ON FIXED AND PERIODIC POINTS UNDER CERTAIN SETS OF MAPPINGS

R.D. Holmes*

(received May 9, 1969)

1. Introduction. Let (X, d) be a metric space and f a mapping of X into itself. D. F. Bailey [1] considered a class of mappings f satisfying the condition: $\forall x, y \in X, x \neq y$,

(1.1)
$$\exists n(x,y) \in I^+$$
 such that $d(f^n(x), f^n(y)) < d(x,y),$

where I^+ denotes the set of positive integers. For X compact and f continuous, he proved that such mappings possess a unique fixed point. In considering a local version (i.e. (1.1) holds if $0 < d(x,y) < \varepsilon$) he showed that f has a finite, nonempty set of periodic points.

In [3], V.M. Sehgal considered the special case when (1.1) is replaced by: $\forall x \in X$,

(1.2)
$$\exists n(x) \in I^+$$
 such that $d(f^n(x), f^n(y)) < \lambda d(x, y), \forall y \in X$

where $0 \le \lambda < 1$, and proved that, if X is complete and f continuous, f has a unique fixed point.

In the present paper we consider both semigroups of mappings and single mappings satisfying conditions closely related to those studied in [1] and [3], namely: if F is a commutative semigroup of continuous mappings $f: X \to X: \forall x \in X$

Canad. Math. Bull. vol. 12, no. 6, 1969

^{*}Izaac Walter Killam Scholar at Dalhousie University

(1.3)
$$\exists n(x) \in I^{+} \text{ and } f_{x} \in F \text{ such that } \forall y \in X \text{ we have } d(f_{x}^{n}(x), f_{x}^{n}(y)) \leq \lambda d(x, y);$$

and the more general: ∀x, y ∈ X,

(1.4)
$$\exists n(x,y) \in I^{+} \text{ and } f_{x,y} \in F \text{ for which}$$
$$d(f_{x,y}^{n}(x), f_{x,y}^{n}(y)) \leq \lambda d(x,y).$$

As no member of the semigroup need satisfy either (1.1) or (1.2) it is quite clear that an extra hypothesis must be introduced if we wish to insure the existence of a common fixed point. This is especially true in the case when the space X is not assumed to be compact. Such a condition (cf. Theorem 1) is given by considering the "orbit" F[x] (= $\{f(x): f \in F\}$) of a point $x \in X$ and requiring

(1.5)
$$\exists x \in X \text{ for which } f_{F[x]} = \{f_y : y \in F[x]\} \text{ is finite.}$$

In the case of a single mapping f (Section 3), we consider the stronger condition: $\forall x, y \in X$,

(1.6)
$$\exists N(x,y) \in I^{+} \text{ such that } d(f^{N+t}(x), f^{N+t}(y)) \leq \lambda d(x,y),$$

$$t = 0, 1, 2, \dots$$

to obtain results similar to [1] in non-compact spaces.

I should like to thank Professor M. Edelstein for his helpful advice in this research.

2. In this section let F (as above) denote a commutative semigroup of continuous self mappings of the space (X,d). The major result of this section is the following.

THEOREM 1. If (X, d) is complete and F is such that conditions (1.3) and (1.5) are satisfied, then there is a unique $z \in X$ such that f(z) = z for all $f \in F$. Moreover, there is a sequence of functions $g_n \in F$ such that $g_n(y)$ converges to z for every $y \in X$.

COROLLARY. If (X,d) is complete and F is such that (1.3) is satisfied and either:

- (i) X is bounded, or
- (ii) f_X is finite

then the conclusions of Theorem 1 follow.

Remark 1. The Theorem of [3] is a special case of this Corollary for in this case f_X is the single mapping f and (ii) applies.

Remark 2. Examples are easily constructed in which no member of F satisfies e.g. (1.1) or (1.2). Thus, the consideration of families leads to strictly more general results.

Proof of Theorem 1 and Corollary. In order to simplify the notation in the proof we will denote the n'th iterate $f_{\mathbf{x}}^{n}$ of $f_{\mathbf{x}}$ by f[n;x].

