a few hundred km s−1 (Donea et al. 2006). The precise
relationship between these waves and flares is an open problem.

In this paper we model EIT waves as MHD surface waves in spherical geometry, a
natural extension of studies by, e.g. Wentzel (1979); Parker (1978); Edwin and Roberts
(1983). A recent review on theoretical approaches of wave propagation under solar condi-
tions can be found in Nakariakov and Verwichte (2005); De Pontieu and Erdélyi (2006);
Erdélyi (2006a,b); Banerjee et al. (2007).

2. Governing equation
We assume an isothermal and ideal atmosphere in hydrostatic equilibrium in spherical

geometry with constant density. The radially-directed magnetic field takes the form B0 =
B0(r)êr , B0(r) = AB /r2 , where AB is a constant representing the magnetic flux. Since
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the magnetic field is force-free, and there is no gravity, the background pressure must be
constant. All perturbations are separable and are expressed as

f(r, θ, φ, t) = f̂(r)Y m
l (θ, φ) exp(iωt), (2.1)

where Y m
l (θ, φ) is the real part of the spherical harmonic and l is the spherical degree.

The linearised equations of ideal MHD can be reduced to the fourth order ODE (Douglas
and Ballai 2007):
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3. Particular case: the hydrodynamic limit
Equation (2.2) describes the radial velocity perturbations in spherical geometry with a

magnetic field ∝ 1/r2 . In the particular case of magnetic-free atmosphere the preferential
direction of the magnetic field disappears and the propagation of a disturbance becomes
homogeneous. In this case, vA → 0, so Eq. (2.2) reduces to

v̂r + c2
0

d
dr

(
1

ω2 − s2
l

1
r2

d
dr

(
r2 v̂r

))
= 0, (3.1)

where s2
l =

(
l(l + 1)c2

0
)
/r2 is the squared Lamb frequency. Eq. (3.1) has been solved

by Douglas and Ballai (2007) and the solutions can be expressed in terms of Bessel
functions. We can derive the pressure p̂(r) from the expression of v̂(r) by considering the
radial momentum equation.

Since our goal is to study the propagation of waves along a spherical interface, we
consider waves propagating at r = R∗; this surface is defined by a density discontinuity,
with ρ0(r) = ρi if r < R∗ and ρ0(r) = ρe otherwise. The solutions of Eq. (3.1) must satisfy
the continuity of radial momentum and of pressure at the interface, together with the
requirement of v̂r (r) being regular at r = 0 and evanescent at r → ∞. These conditions
allow us to derive the dispersion relation for hydrodynamic spherical surface waves at a
density discontinuity

(
(ρi − ρe)(l + 1)Jl+ 1

2
(X) + ρeXJl− 1

2
(X)

)
×

× J− 1
2 −l (Xe) + Jl+ 1

2
(X) ρiXeJ 1

2 −l (Xe) = 0.
(3.2)

Here c0 = (γp0/ρi)
1
2 , ce = (γp0/ρe)

1
2 , X = ωR∗/c0 , Xe = ωR∗/ce . In the above ex-

pression, Jk (z) is the Bessel function of fractional order k. A simple inspection of the
dispersion relation Eq. (3.2) reveals that the effect of spherical geometry is to intro-
duce Bessel functions whose argument and order depend on the spherical degree, l. The
dispersion relation is a highly transcendental implicit equation for ω, which has been
numerically solved for l = 0–30 by Douglas and Ballai (2007)

https://doi.org/10.1017/S1743921308014944 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921308014944


MHD waves at a spherical interface 253

Figure 1. Snapshots of the numerically-calculated spatial solution of Eq. (3.3) for fixed t = 237 s
and varying r for l = 500 (solid line), l = 1500 (dashed line) and ρi/ρe = 2. The left-hand plot
shows the pressure perturbation, p(r, t), and the right-hand plot shows the velocity perturbation,
v(r, t). The horizontal dotted line is the initial undisturbed state and the vertical dotted line
represents the location of the initial pressure pulse.

Figure 2. The same as Figure 1, but with r (not t) fixed. r is 8000 km above the interface.

A different view on waves generated by an impulsive source propagating at an interface
can be gained by writing the governing equations as the second-order PDE

∂2p

∂t2
− c2

s

r2

∂

∂r

(
r2 ∂p

∂r

)
+

c2
s l(l + 1)

r2 p = 0, p(r, 0) = p0 + p∗δ(r − R∗). (3.3)

In Eq. (3.3) p0 is the background pressure, p∗ is the excess presure at the location of the
impulse, which itself is R∗. This equation is solvable and the solutions are given in terms
of spherical Bessel functions. Using an explicit finite-difference scheme the variation of
pressure perturbation and radial velocity are shown in Figures 1 and 2 for different values
of l and a density ratio ρi/ρe = 2.

Figure 1 illustrates the dependence of the pressure perturbation and radial velocity
amplitude with radial distance at t = 237 s. The temporal change in the amplitudes of
these quantities are shown in Figure 2 at a fixed radial distance r = 8000 km above
the interface (which is itself located at 1.08 R�). In Figure 1 we observe the asymmetric
distribution of pressure in the two domains, the pressure beneath the interface being
almost 6 times higher. This pressure difference must generate a very strong radial pressure
gradient, driving a siphon flow which can lift up material from below to higher altitudes.
Projected to the a case of a CME, this result implies that the largest part of the material
expelled by a CME comes from the cooler regions below the CME.
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The second important conclusion of Figure 1 is that the oscillatory behaviour of waves
starts some distance away from the initial pulse; for the quantities used here oscillations
start only after approximately 10 000 km, depending on l. According to these results the
first stage of a spherical wave consists of a strong shock which decays after some distance
and wave-like motion starts to appear. It is most probable that the oscillatory behaviour
of EIT waves found by Ballai et al. (2005) is related to this stage of EIT wave evolution.
The temporal variation of the pressure and radial velocity shows a decaying pattern
as the signal travels away from the source due to geometrical dissipation. We can also
comment on the effect of changing the harmonic degree l; it appears that waves of lower
degree travel faster, and that waves of lower degree have far fewer visible wavecrests.

4. Conclusions
Here we have modelled EIT waves as surface waves propagating along a spherical

density interface at a constant radius. The highly transcendental dispersion relation for
such waves in a field-free atmosphere is derived.

The results of numerical simulations of radial surface waves,generated by a sudden,
large pressure pulse excitation, are presented. It was shown that the propagation of these
waves either side of the interface is asymmetric, leading to a large pressure gradient across
the interface. The oscillatory behaviour of these waves is found not to start until quite
some distance away from the impulsive source, and the amplitude of these oscillations
exhibits damping. Thus, the dimming seen in observations of EIT waves is explained as
evidence of a region of rarified plasma, where the large pressure gradient has evacuated
much of the material away.

The present investigation will be extended in the future to include a full magnetic
case, which we expect to exhibit much more complex behaviour, and the effects of a
finite spherical shell. We also aim to show that MHD waves can be trapped in the low
corona.
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