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Abstract

Detecting cracks in underwater dams is crucial for ensuring the quality and safety of the dam. However, under-
water dam cracks are easily obscured by aquatic plants. Traditional single-view visual inspection methods cannot
effectively extract the feature information of the occluded cracks, while multi-view crack images can extract the
occluded target features through feature fusion. At the same time, underwater turbulence leads to nonuniform dif-
fusion of suspended sediments, resulting in nonuniform flooding of image feature noise from multiple viewpoints
affecting the fusion effect. To address these issues, this paper proposes a multi-view fusion network (MVFD-Net)
for crack detection in occluded underwater dams. First, we propose a feature reconstruction interaction encoder
(FRI-Encoder), which interacts the multi-scale local features extracted by the convolutional neural network with
the global features extracted by the transformer encoder and performs the feature reconstruction at the end of the
encoder to enhance the feature extraction capability and at the same time in order to suppress the interference of
the nonuniform scattering noise. Subsequently, a multi-scale gated adaptive fusion module is introduced between
the encoder and the decoder for feature gated fusion, which further complements and recovers the noise flooding
detail information. Additionally, this paper designs a multi-view feature fusion module to fuse multi-view image
features to restore the occluded crack features and achieve the detection of occluded cracks. Through extensive
experimental evaluations, the MVFD-Net algorithm achieves excellent performance when compared with current
mainstream algorithms.

1. Introduction

Dams are prone to cracking due to prolonged immersion, temperature fluctuations, water chemical cor-
rosion and hydraulic fracturing [1, 2]. The number of cracks increased as the dam was used for longer
periods of time. Some of the cracks may extend into the interior of the embankment dam, which affects
the dam’s structure and load-carrying capacity. Thus, underwater dam crack detection is crucial to ensure
the proper functioning and safety of the dam structure.

Dam cracks can be obscured by aquatic vegetation during crack detection in the dam. The traditional
single-view image cannot completely capture the characteristic information of the crack, and the use of
multi-view image for crack detection can effectively avoid the problem of repeated occlusion in the same
area of the crack. The feature information of the occluded region can be complemented by fusing the
multi-view images. In recent years, numerous methods for enhancing underwater feature extraction capa-
bilities in underwater object detection have been proposed [3]. Convolutional neural networks (CNN5s)
are widely used in feature recognition, but they have limitations in dealing with long-range dependencies.
Transformer networks can effectively capture global dependencies through positional encoding or atten-
tion mechanisms [4, 5]. However, the complexity of the transformer computation increases significantly,
especially when computing inter-positional correlations, and the computational resources required grow
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exponentially. This leads to the fact that most transformer methods can only run on high-performance
servers [6]. The use of gating mechanisms [7] for the problem of too much information can alleviate
this problem. However, in order to balance segmentation accuracy and computational complexity, many
studies have attempted to combine CNNs with transformers, achieving promising results [8]. Also this
method fuses the global information of coarse granularity with the local information of fine granularity
facilitates the network to capture features of different sizes [9]. Underwater turbulence leads to an uneven
distribution of the suspended sediments, which leads to varying levels of scattered noise in the images.
This results in different levels of feature information being obscured from different perspectives. Such
differential noise not only affects the fusion of homogeneous feature information in multi-view images
but also the completeness and accuracy of crack detection.

To address these challenges, this study introduces a novel multi-view fusion network (MVFD-
Net) designed for crack detection in underwater dams. The primary innovations of this network are
encapsulated in the following three aspects:

1. The FRI-Encoder is introduced, which facilitates interaction between the multi-scale local fea-
tures extracted by the CNN encoder and the global features extracted by the transformer encoder.
This interaction is achieved through the fusion interaction module (IFM) and the feature recon-
struction module (FRM). These design choices enhance the model’s ability to capture crack
texture features and effectively suppress background noise.

2. The MGAF module is proposed to enable cross-level feature fusion between the encoder and
decoder. This module compensates for the semantic loss in low-level features while recovering
the details in high-level features, thereby improving the continuity of segmentation results.

