Compositio Mathematica 137: 275-292, 2003. 275
© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

Slope Estimates of Artin—Schreier Curves

JASPER SCHOLTEN! and HUI JUNE ZHU?

1'ESA T/COSIC, KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven-Heverlee, Belgium.
e-mail: jasper.scholten@esat.kuleuven.ac.be

2Department of Mathematics, University of California, Berkeley, CA 94720-3840. U.S.A.
e-mail: zhu@alum.calberkeley.org

(Received: 21 August 2001; accepted in final form: 7 March 2002)

Abstract. Let X, /i, be an Artin-Schreier curve defined by the affine equation y” — y :\f(x)
where f{x) € [F,[x] is monic of degree d. In this paper we develop a method for estimating
the first slope of the Newton polygon of X. Denote this first slope by NPI(X/F,,)). We use
our method to prove that if p > d > 2 then NP (X/T,) = [(p — 1)/d1/(p —1). If p > 2d > 4,
we give a sufficient condition for the equality to hold.
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1. Introduction

In this paper a curve is a smooth, projective and geometrically integral algebraic
variety of dimension one. Let d be a positive integer. Let p be a prime coprime to
d. Let ¢ = p¥ for some positive integer v. Let X be an Artin—Schreier curve over
I, defined by an affine equation X: )’ —y = f(x), where f(x) € IFy[x] is of degree
d. Then X has genus g := (p — 1)(d — 1)/2 (see Section 3).

Write the L function of X over I, as

00 ) n 1
exp (Z(q" + 1 —#X(y)) 7’;) = m )]
n=1

The denominator P(T) is a polynomial 1 + Z?il beT* e 1 4+ TZ[T]. Consider the
sequence of points

(0, 0), (1M) (2,"“”[’2),...,(2&%)
v v v

in R2. (If b, = 0, define ord,b; = 00.) The normalized p-adic Newton polygon of P(T)
is defined to be the lower convex hull of this set of points. It is called the Newton
polygon of X/I¥,, denoted by NP(X/IF,). Let NP{(X/IF,) denote the first slope of
NP(X/F,), which we call the first slope of X/F,.
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In this paper we develop a technique for estimating NP;(X/I",). We apply this
technique in the case p > d. It can also be applied in other cases. See, for example,
[13] for the case p = 2.

For any real number ¢ let [f] denote the least integer greater than or equal to ¢ and
let [¢] be the greatest integer less than or equal to ¢.

Let R be a commutative ring with unity. For any f(x) € R[x], any positive integers
N and r, we use [f(x)"], to denote the x"-coefficient of f{x)".

THEOREM 1.1. Fix d > 2. Let X/V'y be an Artin-Schreier curve of genus >3 whose
affine equation is given by y* — y = f(x) where f(x) is monic of degree d.

(@) If p > d then NP\(X/I'g) = [(p = 1)/d1/(p = D).
(b) If p > 2d and [ f(x)"7],_; # 0 then NP\(X/F')) = [(p = 1)/d1/(p = 1).

Remark 1.2. The Newton polygon of X, /1y has the same shape as that of the
L function of exponential sums exp(d>_,o; Se(f )%) where

Su(f)=Y_ exp (z”jjTrwp(]f(x>>).

xE,l‘q[

A proof of this known fact can be found in the Introduction of [19]. Using this, one
observes that Theorem 1.1 is a generalization of Theorem 2 of [14], where ¢ is
assumed to be prime. See [13] and [14] for survey and further development.

If a curve is defined over a perfect field of characteristic p then its Newton polygon
is defined by the ‘formal types’ of the p-divisible groups associated to the Jacobian of
the curve (see [9] or [8]). Theorem 1.1 holds if I, is replaced by any perfect field of
characteristic p because its proof remains valid. It is known that the Newton poly-
gons have integral bending points and are symmetric in the sense that any line seg-
ment of slope A of length ¢ occurs in companion with a line segment of slope 1 — A of
the same length.

Artin—Schreier curves are precisely those degree p Abelian covers of the projective
line with the point at infinity totally ramified, and no other ramification. So their
p-ranks are zero by the Deuring—Shafarevich formula (see [3, Corollary 1.8] or
[11]). The p-rank is exactly equal to the length of the slope zero segment of its New-
ton polygon (see [9]). Thus an Artin—Schreier curve has no zero slope. Suppose g = 1
or 2, then an Artin—Schreier curve X has its first slope equal to 1/2.

