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1. Introduction

The results described herein were obtained in connection with the develop-
ment of some lattice theoretic machinery needed by Randall and Foulis in
their treatment of the so-called "logic of empirical science" (See [3] for an
introduction to this subject). The final product, however, turned out to be of
sufficient interest to warrant its independent presentation.

In the interest of brevity, our terminology and notation will, whenever pos-
sible, follow that of [1]. For that reason we shall not bother to re-introduce it
here. Specifically, it is assumed that the reader is familiar with the material
contained in [1], pp. 52-3. We shall make repeated use of the fact that every
interval sublattice of an orthomodular lattice is itself an orthomodular lattice
([1], Corollary 3, p. 53).

Given the orthomodular lattice L, one says that L is the disjoint sum of the
family (Lx)xsAa.nd writes L = DS(La: a e A) in case there is an equivalence
relation E on L\{0,/} such that:

(1) aCb=>aEb (here aCb denotes the fact that a commutes with b in the
sense of [1], p. 52).

(2) The set of equivalence classes of £ is {La\{0,/}: aeA}.
(3) There exist a,beL\{0,I} such that aEb fails.

If L = DS(LX: aeA) then each Lx is called a disjoint summand of L and if there
are only two summands M and N, we shall simply write L = DS(M,N) to denote
the fact that L is the disjoint sum of M and N. It is important to notice that if
L = DS(LX: aeA), then each Lx may be regarded as an orthomodular sublattice
of L. Given an indexed family {L0)xeA of pairwise disjoint orthomodular lattices
such that each La has at least four elements and Card (A) ^ 2 one can easily form
an orthomodular lattice L such that

L = DS(Lx:aeA).

Letting 0a,/a denote the zero and unit elements of La, we begin by setting
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M= u{

and ordering M by the rule x ^ y in Mox ^ y in some La. Then let L denote
the lattice formed by adjoining a new zero and unit element to M. If one uses the
induced orthocomplementation on L, the result is the desired orthomodular
lattice.

As a final introductory item, it will prove convenient to agree at this point
that L shall always denote an orthomodular lattice throughout the remainder of
this paper.

2. The near center

An element e of an orthomodular lattice L is called upper nearly central if
e ^ a < I implies e central in [0, a] ; it is called lower nearly central if 0 < b ^ e
implies e central in [b,Q and nearly central if it is both upper and lower nearly
central. Evidently e is upper nearly central •*> ex is lower nearly central. Examples
of upper nearly central elements are provided by: (1) any central element; (2) any
central element of a disjoint summand of L; (3) any co-atom of L (i.e., any
element covered by /). The first two examples are of course nearly central, and we
shall soon prove that every nearly central element arises in this manner. Further
examples of upper nearly central elements may be constructed by judicious ap-
plication of the next lemma.

LEMMA 1. Let f^ e in L. If e is upper nearly central in [/,/] and f is
upper nearly central in L, then e is upper nearly central in L.

PROOF. Given e 5| a < I we have /^ e ^ a < I, so e is central in [/, a] and
/ is central in [0,a]. It is immediate that e is central in [0,a].

We now develop a few elementary properties of upper nearly central ele-
ments. In connection with this it will prove convenient to write e ~f in case e
and/have a common complement in L (i.e., in case e is perspective to/) .

LEMMA 2. Let e, f be upper nearly central. If e does not commute with f
then e ~f.

PROOF. By definition of upper nearly central we must have

e Wf = eVf± = e

so e V / x = I and e A/"1" = 0. Thus fx is a common complement for e and / .

THEOREM 3. Let e be upper nearly central but not central. If e < a < I
then e ~ a.

PROOF. If eCx for all complements x of a, then e A x = 0 forces e ^ x^.
Thus e is contained in all complements of ax. By [1], Lemma 2, p. 71 e\J y = I
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implies ax ^ y. But then e, y±e[0,a2 forces eCy xand consequently eCy. Since
e A y < I also implies eCy we see that e is central, a contradiction. It follows that
there must exist a complement x of a such that e does not commute with x. Then
e V x = I and since e :§ a, we must have e A x = 0. Thus x is a common com-
plement for e and a.