3. The MVFF module is proposed to guide the scale-space construction of the SIFT algorithm.
This is achieved through multi-view crack masks and unobscured crack masks with dimension-
enhancing descriptions. The module effectively mitigates image alignment issues caused by
homogeneous feature variability, which is induced by underwater non-uniform scattering noise.
Additionally, through adaptive guidance provided by the occlusion masks, the MVFF module
restores masked crack features, further improving crack segmentation performance.

2. Related work
2.1. Occluded object detection

Traditional techniques for detecting dam cracks include embedded sensors, ground penetrating radar,
and ultrasonic testing. While these methods are effective in traditional environments, their performance
is significantly degraded in underwater scenarios due to occlusion, which results in missing target infor-
mation and poses challenges in feature extraction and crack detection. With the rapid development of
deep learning technologies, researchers have been exploring neural networks for hidden object detection.
Various approaches have been proposed to address the problem of information loss caused by occlusions.
Ke et al. [10] introduced a two-layer convolutional network (BCNet), which is characterized by its two-
layer structure: the upper layer detects occluders, while the lower layer infers the occluded parts of the
target. This method separates the boundaries of occluders and occluded targets through mask regression,
providing an effective solution to the occlusion problem. In the field of multi-object detection, Yuan et al.
[11] proposed a generative model that leverages the activation of neural features to accurately localize
occluders. By classifying targets based on free areas, the model ensures high detection accuracy. To
address the problem of sub-segmentation, Zhang et al. [12] developed OSLPNet, which mitigates the
impact of occlusion on feature extraction through multi-scale receptive fields. Additionally, the network
leverages the contextual topological relationships of target features to further optimize occluded object
detection. Gan et al. [13] improved a two-stage segmentation network by introducing boundary expan-
sion boxes that guide non-modal instance segmentation networks to generate clearer target boundaries.
Meanwhile, Wang et al. [14] proposed OccludedlInst, a query-based instance segmentation method. By
integrating data augmentation techniques and an occlusion correction module, this approach enables
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robust learning in covert scenarios. For more precise restoration of the appearance of occluded targets,
Yan et al. [15] developed an iterative multitasking framework. This framework uses a dual-path structure
that includes a 3D model pool and coupled discriminators, which significantly improves the accuracy
of target recovery and detection.

2.2. Multi-view object detection

When detecting occluded objects, a single viewpoint image may not accurately identify the target. Multi-
view approaches utilize information from multiple perspectives to compensate for the loss of information
caused by occlusion in a single view [16]. The biggest challenge in multi-view object detection is
effectively merging information from different viewpoints, especially when it comes to occlusions and
viewpoint variations. To address these problems, many studies have proposed solutions based on multi-
view information fusion [17, 18], generative adversarial networks (GANSs) [19, 20], and optical flow
learning. Zhou et al. [21] introduced an appearance flow-based method that learns the image flow rela-
tionship between the source and target views to reconstruct occluded regions to improve the robustness
of multi-view object detection [22]. Choy et al. [23] proposed a recursive neural network framework
that recursively merges multi-view information to generate 3D object models with minimal occlusion,
thereby mitigating the problems caused by occlusions. Yang et al. [24] developed a Spatiotemporal
Graph Convolutional Network (ST-GCN) that integrates both temporal and spatial features, enabling
effective video re-identification of pedestrians even in occlusion. Zhang et al. [25] proposed a Multi-
View Consistency Generative Adversarial Network (MVCGAN) that successfully generates images from
multiple viewpoints through geometric constraints and optimization models and processes complex
multi-object scenes using a “decomposition and composition” approach. Overall, these methods clev-
erly fuse multi-view information and generative models to not only address occlusion problems but also
improve the performance of multi-view object detection in complex scenarios, thereby improving the
robustness and accuracy of detection systems. Arooj et al. [26] introduced an improved detection net-
work that combines CNNs and SIFT and uses SIFT to extract important feature points from images under
different lighting conditions, guiding the network to learn effectively and achieve promising results. Ma
et al. [27] proposed a multi-graph matching fusion mechanism that implements a coarse-to-fine match-
ing process and attempts to improve local texture information while preserving the original scene content
during the fusion phase.