When f{x) is a monomial then the Frobenius and Verschiebung maps on the first
crystalline cohomology of X have explicit interpretations (see [6] and [7]), which
enable one to describe the entire Newton polygon of X explicitly. (Note that classical
literature often refers to this special case as the definition of an Artin—Schreier
curve.)

This paper is organized as follows: We recall relevant preliminaries in Section 2.
Then we develop a method in Section 3 to estimate the first slopes of Artin—Schreier
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curves. After some technical preparation in Sections 4 and 5, Section 6 proves a
lower bound for the first slopes of Artin—Schreier curves, and gives a sufficient con-
dition for the lower bound to be achieved. We prove Theorem 1.1 here.

2. Sharp Slope Estimates

This section provides fundamental ingredients for our slope estimates of curves over
finite fields. Note that lemmas we need hold valid when the base field is perfect of
characteristic p. However, for simplicity we constrain ourselves to finite fields in this
paper. Firstly we establish a variation of Katz’s sharp slope estimates in Theorem
2.2. Secondly we recall a method of computing the Verschiebung action on the first
de Rham cohomology of a curve by taking power series expansions at a rational
point. This section essentially follows [1, 2, 5, 6, 12]. Our approach is particularly
inspired by Nygaard’s paper [12].

Let W be the ring of Witt vectors over I,, and o the absolute Frobenius auto-
morphism of W. Throughout this section we assume that X/I", is a curve of genus
g with a rational point. Suppose there is a smooth and proper lifting X/W of X to
W, together with a lifted rational point P. The Frobenius endomorphism F (resp.,
Verschiebung endomorphism V) are o (resp., o~') linear maps on the first crystalline
cohomology Hi, (X/W) of X with FV = VF = p. It is known that H} (X/W) is
canonically isomorphic to the first de Rham cohomology Hlx(X/W) of X, and
one gets induced F and V actions on Hlx(X/W). Thus the pair (H\x(X/W ), F)
can be considered as a o-F-crystal, whereas the pair (H(ljR(X /W), V)asao'-V-
crystal. The Newton polygon of X/II', is equal to the Newton polygon of the crystals
(Hix(X/W), F) and (H\x(X/W), V') as defined in [5].

Below we will briefly describe some techniques to approximate slopes of these
crystals. Let L be the image of H'(X, Q) in Hyz(X/W ), and let M be a comple-
ment of L such that Hix(X/W ) = L & M. The following lemma is for the proof of
Theorem 2.2.

LEMMA 2.1. Let notation be as above. Then L C V(L® M) C L@ pM. If p"~!
divides V'L for some m >0 and a>=0, then for all n>a we have V'L C
pmflL +pn1M.

Proof. Recall an equality due to Mazur and Ogus (see [10, Theorem 3]).

FlpLeM)F,=LaF,

One easily verifies the following inclusions

LCF ' (pLeM)+pLeM)CF'FV(L&M)+VFEL®M)C V(L& M).
The rest follows from [12, Lemmas 1.4 and 1.5]. O

THEOREM 2.2. Let A be a rational number with 0 < A < % Then NP{(X/IF)) = X if
and only if p" 1| V"=V L for all integer n > 1.
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Proof. The main ingredient of the proofis Katz’s sharp slope estimate [5, Theorem
(1.5)], which says that NP;(X/F,) >  if and only if p/"™1| V"*¢ for all n > 1.
Suppose NP;(X/I,) > A. Then p"*! | "¢ for all n > 1. By Lemma 2.1 we have
VnJrgfl(L) C V”*g’l(ImV) — V”Jrg(L@M) C pl—"M(L@M).
Conversely, suppose that p™1|V"*2=1[ for all n > 1. It suffices to show that
pI"™1| ¥+ for all n > 0. For n =0 this statement is trivially true. We proceed by

induction on 7.
Assume that pl¢*=D*1 | pr+e=1 By Lemma 2.1 we have V(L® M) C L & pM. So

V(Lo M)=V"" VLo M) c VTEN (L pM),

and pl™1| pl=DA+1 prnte=I(pAr). From the hypothesis p™1| V"*¢~1L we have
p(n)fl | Vn+g' |:|

Remark 2.3. Let n and m be any positive integers. If p”~! divides V*L for some
nonnegative integer a < n, following Lemma 2.1, the composition of ¥”/p”~! and
reduction to [, gives a natural endomorphism of L ® I¥,. This endomorphism of
L ®I, is called a higher Cartier operator, denoted by C(m, n). The hypothesis in the
theorem above is equivalent to that C([nA], n 4+ g — 1) is defined and vanishes for all
integer n > 1. The underlying philosophy of our slope estimates is to replace the
traditional Cartier operator by this higher Cartier operator. We will not explore this
terminology further in this paper.

