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1. Introduction. Let (X,d) be a metric space and f a mapping
of X into itself. D.F. Bailey [1] considered a class of mappings f
satisfying the condition: vwx, vy € X, x # vy,

(1.1) Jn(x,y) € I suchthat d(f(x), £(y)) < d(x,y),

where 1" denotes the set of positive integers. For X compact and
f continuous, he proved that such mappings possess a unique fixed
point. In considering a local version (i.e. (1.1) holds if

0 < d(x,y) < € ) he showed that f has a finite, nonempty set of
periodic points.

In [3], V.M. Sehgal considered the special case when (1.1) is
replaced by: vx € X,

(1.2) In(x) € I such that d(f (x), £ (y)) < Nd(x,y), Vy ¢ X

where 0 < X < 1, and proved that, if X is complete and f
continuous, f has a unique fixed point.

In the present paper we consider both semigroups of mappings
and single mappings satisfying conditions closely related to those
studied in [1] and [3], namely: if F is a commutative semigroup of
continuous mappings f: X - X: yx € X
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(1. 3) In(x) € I" and fX € F such that vy € X we have

n n
d(f , f < »Y)s
(£(x), £1y)) < Ndlx,y)
and the more general: Vx,y € X,

(1.4) In(x,y) € I' and f € F for which
xX,Y¥

dE, (3 T () < NG y).

3 )

As no member of the semigroup need satisfy either (1.1) or (1.2) it
is quite clear that an extra hypothesis must be introduced if we wish
to insure the existence of a common fixed point. This is especially
true in the case when the space X is not assumed to be compact.
Such a condition (cf. Theorem 1) is given by considering the "orbit"
F[x] (={f(x): f €« F} ) of a point x € X and requiring

(1.5) Jx ¢ X for which fF = {fy: y € F[x]} is finite.

(=]

In the case of a single mapping f (Section 3), we consider
the stronger condition: Vx, y € X,

(1. 6) IN(x,y) € TF such that d(f (x), £ (y)) < Nd(x,y),
t = O’ 1’ 2’ P

to obtain results similar to [1] in non-compact spaces.

I should like to thank Professor M. Edelstein for his helpful
advice in this research.

2. In this section let F (as above) denote a commutative
semigroup of continuous self mappings of the space (X,d). The
major result of this section is the following.

THEOREM 1. I_f (X,d) is complete and F is such that
conditions (4. 3) and (1.5) are satisfied, then there is a unique z € X
such that f(z) = z for all f € F. Moreover, there is a sequence of
functions g, € F such that gn(y) converges to z for every y € X.
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COROLLARY. If (X,d) is complete and F is such that (1. 3)
is satisfied and either:

(i) X is bounded, or

(i) £ is finite

then the conclusions of Theorem 1 follow.

Remark 1. The Theorem of [3] is a special case of this
Corollary for in this case fX is the single mapping f and (ii) applies.

Remark 2. Examples are easily constructed in which no member
of F satisfiese.g. (1.1) or (1.2). Thus, the consideration of

families leads to strictly more general results.

Proof of Theorem 1 and Corollary. In order to simplify the

n
notation in the proof we will denote the n'th iterate f of f by
X x

f[n;x].

Let x1 be the point whose existence is guaranteed by (1.5),

n n n
-1 -2 1
and set n1 = n(x1), f1 = fx1 and in general nr = n(frf1 frfz ...f1 (x1))
n n n n
r-1 1 r-1 1
= M4 PRPEI 3y = 2, g e e o t f .. f
and fr fl1; fr-'l f1 (x1)] r 3 Denote et 1

by gr, and gr(x1) by xr. Then, by (1. 3), we have, for all vy,

-1
(2.1)  dlx, g (y) < Mdlx L) < 2T ),

1’ gr-

n

and in particular, for y = f r(xi), we have
r

n

r-1 r
, <\ , f .
d(xr X ) < d(x1 v (xi))

r+1
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n
Now, if the d(x1, f r(x )), r =1,2, -+, were bounded (as they
r

are in the corollary (i)), the sequence {x } would be a Cauchy
r

sequence and would thus converge to some z €¢X. But, for any r
and h ¢ F, we would have, by (2.1),

-1
d(x . h(x ) = d(x_, g (h(x,)) < . d(x,,h(x,))

and, letting r — o, we get d(z,h(z)) =0, or h(z) = z.

If we also have h(w) = w for all he F, then

d(z,w) = d(f’zl(z)(z), fr;(z)(w)) < \d(z,w).