3. Proposed method

In this paper, we propose aM VFD-Net. The MVFD-Net network structure is shown in Figure 1. MVFD-
Net consists of three key components: the feature reconstruction interaction encoder (FRI-Encoder), the
multi-scale gated adaptive fusion module (MGAF), and the multi-view feature fusion module (MVFF).
First, FRI-Encoder interacts the multi-scale local features extracted by CNN with the global features
extracted by transformer, and designs two modules, interaction feature module (IFM) and feature refine-
ment module (FRM), at the middle layer as well as at the end. To solve the problem of feature extraction
difficulty caused by underwater non-uniform scattering noise. Second, MGAF performs feature fusion
between the encoder and decoder via a pyramid network to further complement the lost feature detail
information. Finally, the designed MVFF introduces new perspective features for feature fusion repair to
solve the problem of dam cracks obscured by aquatic plants. The following sections provide a detailed
analysis of each module and explain how they synergistically improve the overall performance of the
MVEFD-Net architecture.

3.1. Feature reconstruction interactive encoder (FRI-encoder)

This paper introduces the FRI-Encoder, a solution designed to address the challenges of feature
extraction in underwater environments, particularly those caused by non-uniform scattering noise. The
FRI-Encoder follows a two-branch architecture. One branch is a lightweight CNN encoder, augmented
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Figure 1. MVFD-Net Network Framework. The “Conv layer” represents the convolution operations
on each layer, “Patch Embed” refers to the embedding layer, and the “transformer block” refers to
the transformer blocks used for feature extraction. “ESPCN” indicates the subpixel convolution used
for upsampling, while “IDSC” represents depth-wise separable convolutions (PW 4+ DW). Finally, the
output provides the predicted results.

with ResNet34 as the backbone, and incorporates depth separable convolution (DSC) to replace stan-
dard convolutional layers [28]. The fundamental unit of the encoder is the Conv block, which includes
DSC, batch normalization (BN), and the GELU activation function. By stacking Conv blocks, the FRI
encoder effectively extracts local features at each layer, maintaining strong feature extraction capabil-
ity while minimizing network depth and computational load. The CNN encoder comprises five layers,
with the number of channels doubling after every two downsampling operations, leading to a progres-
sively smaller feature map. The second branch, the transformer encoder, consists of four layers. The
input image is sequentially processed by the transformer module, with the feature map size reduced by
a factor of 1/4 after passing through the embedding layer. To ensure consistent feature map sizes during
fusion, features extracted from the second layer of the CNN encoder are merged with those from the
first layer of the transformer encoder through the designed IFM module. This process is repeated layer
by layer, as illustrated in Figure 2.

Specifically, the IFM aggregates interlayer features of encoders with two branches and further divides
them into two subbranches. One of these subbranches is connected to the decoder via jump connections.
First, the feature shape is adjusted (from C x H x Bto H x B x C), followed by global average pooling
(GAP) (reducing to 1 x 1 x C) to calculate the weight for each channel. The weight is then multiplied
by the features to adjust the influence of each channel. Finally, the feature shape is restored (back to
C x H x B). After the processed features are multiplied and merged, they are concatenated with the
original features to obtain the merged features. Information aggregation is then performed via a convo-
lution module and residual connections, resulting in the complementary fusion features 7" that improve
feature correlation. The other subbranch generates the fusion feature 7, which is then fed back into
the transformer encoder. Through this interaction, the local feature information extracted by the CNN
encoder can be integrated into the transformer encoder, improving its ability to perceive local details
such as edges, shapes, and textures. In this study, the reshaping of inconsistent feature dimensions in
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Figure 2. Illustration of IFM, T denotes the features that are reintroduced into the transformer encoder
after fusion, and T' indicates the features input into the MGAF module after fusion.

transformer is first aligned with the CNN architecture and summed element-by-element as input. Then,
a pixel-wise convolution (1x1 convolution), enhanced by both local and global attention mechanisms,
is applied to assign weights and obtain the weighted fused features. The weight calculation process is
shown in Table I.