COROLLARY. / / L is modular, then every upper nearly central element of
L is a co-atom.

We mention here that it is a fairly easy matter to extend the above Corollary
to the case where L has the property that e central in [0, a] implies that e is
contained in all complements of a A ex. The following innocuous appearing
lemma will turn out to have some important and far-reaching consequences
(See, for example, the proof of Lemma 17).

LEMMA 4. If e is upper nearly central but not central then for each central
element z either z g e or zx ^ e.

PROOF. Since e is not central there must exist a n x e L such that eCx fails.
Since

x = (x A z) V O A zx),

it follows from [1], Theorem 22, p. 53 that x A z or x A z1 must fail to commute
with e. If x A z does not commute with e, then

so e ^ z±. Similarly, x f\zx not commuting with e forces e 2: z.

LEMMA 5. / / e is wpper nearly central and x ^ ex is a complement of e
then 0 < y ^ x implies y $ C(e).

PROOF. Since x^ eL, we cannot have xCe. It follows that e V xx = / so
x A ex = 0. If 0 < y ^ x and yCe then y A e = 0 would force y ^ eA,
so y ^ ex A x = 0, a contradiction. Thus 0 < y ^ x implies y $ C(e).

We are now ready to consider the nearly central elements of L. To this end,
we agree to let NC(L) denote the set of nearly central elements of L, and call
NC(L) the near center of L, the symbol C(L) being reserved for the center of L.

THEOREM 6. Let e If and assume that e, f are both upper nearly central
elements of L, neither of which is central. Then C(e) is a disjoint summand of L.

PROOF, (a) We begin by showing that C(e) = C(/). To see this, observe that
x $ C(e) implies xx V e = / so that x A ^ = 0 . If xC/we would have x ^ / X since
x A / = 0. But then e\J x^fx <I would imply eCx, a contradiction. Thus
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L\C(e)^L\C(f),

and a symmetric argument produces the reverse inclusion.
(b) We next show that x $ C(e) and 0 < y ̂  x together imply that y $ C(e).

In view of Lemma 5, we need only show that x £ C(e) => x is a complement of e.
Since x V e = / is automatic, we merely observe here that

0 g x A e = (x1- V ^ ) x ^ (x1- V / ) x = / x = 0

since by (a), x $ C{e) => x £ C(/).
(c) Finally, we define an equivalence relation E on L\{0,/} by the rule

xEy if either {x,y} c C(e) or {x,>>} c L\C(e).

In order to show that C(e) is a disjoint summand of L, the only nontrivial assertion
is that xCy => xEy. This would follow if we could just establish that

There are two possible cases: Case 1. x /\ y # 0. Then by (b), x A J"£ C(e) so
x x v / ^ C ( e ) , / ^ C ( e ) and consequently y£C(e). Case 2. x A ^ O . Since
xCy this forces j ^ xL, and by (b), y ̂  C(e).

As an immediate consequence of the above theorem we have the following
characterization of the near center of L.

THEOREM 7. Given eeL, the following conditions are equivalent:
(1) e is nearly central but not central.
(2) Both e and e± are upper nearly central, but e is not central.
(3) e is upper nearly central but not central and there exists an element f

of L such that e Lf, f is upper nearly central, and f is not central.
(4) e is a central element of a disjoint summand of L.

At this point we need to state

LEMMA 8. Let e, f be nearly central elements of L. Then C(e) = C(/) or
C(e)nC(/) = {0,/}.

PROOF. If C(e) ̂  C(/) we may clearly assume the existence of an element x
such that xC/but x<£ C(e). Then e is not central so by Theorem 6,

L = DS(C(e), N)

where N = [L\C(e)'} u {0,/}. Since 0 < x < / and x e C(f) n N we must have
C( / )cJVsoC(e)nC( / ) = {0,/}.