Let )A(/Wbe the formal completion of X/ W at the rational point P. If x is a local
parameter of P, then every element of HéR()? /W) can be represented as /(x)dx/x
for some A(x) € xW[[x]], and F and V act as follows:

P ) = e
X X
dx - dx @
V(h(x) ?) =n (xl/f’)T, where X7 =0if p m

Denote the restriction map HéR(X/W)—>HéR()?/W) by res.

LEMMA 2.4. The F and V actions on Hyg(X/W ) and H\o(X/W ) commute with the
restriction map res: Hyp (X/W )—> Hlx(X/W ). Furthermore, res™ (pHlx(X/W)) =

F(Hgp (X/W)).
Proof. The first statement follows from [6, Lemma 5.8.2]. The second is precisely
[12, Lemma 2.5]. ]

This lemma will only be used in the proof of Theorem 3.4.

3. Slope Estimates of Artin—Schreier Curves

Assume that X is an Artin—Schreier curve over [, defined by an affine equation
W —y = f{x) where f(x) = x? 4+ a1 x*' +..-+axand p d. It is easy to observe
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that every Artin—Schreier curve over Fp can be written in this form (over some suit-
able I¥,). So X/IF, has a rational point at the origin. Assume that the genus g of X is
>3. Take a lifting X/W defined by »” — y = f(x) where f(x) = x4+ az_1x '+
-~ +ayx € W[x] with a, = a, mod p for all £. So X/W has a rational point at the
origin with a local parameter x. The goal of this section is to prove Theorem 3.4.
In particular, we shall prove a highly applicable version in Key-Lemma 3.5.

For any integer N > 0 and 0 <i<p—2 let C,(i, N) be the x"-coefficient of the
power series expansion of the function y'(py?~! — l)pm_1 at the origin P:

yi(py't - l)p‘Ll = Z C.(i, N )x". 3)
=0

We prepare three lemmas before we start to prove Theorem 3.4. We shall restrict
the range of i and j as in Lemma 3.1.

LEMMA 3.1. The curve X/W has genus (d— 1)(p —1)/2, and for p—2>i>0,
j=zland di+pj < (p—1)(d—1)—2+ p the differential forms

dx

w; = Xy (py" = 1) o

form a basis for L.

Proof. For the special fibre X/I%, this follows immediately from Proposition V1.4.1
of [16]. Let QW be the field of fractions of W. Consider the generic fibre X/QW.
There are no points (x, ) in X(QW) with py?~! — 1 = f'(x) = 0, since for such (x, y)
one can easily show that y” — y is not integral over W, and f{(x) is integral over W. It
follows that the affine part of X/QW is nonsingular. The affine ramification points of
the map X — P! defined by (x, y) > x are those that satisfy py?~! — 1 = 0. For each
such y there are exactly d corresponding values of x, since f’(x) # 0 there. So there are
(p — 1)d ramification points on the affine part. The function y” — y — f(x) in y and its
first two derivatives have no common zeroes, so all affine ramification points are of
index 2. Let ey, be the ramification index at co. Write g’ for the genus of X/W. By
Riemann-Hurwitz, we have 2¢' —2=—-2p+(p—1)d+ e, — 1. It follows that
g < (p—1)(d—1)/2. But the genus of the special fibre X/I;isg = (p — 1)(d — 1)/2,
hence g =g=(p—1)(d—1)/2, and es, = p.

The differential form dx/(py?~! — 1) = dy/f(x) has no affine poles. The form dx
only has affine zeroes (of order 1) at points where the map (x, y)— x ramifies. At
these points, py?~! —1 =0, so dx/(py”~' — 1) has no affine zeroes. The degree of
a canonical differential form is 2g —2 = (p — 1)(d — 1) — 2, hence dx/(py?~' — 1)
has a zero of order (p — 1)(d — 1) — 2 at co. The function x has degree p and no poles
at the affine part. Hence it has a pole of order p at co. Similarly, y has a pole of order d
atoo.Soforp—2>i>20,j=1and di+pj < (p—1)(d—1) — 2+ p the form w; is
in L. From the assumption that d and p are coprime it follows that for i and j in this
range the w; have zeroes of different order at oo, hence they are independent. From
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[16], Proposition VI.4.1 (h), it follows that the reduction of these differential forms
modulo p form a basis for HO(Q}X/E,)’ hence the w;; form a basis for L. O

LEMMA 3.2. Let m be a positive integer. If p m then x"(py?~' — 1)7! dx—x =0 mod p
in Hiy(X/W).