Through the synergy of local and global attention modules, weights can be adaptively assigned to
fuse both local and global features. These fused features are then reintroduced into the transformer
encoder in an interactive manner, thereby enhancing the transformer’s attention to local feature infor-
mation and generating more representative features. This process can be summarized and represented
by the following equation:

T=WADB)®A®(1-WADB)®B (1a)

where @ represents feature integration and we use element-by-element summation, ® denotes element-
wise multiplication, A denotes the feature maps of the CNN encoder, B denotes the feature maps of
the transformer encoder, T represents the fused output features, with A, B, T € RV W refers to
the processing step described in the pseudo-code in Table I. As illustrated in Figure 2, the dotted line
indicates 1 — W(A & B). It is important to note that the fusion weight W(A @ B) consists of real values
between 0 and 1, as does 1 — W(A & B), which enables the network to perform a weighted average
between A and B.

Although the two-branch coding approach effectively mitigates the noise flooding problem caused
by underwater nonuniform noise, it also introduces significant information redundancy. To filter and
reconstruct the feature information generated by the FRI-Encoder for fusion, we design the FRM module
at the end of the FRI-Encoder. The FRM module is a symmetrical structure, and for ease of presentation,
we show only one side of the module as shown in Figure 3.

The FRM module adjusts the shape of the feature maps f; and f, extracted by the CNN encoder and
transformer encoder from (B, C, H, W) to (B, C, H x W). Next, the global mean and global maximum
are computed. After processing by the convolutional layer and ReLU activation function effective global
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Table I. Local and global attention mechanisms.

Algorithm: Local and global attention mechanisms
Input: X

Output: M

#Local attention mechanism

L« X

: L < ConvixI1(L, channels/r) # Dimensionality reduction
: L < BatchNorm(L)

: L < ReLU(L)

: L < Convlx1(L, channels) # Restore dimensionality

: L < BatchNorm(L)

#Global attention mechanism

7:G<«X

8: G < Global Average Pooling(G) # Reduce to 1x1

9: G < Convlx1(G, channels/r) # Dimensionality reduction
10: G < BatchNorm(G)

11: G < ReLU(G)

12: G < Conv1x1(G, channels) # Restore dimensionality
13: G < BatchNorm(G)

14: M <« Sigmoid(L + G) # Apply Sigmoid normalization to L + G
Return: M

DO WN -

feature representations a; and a, are obtained. This process effectively reduces the amount of post-
demand computation. The detailed steps are provided in Table II.

In Table II, i is taken as 1 or 2 corresponding to the features f; and f, extracted by the input CNN
encoder and transformer encoder. “DSC” refers to depthwise separable convolution. The reconstructed
feature maps, a, and a,, are extracted by the CNN and transformer encoders, respectively, through feature
reconstruction. The cross-attention mechanism is used to reweight f; and f, by a, and a, to obtain the
feature map f,....ss- The cross-attention weighting process is defined by the following equation:

frcross = softmax(a; x al) x f; (2a)
Frcross = softmax((a; x a3)") x f5 (3a)

The cross-attention mechanism captures the correlations between different feature maps, enabling a
more accurate representation of information. Next, f;....ss iS reshaped from (B, C, H x W) to the original
shape (B, C, H, W) and fed into the convolutional layer for spatial feature fusion. This process adaptively
adjusts the importance of each pixel, preserving richer and more effective spatial structural information.
The details are as shown in Table III. g, .. represents the spatial feature weights, and f; denotes the
feature map obtained after f; is weighted by g, .. The weighted and fused feature maps, f; and f), are
adjusted in dimensions and then element-wise superimposed. The reshaped feature maps, with shape
(B, C,H, W), are used as the final output of the encoder.

FRI-Encoder achieves deep fusion of feature reconstruction and interaction, which not only improves
the effectiveness of feature representation but also enhances the model’s ability to capture key features
of the target. This provides strong support for handling target detection and feature extraction tasks in
complex underwater environments [29].

3.2. Multi-scale gated adaptive fusion module (MGAF)

Cracks exhibit complex topological structures, irregular boundaries, and a very small pixel ratio in
images. Some of the feature details in cracks often contain important structural information. Nonuniform
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Table 11. Feature reconstruction.