This now allows us to prove the following fundamental theorem about the
near center of L.
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THEOREM 9. Let L be an orthomodular lattice.
(1) / / there exists a central element z$ {0,1} then NC(L) = C(L).
(2) If there exists a nearly central element which is not central, then every

nearly central element is a central element of a disjoint summand of L. It
follows that NC(L) is a sublattice of L, and as such is either a Boolean algebra
or a disjoint sum of Boolean algebras.

PROOF, (a) If there exists a central element z${0,I} then L can admit no
disjoint sum decomposition. In view of Theorem 7. We must have C(L) = NC(L).

(b) Assume now that there exists a nearly central element which is not
central. Then by (a), C(L) = {0,1}. It follows from Theorem 7 that every nearly
central element is a central element of a disjoint summand of L. If the nearly
central elements all commute, then they must all lie in the same disjoint summand.
In this case NC(L) is a Boolean sublattice of L. Suppose on the other hand that
there exist nearly central elements zt and z2 which do not commute. Let

M = U {C(z): 0<z<I, zeNC(L)}.

If M ^ L, it follows quickly from Theorem 7 that M is a disjoint summand of L.
In order to prove the remaining assertion of the theorem, we may clearly restrict
our attention to M. Accordingly, we define an equivalence relation £ onM\{0,/}
by the rule

xEy if and only if {x,y} e C(z) for some z in NC(L)\{0,I}.

It follows from Lemma 8 that xCy => xEy so E induces a disjoint sum decompo-
sition

M = DS(Lx:<xeA).

Now xeLx implies xEx so xCz for some zeNC(L)\{0,I}. Clearly C{z)^Lx

andtfyeLx\{O,I}, then {y,z} £ C(w) for some weNC(L)\{0,I}. By Lemma 8
C(z) = C(w), so yCz. It follows that Lx = C(z) and that

It is immediate that NC(L) is a sublattice of L and that the restriction of E to
NC(L) induces a disjoint sum decomposition

= DS(Nx:xeA)

where Nx = C(LX) for all aeA.

3. Indexing chains

A finite chain of the form

I = ao> at> ••• > an = a
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where at is a nearly central element of [0, af_i] for i = l,2,---,n and an > 0 is
called an indexing chain connecting a with I and the non zero element a is called
indexed if such a chain exists. We agree to call the orthomodular lattice L indexed
if every element of L is the join of a family of indexed elements. Our reasons for
looking at this concept are two-fold: First of all, it turns out that this is the type
of lattice encountered by Randall and Foulis in their investigation of empirical
logic; secondly, this seemingly unrelated concept sheds considerable light on the
nature of upper nearly central elements.

Let us say that the indexing chain

has length n, and tha t it is minimal if for i = 1, •••,n — 1 the chain

I = ao> — > a,-! > al+1 > — > an

formed by deleting at is not an indexing chain. Evidently any indexed element
may be connected with / by at least one minimal indexing chain. Our first order
of business will be to show that the existence of minimal indexing chains of length
2 forces NC(L) to have atoms. This fact will then be used to prove that every
indexed element of an orthomodular lattice has a unique minimal indexing chain
connecting it with /.

LEMMA 10. The indexing chain

I = ao>ai>a2

is minimal if and only if at is an atom of NC(L).

PROOF. If the given chain is not minimal, then I = ao> a2 must be an indexing
chain. But now a2eNC(L) with a2 < at shows a1 is not an atom of NC(L).
Suppose on the other hand that al is not an atom of NC(L). Then there exists a
nearly central element z with 0 < z < ax. We now observe that z is central in
[0 ,^] and it follows from Theorem 9 that a2 is central in [O.aJ. If al is central
in L, then a2 central in [O.aJ forces a2 central in L; similarly, at central in a
disjoint summand of L forces a2 central in that summand. In either event
a2 eNC(L), so I — a0 > a2 is an indexing chain, and the original chain was not
minimal.