Let x_1 be the point whose existence is guaranteed by (1.5), and set $n_1 = n(x_1)$, $f_1 = f_1$ and in general $n_r = n(f_{r-1}^{r-1}f_{r-2}^{r-2}\dots f_1^{n}(x_1))$ and $f_r = f[1; f_{r-1}^{r-1}\dots f_1^{n}(x_1)]$, $r = 2, 3, \dots$. Denote $f_{r-1}^{r-1}\dots f_1^{n}$ by g_r , and $g_r(x_1)$ by x_r . Then, by (1.3), we have, for all y,

(2.1)
$$d(x_r, g_r(y)) \le \lambda d(x_{r-1}, g_{r-1}(y)) \le \cdots \le \lambda^{r-1} d(x_1, y),$$

and in particular, for $y = f_r^r(x_1)$, we have

$$d(x_r, x_{r+1}) \le \lambda^{r-1} d(x_1, f_r^{r}(x_1)).$$

Now, if the $d(x_1, f_r^{(r)}(x_1))$, $r = 1, 2, \cdots$, were bounded (as they are in the corollary (i)), the sequence $\{x_r\}$ would be a Cauchy sequence and would thus converge to some $z \in X$. But, for any r and $h \in F$, we would have, by (2.1),

$$d(x_r, h(x_r)) = d(x_r, g_r(h(x_1))) \le \lambda^{r-1}d(x_1, h(x_1))$$

and, letting $r \to \infty$, we get d(z,h(z)) = 0, or h(z) = z.

If we also have h(w) = w for all $h \in F$, then

$$d(z, w) = d(f_z^{n(z)}(z), f_z^{n(z)}(w)) \le \lambda d(z, w).$$

Hence d(z, w) = 0 and z is unique. Finally, letting $r \to \infty$ in (2.1), we have $\{g_r(y)\} \to z$ for all $y \in X$.

To show that the $d(x_1, f_r^r(x_1))$ are bounded, let h_1, h_2, \dots, h_k be the set (finite by (1.5), or by (ii) in the Corollary) of distinct f_r 's. Let the first occurence of h_i be as f_i and set f_i

B = maximum
$$\{d(x_1, x_{i+1}): i = 1, 2, \dots, k\}$$

D = maximum
$$\{d(x_{r_i}, x_{r_i+1}): i = 1, 2, \dots, k\}$$
 and

C = max { max {
$$d(x_{r_i}, f[j; r_i](x_1)) : i = 0, 1, \dots, n_{r_i}$$
 } :

$$i = 1, 2, \dots, k$$
 .

Now, consider $d(x_1, f_r^r(x_1))$. For some j, $f_r = h_j$ and we can set $n_r = sn_r + t$ with $0 \le t \le n_r$ and we have

$$\begin{split} &\mathrm{d}(\mathbf{x}_{1}, \overset{n}{\mathbf{r}}^{\mathbf{r}}(\mathbf{x}_{1})) \leq \mathrm{d}(\mathbf{x}_{1}, \mathbf{x}_{\mathbf{r}_{j}+1}) + \mathrm{d}(\mathbf{x}_{\mathbf{r}_{j}+1}, \overset{n}{\mathbf{f}}^{\mathbf{r}}_{\mathbf{r}}(\mathbf{x}_{1})) \\ &\leq \mathrm{B} + \mathrm{d}(\mathrm{h}[\mathbf{n}_{\mathbf{r}_{j}}; j](\mathbf{x}_{\mathbf{r}_{j}}), \mathrm{h}[\mathbf{s}\mathbf{n}_{\mathbf{r}_{j}+1}; j](\mathbf{x}_{1})) \\ &\leq \mathrm{B} + \lambda \, \mathrm{d}(\mathbf{x}_{\mathbf{r}_{j}}, \mathrm{h}[(\mathbf{s}-1)\mathbf{n}_{\mathbf{r}_{j}+1}; j](\mathbf{x}_{1})) \quad \mathrm{by} \quad (1.3) \\ &\leq \mathrm{B} + \lambda \, \mathrm{d}(\mathbf{x}_{\mathbf{r}_{j}}, \mathbf{x}_{\mathbf{r}_{j}+1}) + \lambda \, \mathrm{d}(\mathbf{x}_{\mathbf{r}_{j}+1}, \mathrm{h}[(\mathbf{s}-1)\mathbf{n}_{\mathbf{r}_{j}+1}; j](\mathbf{x}_{1})) \\ &\leq \mathrm{B} + \lambda \, \mathrm{D} + \lambda^{2} \, \mathrm{d}(\mathbf{x}_{\mathbf{r}_{j}}, \mathrm{h}[(\mathbf{s}-2)\mathbf{n}_{\mathbf{r}_{j}+1}; j](\mathbf{x}_{1})) \\ &\leq \mathrm{C} \\ &\leq \mathrm{B} + (\lambda + \lambda^{2} + \cdots + \lambda^{s-1}) \, \mathrm{D} + \lambda^{s} \, \mathrm{d}(\mathbf{x}_{\mathbf{r}_{j}}, \mathrm{h}[\mathbf{t}; j](\mathbf{x}_{1})) \\ &\leq \mathrm{B} + \frac{\lambda}{1-\lambda} \, \mathrm{D} + \mathrm{C}. \end{split}$$