Algorithm: Feature reconstruction

Input: f;

Output: g

1: f; < reshape(f;, [b, c, —1])

2: avg_1 <« Average Pooling(f;, dim = —1, keepdim=True)
3: avg_l < unsqueeze(avg_1, —1)

4: max_1 < Max Pooling(f;, dim = —1, keepdim=True)

5: max_1 < unsqueeze(max_1, —1)
6
7
8
9

: avg_1 < ReLU(DSC(avg_1))
: max_1 < ReLU(DSC(max_1))
:avg_1 <~ DSC(avg_1)
: max_1 < DSC(max_1)

10: a; < avg_1 + max_1

11: Return: g;

fi
reshape
[ 1
[ L
I

I
[DSC]X]] [DSCIXI}
256 256

Feature Reconstruction [ REILU ] [ RELU ]

[DSCIXI] {DSC]X]J

512 512
L
: Cross Attention E

reshape

Spatial Information Integration

Global Average Pooling
Global max pooling

Figure 3. Illustration of FRM, the feature maps f; represent the features from the CNN encoder or
transformer, while f! denotes the reconstructed features.
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Table I11. Spatial information integration.

Algorithm: Spatial information integration

Input: f; o5

Output: f

* ficross < reshape(fi.cioss, [D, ¢, b, w])

: avg_out <— Average Pooling(f;. s, dim = 1, keepdim=True)
: max_out, _ <— Max Pooling(f;..;oss, dim = 1, keepdim=True)
: a; < concat([avg_out, max_out],dim = 1)

: a; < ReLU(Convlx1(a,))

: a, < Conv2x1(a;)

: a; < reshape(a,, [b, 1, —1])

! Qigpatial <— SOftmax(a,, dim = —1)

L < fi* Qigpaia +

10: Return: f;
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Figure 4. lllustration of MGAF. T; and T, represent the input features and the features processed by
the MGAF module, respectively. Gate represents the gating mechanism, and 0 denotes the embedding
weights that manage the channel weights prior to normalization. The gating weights and bias (n and )
progressively adjust the input feature proportions x across the channels.

underwater noise further exacerbates the obscurity of these detailed features. In this article, we propose
the MGAF module, which can merge functions from different learning stages, effectively supplementing
the detailed information of high-level functions. The MGAF network framework is shown in Figure 4.

The MGAF module also uses DSC instead of standard convolution to process the FRI-Encoder middle
layer fusion feature 7". DSC effectively adjusts and aligns features at different scales to achieve more
efficient multi-scale feature fusion. Then, these features are concatenated along the channel dimension
to obtain the full merged features. Next, the fused feature map is fed into the gating mechanism for
processing. We introduce the operator § to embed the global context and control the weights of each
channel before normalization. Then, the gated adaptation operators n and A are introduced. This operator
adjusts the input features line by line based on the normalized outpu, and @ is responsible for adjusting the
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embedding output. Gating weights A and bias 5 control the activation of the weight coefficients. These
weights determine the behavior of the gating mechanism in each channel. In this paper, let x € RE*#>W
represent an activation feature in a convolutional network, where H and W are the spatial height and
width, and C is the number of channels. The total equation of the gating mechanism is given as follows:

x=Fx|0,9,)), 0,9, LecR" (4a)

where X represents the result processed by the adaptive gating mechanism. For each channel, the recep-
tive field of the convolutional neural network is enhanced by designing a global context embedding
module. This enables the network to better aggregate and utilize global information. Given the embed-
ding weight operator 8 =[6,, . . ., 6], the approach avoids ambiguities that may arise from a limited
receptive field. Let x =[xy, ..., xc], where x, = [x*] € R™Y with c€({1,2,...,C}. The global
feature representation g. is then obtained as follows, as shown in the equation:

H w 1/2
8e = Ocllxll, =6, ([Z > (xffﬁf} + e> (5a)

i=1 j=1
where x. represents the feature map of each channel in x. In this paper, x, is £, normalized to retain
more detailed feature information compared to GAP. 6. represents the trainable parameters that control
the weight of each channel. The proposed channel normalization method employs £, normalization
across channels to enhance the training stability and model performance while significantly reducing
computational complexity. Let G=1[g,, ..., gc] represent the normalized feature representations, as
shown in the following equation:

. NCs. NG
S Te TR I
(Zg3+€>
c=1

where ¢ is a small positive constant, and +/C is introduced to prevent . from becoming too small
when C ( the number of channels) is large. To further control the feature expression of each channel,
this study employs a gating mechanism to dynamically regulate the control gates on the channels by
designing trainable gating weights n = [, . .., nc] and biases A = [A4, . . ., A] to adjust the activations.
The equation is as follows:

(6a)

%= [1+tanh (08 + 1) 7

Where 1, and A, represent the gating weight and bias of the c-th channel, respectively.