Proof. If p4m then x"(py?~' — 1)"!dx/x = —d(x/m) mod p, which is cohomo-
logical to zero in Hly(X/W). O

LEMMA 3.3. For all nonnegative integers a and r we have C.(i, N+ a)=
C,(i, N)mod pN+1.
Proof. Tt is easy to see that ( ) =0 mod pM!=¢if N+1>¢> 1. Thus

—1\Y o PN —1\¢ N+1
(L=py?y" =3 (7, )=py"™)" = 1 mod p**.

£=0

Therefore, we have

. - Neta_ i -~ N_ 1N (pi—
Yy =1 =y (P = 1y (A = pyr Ty D
Eyi(pyp_1 — l)"’N_1 mod pN'H.

This proves the lemma. ]

THEOREM 3.4. Let X be a rational number with 0 < A < % Suppose there exists an
integer ny such that

() forallm=1and 1 <n < ny we have ord,(Cpypne1_(i, n + g — 2)) = [nA];
(ii) for all m = 2 we have ordy(C,,+e-1_j(i, no + g — 2)) = [noA].

Then

PV wy), if < ng;

A-1 +g-1 .
pfno 1 | protg (a)lj)a lf}’l = ny.
Furthermore, we have

—(np+g—

y el = e l_l(l ny + g — 2)(wp,1) mod p*.

Proof. We will prove the first part by induction. Suppose 1 < n < ny and
p[(nfl))\'l | V}1+g72(a)ij)' (4)

Note that this is trivially true if n = 1.
Write A(x) := (py?~' — 1)"" € W[[x]]. By [12, Lemma 2.2], we have

n+g—2 n+g—2 n+g—2 n+g—3 n+g-3

R = ) A ph] P ) e T g a(%)
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for some power series /(x), ha(x), ..., hern—2(x) € W][x]]. Thus the power series
expansion of wj is

. d
res(a)@,):res<x]y’(py1’ ! 1)_l x)

e end
—r68<xfy (" =1y ey ;)

n+g-2 n+g—2 d.x

=Y Cli.n+g—2)x ()= —+
r=0 :

o0

+ (l n+ o — 2)xr+/han+g—3 n+g—3 dx
r=0

()t

0 . dx
+ .- +p”+g—2 Z C,-(i, n+g-— 2)x’+'lhn+g72(x)_ :
r=0 Y

Apply V&2 to the first differential form above. Since the V-action commutes
with the restriction map (by Lemma 2.4), we have

-2
res(V" ¢ wy)

o0
(r1+q 2)

mpnﬂz 2—j

(i,n+g— 2)x’"h(x)—
m=1
o~ (1+8=3) m dX
ZC,,WW s in+g— 2)V( hl(x)7)+
5 (r+g—4) o m dx
+p ZC" el n+ g =2V X (x) = )+

n 1=[ni]) - dx
+ -+ PmM ! Z Cl ’ﬂptxi;' [ ](n +g-2) ym=l <xmh[nﬂl(x) ?)
m=1

+ P [nA] /3? (5)

for some B € Hl(X/W).
By the hypothesis, p™*1=! divides C,ue2_j(i,n+g—3). For all m>1, by
Lemma 3.3,

lﬁnﬂil | Cmp"ﬂl*z—j(ia n+g-— 2) (6)
For m coprime to p it follows from Lemma 3.2 that p divides x"A(x)dx/x. Thus
[nA] . m dx
P Cpriea_j(i,n + g — 2)x h(x)7.
Otherwise, except possibly when n = ny and m = p, we have

pi C(%)pwfl,j(i, n+g-—2).
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Therefore,

e8]

—(n+g-2 . m dx
N o i+ g — DN h(x)
m=1 X

O e , dx
=g ion+ g = 23" h(x)—
m'=1 v X
Omod p™1, ifn<ny
= Co 0 g+ g — 2)x’h(x) 2 mod p™™1, if n = ny.

p“() +g—1 —j

(M

For all integer £ > 1, by the hypothesis of the theorem, we obtain
ord,(Cppriee2_f(i,n+g—L€—=3)) = [(n— € —1DA] = [nA] — L.