Hence d(z,w) = 0 and z is unique. Finally, letting r — % in
(2.1), we have {gr(y)} -z for all ye X.

n

r
 h.,---,h
To show that the d(xi, fr (x1)) are bounded, let h1 h2 X

be the set (finite by (1.5), or by (ii) in the Corollary) of distinct
f 's. Let the first occurence of h, be as f and set
r i r,

i

= i d s ti=1,2,-4,k
B = maximum { (x1 Xr,+1) i }
i
D = maximum {d(x ,x ):i=1,2,---,k} and
r, r.+1
1 1
C = max {max {d(x ,f[j;r ](x,)):i=0,1,-+-,n }:
r, i 1 r,
i i
i=1,2,---,k}
n
Now, consider d(x,,f t (x,)). For some j, f =h, and we
1" r 1 r j
can set nr =sn +t with 0 <t <n and we have
r. - = r,
J J
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n n

r Tr
’f ) ’f
dlxya 0 G < dlxy er+ Pt d(xrj+ 1 ()

< B+ d(h[nrj;j ](xrj),h[snrj+ t;j] (x1))

IN

B+ Nd(x ,h[(s - 1)n +t;j]l(x,)) by (1.3)
rj rj 1

In

B + \d(x ,x ) + Nd(x
r. r

_— .+1,h[(s—1)nr.+t;j](x1))
J

J J

IN

2
B+ XD+ \ d(xr ,h[(s-Z)nr +t55] (x1))
j J

In

IA

2 -1
B+ +2" 4.0 +2° )D+)\sd(xr,h[t;j](x1))
J

X\
B + 1_)\D+C.

IN

n
Hence the d(xi,f r(x1)) are bounded and the theorem is proven.
r

Locally, we have the following:

THEOREM 2. Let (X,d) be compact and suppose that the
following local version of (1.4) is satisfied:

(2.2) Vx,y € X, d(x,y) < € imply that JIn(x,y) € I" and an
y y ply In(x,y

£, ,¢F for which A=), £1y) < Nd(x,y).

Then, each finite collection {fi'fZ’ ---,f } € F has at least one
S =

common periodic point.

Proof. For a fixed x and vy, d(x,y) < €, define n1 = n(x,y),
n1 n

f o=f - ,f =f7F g =f f _...f and

1 o xy r g (x),gly) T r-ir-2 1
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= ’ ’ = 2; LIRS Th
nr n(gr(x) gr(y)) r 3 en

(2.3) d(g_(x), g_(v) = dlf (), £

r18ry

IA
>

2

[4)0}

A lag, v).

IN

By compactness, there is a subsequence {gr (x)} of {gr(x)} which

i
converges to some point z € X. By (2. 3), {gr (y)} also converges
i
to z. Note that gr and the sequence {r} depend on both x and
1

Y.

Next, we show that each h € F has periodic points. Let
p € X, he F. Then, by compactness, gs, t € Tt such that

t +t t
a(h°(p), n°(p)) < €. Let x =h°(p) and y =h° (p) = h'(x) and
apply the preceding paragraph. Hence 3 a sequence {g } anda
u

. s s t
e X h that Iim = d = lim =1 h =
z suc a u1—>°0 gu(x) z and z u1—>oo gu(y) l;_rzéo g, (x)

t
h(lim g (x)) = ht(z) and z is a period point of h.
u—>o0 u

Now, to proceed by induction, suppose hi,h .. ’hn have a

2"’

common period point w, and let h be an arbitrary element of F.
+

Then, by the preceding, there is a {gu} , a z, and an s €1 ,

such that Ilim g hs(w) =z and z is a periodic point of h. If
u—>0 ~u

t
h.(w) =w, then
]
t t t
h.(z) = h. (lim g h°(w)) = lim g h°h (w)
J J u—oo u u—>0 u J
. s
=Ilim g h(w) =2
u—>0 u
and z is a common periodic point of h, h ,*"",h .
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COROLLARY. Any continuous mapping of a compact metric

space into itself, which commutes with an € -local contraction, has

periodic points.
Remark. Theorem 2 generalizes [1, Corollary 2 of Theorem 2].

Example. Let X be the interval [-1, 1] with the usual metric
and define

( —1—;—}{ if x> 0,
1+ Z2 1
X-2x
:< —e 1 - —
f(x) 2 if Zéxéo,
. 1
2x + 1 if -1 <x< -=.
N = = 2

-1
and set g =f . f and g are clearly continuous and commuting.
If X > ‘;—' and € < N -% then (2.2) is satisfied by f{ for x > 0
and by g for x < 0. f and g have common periodic points 1

and -1 although neither is locally contractive.

3. In this section we consider a more restrictive contraction
condition (1. 6) on a single mapping. This allows for some
relaxation of the conditions on the space.