Hence the $d(x_1, f_r^r(x_1))$ are bounded and the theorem is proven.

Locally, we have the following:

THEOREM 2. Let (X,d) be compact and suppose that the following local version of (1.4) is satisfied:

(2.2)
$$\forall x, y \in X, d(x, y) < \epsilon \quad \underline{imply that} \quad \exists n(x, y) \in I^+ \quad \underline{and an}$$

$$f_{x, y} \in F \quad \underline{for which} \quad d(f^n(x), f^n(y)) \leq \lambda d(x, y).$$

Then, each finite collection $\{f_1, f_2, \dots, f_r\} \subseteq F$ has at least one common periodic point.

$$\frac{P \mathbf{roof}}{\overset{n}{1}}. \text{ For a fixed } x \text{ and } y, \ d(x,y) < \varepsilon \text{, define } \underset{1}{\overset{n}{1}} = n(x,y),$$

$$f_1 = f_{x,y}^{\overset{n}{1}}, f_r = f_{g_r(x),g_r(y)}^{\overset{n}{1}} g_r = f_{r-1}^{\overset{n}{1}} f_{r-2} \cdots f_1 \text{ and}$$

$$n_r = n(g_r(x), g_r(y)), r = 2, 3, \dots$$
 Then

(2.3)
$$d(g_{r}(x), g_{r}(y)) = d(f_{r-1}(g_{r-1}(x)), f_{r-1}(g_{r-1}(y)))$$

$$\leq \lambda d(g_{r-1}(x), g_{r-1}(y)) \leq \cdots$$

$$\leq \lambda^{r-1} d(x, y).$$

By compactness, there is a subsequence $\{g_r(x)\}$ of $\{g_r(x)\}$ which converges to some point $z \in X$. By (2.3), $\{g_r(y)\}$ also converges to z. Note that g_r and the sequence $\{r_i\}$ depend on both x and y.

Next, we show that each $h \in F$ has periodic points. Let $p \in X$, $h \in F$. Then, by compactness, $\mathbf{j}s$, $t \in I^+$ such that $d(h^s(p), h^{s+t}(p)) < \varepsilon$. Let $x = h^s(p)$ and $y = h^{s+t}(p) = h^t(x)$ and apply the preceding paragraph. Hence \mathbf{j} a sequence $\{g_u\}$ and a $z \in X$ such that $\lim_{u \to \infty} g_u(x) = z$ and $z = \lim_{u \to \infty} g_u(y) = \lim_{u \to \infty} g_u^h(x) = h^t(\lim_{u \to \infty} g_u(x)) = h^t(z)$ and z is a period point of h.

Now, to proceed by induction, suppose h_1, h_2, \cdots, h_n have a common period point w, and let h be an arbitrary element of F. Then, by the preceding, there is a $\{g_u\}$, a z, and an $s \in I^+$, such that $\lim_{u \to \infty} g_u h^s(w) = z$ and z is a periodic point of h. If $h_j^t(w) = w$, then

$$h_{j}^{t}(z) = h_{j}^{t} (\lim_{u \to \infty} g_{u}h^{s}(w)) = \lim_{u \to \infty} g_{u}h^{s}h_{j}^{t}(w)$$
$$= \lim_{u \to \infty} g_{u}h^{s}(w) = z$$

and z is a common periodic point of h, h_1, \dots, h_n .