Following the MGAF module processing, more complex dependencies are captured, and global con-
text normalization is introduced through efficient feature fusion between the encoder and decoder. By
tuning the trainable parameters, the model adaptively optimizes global features and enhances feature rep-
resentation. This approach is particularly well-suited for small and imbalanced datasets, as it not only
reduces computation from excessive fused information but also improves segmentation performance
and model generalization.

3.3. Multi-view feature fusion (MVFF)

This article proposes a MVFF to solve the problem of occlusion, as shown in Figure 5.

First, the feature point description level of the SIFT algorithm is improved by extending the traditional
128-dimensional descriptor to 180 dimensions. The improvement is to define a circular area with a
radius of 30 pixels around the key point, divided into 15 concentric rings. After calculating the gradients
of each region with Gaussian weighting, the main direction of the feature point is optimized taking
into account the rotation invariance of the circular region. This approach not only increases computing
efficiency, but also simplifies operation. To ensure the uniqueness of the feature points, the gradients in
the circular area are divided into 12 directions and the values in each direction are accumulated. Finally,
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the gradient sums of the regions are arranged in an inside-out order, forming a 180-dimensional feature
vector. By expanding the descriptor dimensions, this method enables more precise encoding of the local
region details in the image and captures more subtle features in complex underwater environments with
uneven noise. In addition, to mitigate the impact of gray level variations, the generated feature vector is
normalized.

However, expanding the descriptor also increases computational complexity, especially in feature
matching and storage, which may lead to additional burden. To balance precision with computational
efficiency and to account for the differences in homogeneity characteristics caused by different noise
levels in underwater images from different viewpoints, this paper proposes a network based on the
encoder-decoder structure designed in Sections 3.1 and 3.2. This network performs semantic segmenta-
tion of both free and blocked cracks in the dam body and generates corresponding masks. The location
information provided by the free crack mask is used to guide the construction of the scale space, allowing
the network to quickly focus on the regions with significant crack features. This approach enables effi-
cient feature point detection and significantly reduces the amount of unnecessary calculations. Feature
point matching is then performed using the SIFT algorithm and based on the matching relationships,
a homography matrix transformation is applied to the new viewpoint image. The specific calculation
formula is as follows:

p=H-p (8a)
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where p = [x, y, 1]7 represents a point in the original view, expressed in homogeneous coordinates (with
the third element being 1), the transformed point is denoted as p’ =[x/, ¥/, 1]7. The relationship between
the original and transformed points is described by the homography matrix H, a 3 x 3 matrix that
governs the perspective transformation between the two views.

Finally, under the guidance of the hidden crack mask, an adaptive weighted multi-feature fusion of
hidden features in the original view is performed using the new views. Specifically, there are N views,
where V, represents the original view and V; (i € [2, N]) represents the new views. In each view, if
a pixel at position p is occluded, the occlusion mask is called M;(p) = 1, otherwise M;(p) = 0. If the
position p in V; is occluded (M,(p) = 1), we want to use the unoccluded regions in other perspectives
to perform the recovery. This means that during the weighted averaging process, only the feature values
in corresponding positions in other views that are not occluded should be involved in the recovery. The
equation for this is as follows:

v, itMpy=0
w@-{a M1 (9a)

where V;(p) represents the feature value at position p in the i-th view and W; is the weight assigned

to each view. The less occlusion there is in the new view, the greater its contribution to restoring the
original view. Therefore, we introduce a weighting coefficient W;(p), which is defined as follows:

1 — Mi(p)
S (1= Mi(p))
where (1 — M,(p)) ensures that only the views in which the position p is not obscured contribute to the
weighting. This method effectively solves the problem that hidden and non-hidden features cannot be

merged. Finally, for all views, the uncovered feature values at position p are weighted and averaged point
by point to generate the repaired feature V. The final repair result can be expressed as follows:

Wip) = (10a)

_ v, if M(p) =0
SV W) - Vip) - Mi(p), if My(p) =1

where V(p) represents the repaired feature value at position p. In particular, for the visible area in the
original view V| (where M,(p) =0), the original feature is retained. For the occluded region (where
M,(p) = 1), the occluded feature is adaptively repaired by averaging the unoccluded features from other
viewpoints using a weighted fusion approach.