So, by Lemma 3.3, we have ord,(C,,msc2_(i,n+g—2)) > [nA] —£. So p"™*]
divides every sum of (5) except possibly the one on the first line. Combining this
information with (4), (6) and (7) yields for all n < ny

Vn+g—2(w“) R
reS<p[T_llj> [S PHéR(X/W)

Hence for such n Lemma 2.4 implies

Vn+g72(wi )
N " e F(HyR(X/W))
SO

Vn+g7 1 ( wij)

ST € VFHR(X/ W) = pHig X/ W),

which proves the induction hypothesis. If n = ny then the above implies

Vn0+g72((1)l'j) 1 o~ (o +g=2) dx
. €D — NP -
res( i) = e G+ g = 2

lies in pHlo (X/W ). Lemma 2.4 implies

V’1O+g—2(a)i]') 1 o (ot+e=2) .
plmodT=T 7 plngil=1 Comt {10 + & = D)o,

lies in F(H!x(X/W)). Hence,

V"“*gfl(a),»j) 1 o—(o+g=1 .
ity Gt (10 + 8 = V@)
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lies in VFH R (X/W )= pHx(X/W). Now the theorem follows from V(wy,) =
wo, | mod p- O

We summarize everything we need in the key lemma below.

KEY-LEMMA 3.5. Let A be a rational number with 0 < A < %

(1) If for all i,j within the range of Lemma 3.1, and for all m = 1, n = 1 we have
ord,(Cpprie1_j(i, n + g — 2)) = [nA] then NP (X/Ty) = A.

(1) Let i,j be within the range.
(a) Let ng = 1. Suppose that for all m = 1 and 1 < n we have

ord,(Cppriet_j(i, n + g — 2)) = [nA];

(b) suppose that for all m = 2 we have ord(C,,y+e-1_j(i, no + g — 2)) = [noA1;
(¢) suppose ord,(Cppye-1_j(i, no + g — 2)) < [moA1; Then NP(X/F,) < A.

Proof. (1) The hypotheses in Theorem 3.4 are satisfied for all positive integers ng
and for all possible i and j. Thus our statement follows from Theorem 2.2.

(i) If NPy (X/IF,) = A then pl"™*1|pm+e=1 (g, for all i, in the range of Lemma 3.1
by Theorem 2.2. This implies that for the particular 7, satisfying the hypothesis
of Theorem 3.4 we have ord,(Cu+e1_f(i,ng+g —2)) = [nor]. This proves the
Key-Lemma. ]

4. p-Adic Behavior of Coefficients of Power Series

In this section we study the p-adic behavior of coefficients of two power series.

To make this paper as self-contained as possible, we recall the Lagrange inversion
formula from mathematical analysis [4, IX, § 189]. Let z and y be two functions such
that y = zu(y) for some function w(y) which can be developed into a power
series in y. Then the power series expansion of any function /() in z is

100 =3 (o)) )

ki=1

where the upper corner #1=1 denotes the (k; — 1)th derivative and #'( y) denotes the
first derivative of A( y) in terms of y.

LEMMA 4.1. Let a > 0 and let y € W[[z]] be a power series that satisfies y' —y =z
and y(0)=0. Then y* =3 7"_ Dy, (a)2" where Dy (a)=0 if ki #amodp—1;
otherwise,

kiza _ 1)1
Di@) = (175 (ko - 1)
kl!(u)!
p—1
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Proof. Note that y = z(y?~! — 1)~". Apply (8) to this equation, we get

y=0>zkn 9)

o0

a — —ky | a— ki=1)
y :Z%((@p Ly hy 1)( 1

k=1

We have

(ki1
p=1 _ [y hiya-lyki=-D| (Dt L) (p—D)eta—1
((» ) ‘y:O (;_0( ) < ¢ )

y=0
Clearly, this is 0 if k; £ amod p — 1; otherwise, it is equal to
—k
(=) — 1)!<,ﬂ__;).
p—1
Plugging this into (9) yields the desired value for Dy, (). O

For any positive integers k; and a, we will keep the notation Dy, (a) as defined in
Lemma 4.1. We also define Dy (a) =1 if a = k; = 0 and Dy, (a) = 0 if only one of k;
and a is 0. For any integer k > 0 denote by s,(k) the sum of all digits in the ‘base p’
expansion of k.

LEMMA 42. If a> 0 and ky =amod p — 1, write a =i+ £(p — 1) with integers £
and 1 <i<p-—1, then

m@a%m»:@%%%i if € =0;
ord,(Dy, (a)) = %— -1, ife=1.