COROLLARY. Any continuous mapping of a compact metric space into itself, which commutes with an €-local contraction, has periodic points.

Remark. Theorem 2 generalizes [1, Corollary 2 of Theorem 2].

Example. Let X be the interval [-1, 1] with the usual metric and define

$$f(x) = \begin{cases} \frac{1+x}{2} & \text{if } x \ge 0, \\ \frac{1+x-2x}{2} & \text{if } -\frac{1}{2} \le x \le 0, \\ 2x+1 & \text{if } -1 \le x \le -\frac{1}{2}. \end{cases}$$

and set $g = f^{-1}$. f and g are clearly continuous and commuting. If $\lambda > \frac{1}{2}$ and $\epsilon \le \lambda - \frac{1}{2}$ then (2.2) is satisfied by f for $x \ge 0$ and by g for x < 0. f and g have common periodic points 1 and -1 although neither is locally contractive.

3. In this section we consider a more restrictive contraction condition (1.6) on a single mapping. This allows for some relaxation of the conditions on the space.

THEOREM 3. Let (X,d) be a metric space and $f: X \to X$ a continuous mapping such that (1.6) is satisfied and

(3.1)
$$\mathbf{g} \times \mathcal{E} \times \mathbf{g} \times \mathbf$$

Then z is the unique fixed point and, for all $y \in X$, the sequence $\{f^n(y)\}$ converges to z.

 $\frac{\text{Proof.}}{\text{N}_{k+1}} \text{ Let } \mathbf{x} \text{ be as in (3.1) and set } N_1 = N(\mathbf{x}, f(\mathbf{x})), \text{ and } N_{k+1} = N_k + N(f^{N_k}(\mathbf{x}), f^{N_k+1}(\mathbf{x})), \quad k = 1, 2, 3, \dots. \quad \text{Thus,}$ $d(f^{N_k+t}(\mathbf{x}), f^{N_k+t+1}(\mathbf{x})) \leq \lambda^k d(\mathbf{x}, f(\mathbf{x})). \quad \text{Let } i_r \text{ be the smallest}$ integer such that $n_{i_r} \geq N_r$ and $i_r > i_{r-1}$. Then $f^n i_r(\mathbf{x}) \rightarrow \mathbf{z}$ and

 $d(f^{n}i_{r}(x),\ f^{n}i_{r}^{+1}(x)) \leq \lambda^{r}d(x,f(x)). \ \ \text{Hence}$

$$f(z) = \lim_{r \to \infty} f^n i_r^{+1}(x) = \lim_{r \to \infty} f^n i_r(x) = z$$

and z is fixed. If $y \in X$ is arbitrary, then

$$d(f^{N(y,z)+t}(y),z) = d(f^{N(y,z)+t}(y),f^{N(y,z)+t}(z)) \leq \lambda d(y,z).$$

Repeating this argument with $f^{N(y,z)}(y)$ in place of y and continuing inductively, we get that $\{f^{n}(y)\}$ converges to z.

If we localize condition (1.6), we can conclude that f must at least have periodic points.

THEOREM 4. Let (X,d) be a metric space and $f: X \to X$ a continuous mapping such that (3. 1) holds and

(3.2)
$$\begin{aligned} \textbf{\textit{\textbf{J}}} & \boldsymbol{\varepsilon} &> 0, \ \lambda, \ 0 \leq \lambda < 1, \ \ \underline{\text{such that}} \ \ d(\mathbf{x}, \mathbf{y}) < \boldsymbol{\varepsilon} \ \ \underline{\text{implies that}} \\ & \textbf{\textit{\textbf{J}}} N(\mathbf{x}, \mathbf{y}) \ \ \underline{\text{for which}} \ \ d(\mathbf{f}^{N+t}(\mathbf{x}), \ \mathbf{f}^{N+t}(\mathbf{y})) \leq \lambda \, d(\mathbf{x}, \mathbf{y}), \\ & t = 0, 1, \cdots \end{aligned}$$

then z (of (3.1)) is a periodic point.