THEOREM 11. An indexing chain

I = ao>at> ••• >an>an+l

is minimal if and only if at is an atom o / i V C ( [ 0 , a I _ 1 ] ) / o r i = l ,2 , - - - ,n .

PROOF. If the condition holds then by Lemma 10, no at may be removed
(1 5S i <j n). Hence the chain is minimal. If the condition fails, then some at
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(1 ;S i ^ n) is not an atom of NC(\0,ai-i)~\. Apply Lemma 10 to the indexing
chain

ai_1 >at>ai+1

of [O^j-J to get that «,_! > ai+l is an indexing chain in that interval. It is
immediate that

I = a o > a 1 > ••• > ai_t > ai+1 > ••• > an> an+1

is an indexing chain in L, so that the original chain was not minimal.

THEOREM 12. Let a be an indexed element of L. There then exists a unique
minimal indexing chain connecting a with I.

PROOF. The existence of at least one such chain is clear, so we shall direct
our attention toward establishing uniqueness. We will proceed by induction on the
length of a minimal indexing chain. We begin with the case where there is a
minimal indexing chain of length 1. If

I = b0 >&!>•••> bn = a

is any other indexing chain, then so is I = b0 > bn = a so we have a unique
minimal indexing chain connecting a with /. Suppose now that the theorem is true
for all indexed elements of an orthomodular lattice having a minimal indexing
chain of length at most n. Let

I = a0 > « ! > ••• > an > an + 1 = a

be a minimal indexing chain of length n + 1 and let

I = b o > b i > ••• > bk = a

denote any other minimal indexing chain, where we may clearly assume that
1 ^ n < k. Then

ax A bt 2: a > 0,

and by Theorem 11, aubl are atoms ofNC(L). It follows that a^ = bx. Working
in the orthomodular lattice [0, a j we see that

ax > ••• >an>an + 1 =a

is a minimal indexing chain of length n. By our induction hypothesis we see
that k = n + 1 and at = bt for all i.

Before proceeding, we shall have a look at modularity and commutativity
of indexed elements.

THEOREM 13. Let a,b denote indexed elements of L. If a A b i= 0 then
a l\b, a\jb are indexed and aCb
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PROOF. Let

I = ao>a1 > • • • >ak > ak+1 =a

I = bo>bl> ••• >bn>bn + l =b

denote minimal indexing chains. We may clearly assume k ^ n. If k ^ 1, then

at A &i 2: a A b > 0

with at,bt atoms of NC(L) implies al=b1. Similarly, ai = bi for i = 2,---,k.
By dropping down to the interval [0, a t ] we may assume that a is nearly central in
L. If b is nearly central there is nothing to prove, and otherwise,

a Ab^a Ab>0

with b± an atom of NC(L) forces bx ^ a. But now b ^ a, and once again there is
nothing to prove.

In connection with the next theorem, we shall use the symbol M(a,b) to
denote the fact that (a,b) forms a modular pair in the sense that

c-^b^{c\/ a) f\b = c\J (a f\b)
for all ceL.

THEOREM 14. Let a,b denote indexed elements of L with a A b = 0. Then
M(a,b)ofe is an atom or a Lb.

PROOF. It suffices to prove that if b is not an atom, then M(a, b)=> a Lb. Let

I = a0 > at> ••• > ak> ak+l = a

I = bo>b1 >••• >bn>bn + 1 =b

denote minimal indexing chains. We break the proof into three cases.

Case 1. n ^ k and at = bt for i ^ n. Dropping to [0, an] we may as well
assume that b is nearly central in L with a indexed. If b is central there is nothing
to prove; otherwise, we may write L = DS(M,N) with b central in M. If a £ M,
we choose an element c such that 0 < c < b. Then

c = c V (a A b) < (c V a) A b = b,

contrary to M(a,b). Thus a eM so aCb and therefore alb.