Proof. Let ki = amodp — 1. Using the well-known identity (p — 1)ord,(k!) =
k — s,(k) for all positive integer k, one gets that

Ordﬁ(Dkl (a))

_ 1 kl —da kl
= Ordl’(a)+pT1<SP(kl)+S/’(p_ ] > -1 —s,,(a— 1+ »

- p)) (10)

If £ =0, then
kl—a . k]-él
s,,(a—l—l—p_lp):l—l—i—sp(p_l).
If ¢ =1, then

kl—a . kl—a
— < — —
sp<a 1+p_1p>\(p Dord,(a) + i l—i—s,,(p_l).
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If ¢ > 1, then

s a—l+k1_a
14 p—lp

l—l-l—Sp(Z(p—l))-i-Sp(l;l 1)

<i—1+—1)(p— 1)+s,,<1;__1a>.

Substitute these back in (10), we obtain the desired (in)equalities. ]

Fix two integers N > 0 and 0 < i< p — 2. Let y € W][[z]] still be the power series
satisfying ) — y = z. Define coefficients Ey, (i, N) by

i o0
Ypyr Tt =1y =Y B N

k1=0

For any integer r > 0 let K, denote the set of transposes k =(ky, ..., ky) of d-tuple
integers with k; >k, > --- 2 k; >0 and Zz ke =r. (Remark: Transposes are
used only to give an easy setup for the p-adic box analysis in [13] and [15].) We
define

sp(K) := sp(ky — ko) + -+ - + sp(ka—1 — ka) + sp(ka).
Note that from the definition of the coefficients C,(i, N) in (3) we find
Zc (i, N)x" = ZE/H(I N)F ().
k=
Expanding the powers of f{(x) yields

d—1
CN) = 3B ( ke ) ik an

keK,

LEMMA 4.3. Let k ="(ki,...,kg) € K. If ky #imodp — | then E;, (i, N)=0. If
ki =imodp —1 then

Sp(kl) —i
—1 ’

ord (Ekl(z N)l_[ <k4+1>) _ Spp(k_)Ii

Proof. Take the identity

ord,(Ey, (i, N)) =

V-1
— N —1 L
yl(pyp 1 l)pN 1 Z( l)pN 1—- é( >pfy1+5(p n (12)

https://doi.org/10.1023/A:1024116216156 Published online by Cambridge University Press


https://doi.org/10.1023/A:1024116216156

286 JASPER SCHOLTEN AND HUI JUNE ZHU

Substitute the power series expansion of y 7= in (12); we get

ks

v N —
&thr=§j«mW‘[<pg v0h0+ap—nm4 (13)
£=0

If k) #£ imod p — 1 then Dy, (i + ¢(p — 1)) = 0 by Lemma 4.1; hence Ey, (i, N) = 0.
This prove the first part of the lemma.

If ky =i=0 then E, (i, N)=(—1)""" and s,(k;)—i=0. If i=0, k; >0 and
i = ky mod p — 1 then, by Lemma 4.2, the term with minimal valuation in (13) occurs
at £ = 1. We have

spk) —(p—1)

ord,(Ey, (i, N)) = 1 +ord,(D,(p— 1)) =1+ 1

If i > 0 and k; = imod p — | then the term with minimal valuation in (13) occurs at
¢ =0. We have
Sp(kl) —i

ord, (Ei, (i, ) = ord,(Dy, () = 2"

This implies the second assertion.
By ord,(k!) = (k — s,(k))/(p — 1) we have that

ordp< ky > _ sp(keg1) + sp(ke — key1) — Sp(kf)‘

ket p—1
Thus
d-1
ke ) Sp(k) - Sp(kl)
ord =47
! (E (ke+1 ) p—1
So the third assertion follows from this equality and the second assertion. O

5. p-Adic Behavior of C,.(i, N)

To apply Theorem 3.4 one needs to have at hand an efficient formula for the p-adic
valuations of the coefficients in (3). This formula is in Lemma 5.3, which is prepared
for Section 6.

Let k ='(ky,....ky) €K,. For 1 <€<d, let ky=>, - ky,p’ be the ‘base p’
expansion of k,, we introduce a dot representation

ke :=1[...kea ket kool

in the following way: for £ = d, let k.d,v =k, forallv = 0;for 1 < £ < d,itis defined
inductively by

k.[,LU = k.“ + p'-coefficient in the ‘base p’ expansion of (k,_; — k),

https://doi.org/10.1023/A:1024116216156 Published online by Cambridge University Press


https://doi.org/10.1023/A:1024116216156

SLOPE ESTIMATES OF ARTIN-SCHREIER CURVES 287

for all v > 0. It can be verified that k, =3, - k'g,vp” for 1 <€ < d. Since kg = ki)
we have k,_y , = k,, for all v. It is not hard to observe

k) =" (dX:(kz v —kesro) +Ka, u) = ke
v=0 v>0
For any positive integer a, define a subset of K, as follows
:{keK,|k‘g,v:Oforv>a, 1<e<d).
More explicitly K¢ consists of all k € K, with k; =[..., 0, kpq1. ..., ko1, keo] for all

1 < ¢ < d. Then we have an obvious filtration K! c --- c K ' cK* ¢ --- c K,.