 $\frac{\text{Proof.}}{\overset{M}{\text{I}}} \text{ By (3.1), there is a point } x \text{ with } \lim_{i \to \infty} f^{i}(x) = z \text{ and } x \text{ an$

$$d(f \xrightarrow{N_k^{+t}} (x), f \xrightarrow{N_k^{+t+m}} (x)) \leq \lambda^k d(x, f^{m_1}(x)).$$

Let i be the smallest integer such that m $\stackrel{>}{r}$ $\stackrel{N}{r}$ and i $\stackrel{>}{r}$ $\stackrel{i}{r}$. Then $\{f^{ir}(x)\} \rightarrow z$, and, as

$$d(f^{i_r}(x), f^{i_r}^{m_{i_r}+m_1}(x)) \leq \lambda^r d(x, f^{m_1}(x)), \text{ we have}$$

$$f^{1}(z) = \lim_{r \to \infty} f^{i}r^{+m}(x) = \lim_{r \to \infty} f^{i}r(x) = z$$

and z is periodic.

Finally, to ensure a fixed point in the local case, it is sufficient to assume that X is ϵ -chainable.

THEOREM 5. Let X and f be as in Theorem 4 and in addition suppose that X is ϵ -chainable. Then z is a unique fixed point and, for every $x \in X$, the sequence f(x) = f(x) converges to f(x) = f(x).

<u>Proof.</u> Define a metric D on X by setting D(x,y) equal to the infimum of the lengths of all ϵ -chains from x to y. This is easily shown to be a metric equivalent to d (cf. e.g. [2]).

Let $x, y \in X$ be artibrary, but fixed, and let $0 < \rho \le \frac{1-\lambda}{2} D(x,y)$. Now, there is an ϵ -chain $\{x = x_0, x_1, \dots, x_k = y\}$ from x to y such that $\lambda D(x,y) + \rho \ge \sum_{i=1}^k \lambda d(x_i, x_{i-1})$. For each i we have $d(x_i, x_{i-1}) < \epsilon$ and, thus, by (3.2), there is an N_i for which $N_i + t$ $N_i + t$ $d(f(x_i), f(x_{i-1})) \le \lambda d(x_i, x_{i-1}) < \epsilon$. Therefore, setting $N = \max\{N_i\}$ we have

$$\Sigma_{i=1}^{k} \lambda d(x_{i}, x_{i-1}) \ge \Sigma_{i=1}^{k} d(f^{N+t}(x_{i}), f^{N+t}(x_{i-1}))$$

$$\ge D(f^{N+t}(x), f^{N+t}(y))$$

and, setting $\tilde{\lambda}_{1} = \frac{1+\lambda}{2} < 1$,

$$\stackrel{\sim}{\lambda} D(\mathbf{x}, \mathbf{y}) \; = \; \lambda \; D(\mathbf{x}, \mathbf{y}) \; + \; \frac{1 - \lambda}{2} \; D(\mathbf{x}, \mathbf{y}) \; \geq \; \lambda \; D(\mathbf{x}, \mathbf{y}) \; + \; \rho \; \geq \; D(\mathbf{f}^{N + t}(\mathbf{x}), \, \mathbf{f}^{N + t}(\mathbf{y})).$$

As this construction can be carried out for all pairs $x,y, x \neq y$, (X,D), f, and $\widetilde{\lambda}$ satisfy the conditions of Theorem 3, and the conclusions follow.

REFERENCES

- 1. D.F. Bailey, Some theorems on contractive mappings. J. Lond. Math. Soc. 41 (1966) 101-106.
- 2. P.R. Meyers, On the converse to the contraction mapping principle. (Ph.D. Thesis, U. of Maryland, 1966).
- 3. V.M. Sehgal, A fixed point theorem for local contraction mappings. Amer. Math. Soc. Notices 12 (1965) 461.

University of Alberta Edmonton, Alberta