THEOREM 3. Let (X,d) be a metric space and f: X - X
a continuous mapping such that (1. 6) is satisfied and

(3.1) J x € X such that {fn(x)} contains a subsequence

{fni(x) converging to some point z € X.
ging

Then 2z is the unique fixed point and, for all y € X, the sequence

{fn(y)} converges to z.
Proof. Let x be as in (3.1) and set N1 = N(x, f(x)), and

- Nic k1 -
Nk+'1 —Nk+N(f (%), fN (x)), k=1,2,3,... . Thus,

k
Ak ), N ) < A'd(x,£(x)). Let i_ be the smallest

integer such that n, > Nr and ir > i Then fnir(x) -z and

r r-1
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A" (x), f“f;i(x)) < \7d(x, fx)). Hence

r

+1

1
N

f(z) = lim f1i, (x)=lm fi (x)
r—>00 r—>0 r

and z is fixed. If y e X is arbitrary, then

d(fN(y’z)+t(y),z) - d(fN(Y’Z)+t(y),fN(Y’Z)+t(z)) < ndly,2).

fN(Yr z)

Repeating this argument with (y) in place of y and continuing

inductively, we get that {fn(y)} converges to z.

If we localize condition (1. 6), we can conclude that f must at
least have periodic points.

THEOREM 4. Let (X,d) be a metric space and f: X - X a
continuous mapping such that (3. 1) holds and

(3.2) Je >0, N\, 0 <\ <1, suchthat d(x,y) < € implies that

IN(x,y) for which d(f Ti(x), £ (y)) < (s y),
t = 0’ »1, o« e

then z (of (3.1)) is a periodic point.

m,

Proof. By (3.1), there is a point x with Ilim f 1(x) = z and
my 1= my
d(x,f "(x))< €. Continuing as in Theorem 3, set N, = N(x,f "(x))
N1 Niegt™y !
and N, = N(f (x), (x)) + N , k=2,3,... . Thus

k k-1
Nk+t N, +t+m k m,
d(f (x), £ (x)) < N d(x,f *(x)).

Let i be the smallest integer such that m, > Nr and
r =
r

m-
i >i . Then {f 11'(x)} -z, and, as
r
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m, m, +m m

1
a(f r(x), f r (x)) < )\rd(x,f 1(X)), we have
m, m, +m, m
f (z) = lm f 'r (x) = lim f 'r(x) =z
T —>00 r —>00

and z is periodic.

Finally, to ensure a fixed point in the local case, it is
sufficient to assume that X is € -chainable.

THEOREM 5. Let X and f be as in Theorem 4 and in
addition suppose that X is € -chainable. Then z is a unique fixed
point and, for every x € X, the sequence {fn(x)} converges to z.

Proof. Define a metric D on X by setting D(x,y) equalto
the infimum of the lengths of all € -chains from x to y. This is
easily shown to be a metric equivalent to d (cf. e.g. [2]).

1-)\
Let x, y € X be artibrary, but fixed, and let 0 < p < > D(x,v).

Now, there is an € -chain {x = xo,xi,---,xk =y} from x to y

such that XD(x,y) + p > Ei 1 Nd(x., x, 1). For each i we have
= = 1 1=

d(x.,x, 1) < € and, thus, by (3.2), there is an N, for which
i i- i

N.+t N+t
d(f ' (x.), ! (x. ,)) < \Nd(x.,x, ,) < €. Therefore, setting
i i-1"" = i i-1

N = Max{N.,} we have
i

= S nae,x > = S a@ ), N )
i=1 i = i=1 i

i-1 i-1
N+t +t
> D e, £ )
>~ 14\
and, setting \ = % < 1,

~ 1-
AD(x,y) = AD(x,y) + S5 D(x,y) > AD(x,y) +p > DI (), £ (y)).

As this construction can be carried out for all pairs x,y, x # vy, (X,D),

&
f, and \ satisfy the conditions of Theorem 3, and the conclusions
follow.

821

https://doi.org/10.4153/CMB-1969-106-1 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1969-106-1

REFERENCES

1. D.F. Bailey, Some theorems on contractive mappings. J.
Lond. Math. Soc. 41 (1966) 101-106.

2. P.R. Meyers, On the converse to the contraction mapping
principle. (Ph.D. Thesis, U. of Maryland, 1966).

3. V.M. Sehgal, A fixed point theorem for local contraction
mappings. Amer. Math. Soc. Notices 12 (1965) 461.

University of Alberta
Edmonton, Alberta

822

https://doi.org/10.4153/CMB-1969-106-1 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1969-106-1