LEMMA 5.1. Let p>d. Let 1<j<p-—1, let amn=1 and r=mp* —j. If
k € K{, then

sp(k) = vm g )pJ Y (a— 1)[’%% v (’%ﬂ.

If p > 2d, m =1 and the equality holds, then

a

= [0 [Pﬂ,...,(f’ﬂ,[f’ﬂ].

Proof. We will prove this lemma by induction on a. Let k € K{. Suppose a = 1.
Note that all real numbers ¢; and c¢; satisfy [¢; + ¢2] = Le1] + [¢2]. So we have

sp(k) = kio = {d—‘ > {(m;l)pJ + "p;j—“

Suppose m = 1 and the equality holds. It reads ko = [(p—j/d].

Now suppose a > 2. Let k € K%. Let &} := > 72 ke,vpv for all 1 <€<d. One
can find a positive integer m' such that m'p' —j= Zz lk/ Then
kK =(k,... k’)er;p,,l Wehave(m—l)p+p—1_(m—1)—|—ZKlkgal\

(m' — 1)+ dky 4_1. So

i "(m—l)p (m’—1)+p—l—‘
lal/ d

(m—1)yp m — 1 p—1
% d J{ d W*[ d W (14

On the other hand, by induction hypothesis on k' € Kﬁp{,,l_/, one has

: (m —1p p—1 p—J

Combining (14) and (15), one gets

S

a—

Il
=3

v
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“l -1 —1 —
sp(k) = ;kl,v > L(md)”J +(a— 1)[”@& + qu + A, (16)

where

_ | =Dp| [m -1
o=

Using p > d one easily observes that 4 > 0, and the first part of the lemma follows
from (16).

Now suppose p > 2d, m = 1, the equality holds in (16) and 4 = 0. This can only
happen if m' =1. It follows by induction that kl,() =[(p—j)/d] and
k:m = [(p—1)/d| for 1 <v<a—1. From the equality in (16) it follows that
kia1 = [(p—1)/d]. o

LEMMA 5.2. Let a be a positive integer and p > d. For a polynomial f(x) € W[x] of
degree d we have

a1 17 azl -1 o
[f(x)zvv W!"} = H[(f(x)) M} mod p.
I)(/_

p—1

v=|

Proof. Write
a— - v al =l v ol v v | 2=t
foZino " a0l = [T 05 mod p. a7
v=0 v=0
Now we write

a—1
X =T 0. (18)
v=0

Consider contributions of each factor of the product of (17) in the coefficient of (18).
Each vth factor of (17) contributes to the coefficients of x”'" for some m, where
1<m<dp—1/d] <2p— 1. When v = 0 then it has to contribute to the coefficient
of x~ 1, Inductively for each v =1, ..., a — 1 the vth factor contributes precisely to
the coefficient of x”'(?=D_ 1t is easy to see that

L7 )Ty = AT, mod p.

Thus our assertion follows. O

LEMMA 5.3. Let p > d. Let a, m, N be positive integers. Let i, j be as in Lemma 3.1.
Then

—1 — .
ord (Cope(is N)) > ’7(61 - DI+ 5] - z—‘. (19)

p—1

Moreover, for p > 2d we have
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P
or p(Cmp"—l(lv N)) - p— 1 (20)

if and only if

m=1;

a[;l—‘ =imod p— 1;

p—1

|:f(x) |—T-|] # 0 mod p.
p—1

Proof. Let k="'(ki,...,kg) € Kypej. Let K :='(k},... k) where k=
Sy keop’s then K € K%, Let ' := Y% k), write 1’ = m'p® — j for some m'. From
Lemma 5.1, it follows that

) =k, = Zkl o= 5,(K) > (a— 1)[ lw n P’%} Q1)

v=0
Then by (11) and Lemma 4.3 one easily verifies that (19) holds.