Case 2. k ^ n and a, = b{ for i ^ fe. Here we drop down to [0,aft] so that
we may assume a nearly central in L with b indexed. The proof is now analogous
to Case 1.

Case 3. at # fo;for some i :g min(fc, n). Then both fcand n are greater than 0,
and we may take / to be the least positive integer with the indicated property.
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Thus «,_! = Z?;_i and by dropping down to [0,ai-1'] we may as well assume that
aj^fej. If attCibt) we may write L = DS(M,N) with a1eM\{0,I} and
b1 EJV\{0,/}. Then aeM, beN and as in Case 1, M(a,b) fails. Thus we must
have a^Cb^, and since aub1 are atoms of NC(L), at Lbx follows. Therefore,
a 1 b as desired.

THEOREM 15. Let L be an indexed orthomodular lattice having no atoms.
Then M(a,b)oaCb.

PROOF. That aCb => M(a, b) follows from [1], Theorem 23, p. 53. To obtain
the converse we use the fact that the mapping

is an isomorphism of the interval [ f lA^aV^] °nto the interval

[O,(aVb)A(aJ-Vbx)l

Then M(a, b) implies M(a A (ax V bx), b A (ax V &""")) and

[a A (ax V bx)] A [6 A f^ V ̂ ) ] = 0.

If at ^ a A (a"1" V 6J")> &i ̂  b A (ax V ^X) are indexed, then by Theorem 14,
M(a1,ft1) implies ax ± i 1 # Since L is indexed

a A (ax V £x) -L b A (ax V &X)

follows. By [2], Lemma 3, p. 68 this yields aCb.
As a final item we now seek to relate the notion of an indexed element with

that of an upper nearly central element. We begin with the observation that by
repeated application of Lemma 1, we have that every indexed element of an
orthomodular lattice is lower nearly central. As a partial converse to this we
present

LEMMA 16. Let e be an upper nearly central element of L. If ex contains
an indexed element then ex is itself indexed.

PROOF. We may clearly assume that e is not nearly centralsince in that case
there is nothing to prove. We will proceed by induction on the length of a minimal
indexing chain connecting an indexed subelement of ex with /, the length 1 case
being trivial by Theorem 7.

Suppose that there exists a minimal indexing chain

I = a o > a 1 > ••• > an

with an ̂  ex. If at is central then by Lemma 4, either at ^ e or a^^ e. If av is
not central then C(a^) is a disjoint summand of L. Now
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and since e $ NC(L) we must have that e is upper nearly central but not central in
C(at). Applying Lemma 4 to C(at), we once more obtain a t ^ e or a^ ^ e. Now
if a t ^ e then an ^ aj ^ e forces

an ^ e A e ± = 0,

contrary to an > 0. We deduce that af ^ e, so e± ^ a l t

We claim next that e A ^i is upper nearly central in [ O , ^ ] . To see this, let

Then

(eAai)VaiJ"=eVai"L^^Va1-L < J.

If y ^ x, then e,j>e[0,x V ai±l forces 'eCy, and consequently e/\al Cy. It
follows that e A «i is central in [0,x], so e A «i is upper nearly central in [0,aj].
If it were nearly central this would make ex nearly central in [0, a t ] thus completing
the proof; if not, we drop down to [0,aj] and note that

« i > a 2 > ••• > a n

is a minimal indexing chain of length n — 1. By induction we may assume
e± indexed in [0, a j and consequently in L.

This leads immediately to

THEOREM 17. An element e${0,I} of an indexed orthomodular lattice L is
upper nearly central o e x is indexed; it is nearly central o both e and e1'are
indexed.

Thus Theorems 13 and 14 may be dualized to apply to upper nearly central
elements. We summarize the results here: Let a,b denote upper nearly central
elements of the indexed orthomodular lattice L.

(1) If a V b < I, then a f\b, a V b are upper nearly central.
(2) If a V b = I then M*(a, b)ob is a co-atom or a^bx.
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