Assume (20) holds. Then there is a k such that the equality in (21) holds for j =1,
which implies that m = 1, k1 »=0forv>=a, k1 y=[(p—1)/d]for0<v<a-—1by
Lemma 5.1. Thus k; = ZL:O [(p—1/d1p". Sosyki)=al(p—1)/d] =i mod p— 1
Those k € K,,,,«_; which contribute terms in the sum (11) with minimal valuation
necessarily have k| = imod p — 1. By the identity

Cpoi(is N) =Y Ei (i, N) - [0y,

ley=0
we have by Lemma 4.3

ord,(Cpe1(i, N)) = ord,(Ex, (i, N) + ord ([ f(x)"]e_;)

k
%+ord,,( LA T 1)

This is equal to (a[%- - z)/(p — 1) if and only if [ A{x)* ']e—1 # 0mod p. By Lemma
5.2 this is equlvalent to [f(x)[ a 1]1, 1 # 0mod p.

Conversely, the conditions imply that the contribution of ke K
with k= Zz;é [(p—1)/dp’ to ordy,(Cp_1(i, N)) in (11) has valuation
[(a (@1 —i)/(p — 1)]. Any contribution from other k € K,._; has higher valuation
by the above arguments. Thus ord,(Cp_1(i, N)) = (a (‘%11 —1)/(p — 1). This finishes
the proof of this lemma. O

6. Proof of Theorem 1.1

Proof of Theorem 1.1. It suffices to prove the theorem for the case that f(x) has

~ p—1
constant coefficient @y = 0. In the binomal expansion of f{x) T , any monomial of
the form ca, - - - a; x’~! (with some coefficient c) has
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Suppose i} = 0 say, then

i1+"'+ik<(k_l)d<<’Vp_dl—‘_l)d<p_1’

leading to a contradiction. Thus [;7(x) P_ﬂ l,—1 is independent of G. On the other
hand, the curves )’ —y:f(x) and )’ —y:f(x)+ég are isomorphic over
F, for any dg, and hence have the same Newton polygon. With the assumption
ay = 0 we can use the results of Section 3.

(a) Set Ap := (fpd;l])/(p — 1). By the hypothesis on d, p and g it is elementary to
check that for ¢ and ;j in the range of Lemma 3.1 we have

(g—2)[(p—)/d] + [(p—p/d| =i, thus

’7(’1 +g2—2)h + <[p%f‘ - i)/(l’ - 1)—‘ = [nho]

for all n > 1. By Lemma 5.3, we have

P _

ord,(Cpprie1_j(i,n + g —2)) = lr(n +g—2) +

Thus NP;(X/I,) = Ao by Lemma 3.5i.
(b) Choose a value of i in the range of Lemma 3.1 for j = 1 such that the following
congruence has a solution for a,

a’r ;llzimodp—l.

For any integer n > 1 define

et —i

T =Dp-1
Note that %, is monotonically decreasing as a function in #, and it converges to A¢ as
n approaches oo. Suppose NP (X/IF,) > Ao, then there exists a positive integer ny

large enough such that NP;(X/F,) > A,. Choose such an ny, and such that
a=np+g—11is a solution to the congruence above and such that

(e=D[F]—i _,
(p—Dmo—1) =

For all 1 < n < ny we have

(n+g— DG —i
n(p—1)

}\no =X }‘n+1 =
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Thus, for all m > 1 and 1 < n < ny we have by Lemma 5.3 that

Ordp(Cn1pn+g—l_l(i, n + g - 2))

>{(n+g—l)r”7ﬁ—ﬂ
p—1

> |—n)"l10-| .

On the other hand, since

(m+g-D[PF]—i_ @=D[*F]—i _
p—1 (p— Do —1) =

by our assumption we have

0 < nohy, —

ny+g— DA —i
o] = 2 - _)lf 170

Hence, for all m > 2 one has by Lemma 5.3 that

Ord}?(Cmp”Oﬂ’*lfl(is no + g— 2))
_ (mt+g—D[EF] —i
= |7n0)\.,10—|.

So the hypotheses of Lemma 3.5 iia and iib are satisfied. Again by Lemma 5.3,

+1

Ordp(CpHOJrg—l_l(l., no +g - 2)) > |—}’lo)»n0-| - 1,

where the equality holds if and only if [ f(x)rpf;fl]]p,l # 0 mod p. In this case Lemma
3.5 iic is satisfied, from which we conclude that NP,(X/IF,) < A,,. This contradicts
our assumption that NP;(X/I,) > A,,. Therefore, we have NP;(X/I,) = Ao. O
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