This paper proposes a multi-view image feature fusion method that improves the SIFT algorithm by
expanding the descriptor dimension to achieve more precise encoding of local details. Combined with
a semantic segmentation network, the method generates occlusion masks to optimize the detection and
assignment of feature points. After aligning the views using the homography matrix, the method adap-
tively repairs the occluded regions using non-occluded features and finally generates a fused feature rep-
resentation. This approach effectively solves the problem of merging homogeneous feature information
affected by different noise levels from different viewpoints, thereby enabling hidden feature recovery.

V(p) (11a)

3.4. Loss function

To ensure that the algorithm can be trained effectively, selecting an appropriate loss function is crucial.
In the case of an unbalanced dataset, using Dice Loss can result in significant fluctuations. Prediction
errors with small targets can result in sharp loss value changes, leading to severe gradient instability.
Given that cracks in images are typically slender and elongated, making them challenging to segment
as small targets, a combination of BCE_Loss and Dice_ILoss was chosen. This combination enables the
network to focus more effectively on foreground regions while mitigating the instability of Dice_Loss
during training. The specific formulas are as follows:
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BCE_Loss = —(1 —m)log (1 — ) — mlog (¢) (12a)
2ys+1
Dice_Loss=1— L (13a)
y+s+1
Loss =BCE_Loss + Dice_Loss (14a)

where m represents the ground truth labels and ¢ is the predicted probability in the BCE_Loss func-
tion. BCE_Loss measures the discrepancy between the predicted values (¢) and the true labels (m). In
Dice_Loss, § is the model’s estimated probability, and y is the label. Dice_Loss assesses the overlap
between the predicted and actual regions. Since binary classification is a problem involving Os and 1s,
the final predicted values also fall between 0 and 1. To categorize predictions into two classes, we need to
establish a threshold. Since crack segmentation focuses solely on differentiating between crack areas and
the background, this represents a binary classification challenge. We utilize Dice_Loss with a threshold
of 1 to facilitate this distinction. The combined loss function we constructed takes into account both
the accuracy of the model’s predictions and the precision of the predicted regions, further enhancing
segmentation performance.

4. Experiment setting

The experimental setup in this paper consists of three key components: evaluation metrics, experimental
datasets, and model implementation details. First, the evaluation metrics used to assess the performance
of the proposed model are outlined. Second, the datasets employed in the experiments are discussed.
Lastly, an explanation of the model implementation is provided, including the hardware and software
used during the experiments. We adopt the standard evaluation metrics for semantic segmentation [30],
including mloU (MIOU), recall (Re), accuracy (Acc), and F1 score (F1). In addition, in order to evaluate
the computational complexity of the model, this paper introduces a comparison between the proposed
algorithm and the leading models in terms of the amount of model calculations (FLOPs) and the number
of parameters (Params) to comprehensively evaluate the performance of the algorithm.

4.1. Dataset

The self-constructed dataset used in this paper is a crack image of a submerged dam in a reservoir in
Zhejiang Province. The images in this dataset present challenges, such as complex underwater non-
uniform noise and occlusion caused by aquatic plants. As a benchmark for evaluation, this dataset is
highly relevant. To facilitate analysis, the dataset adopts a multi-view setup for each crack, comprising
three images: one original view and two additional perspectives. These three images are captured from
different viewpoints of the same dam crack. Subsequently, the dataset is categorized into three under-
water cases by filtering and collating the images: the Weak Non-Uniform Noise Underwater Occlusion
Dataset (UDODW), the Strong Non-Uniform Noise Underwater Occlusion Dataset (UDODS), and the
Aquatic Plant Occlusion Dataset (UDPOD). The first two datasets, UDODW and UDODS, use ran-
domly generated black blocks to simulate occlusion from various virtual perspectives, while the UDPOD
dataset contains images of underwater dam cracks occluded by actual aquatic plants. Finally, after filter-
ing the images, the three datasets, with 360 image sets in total, are organized into underwater multi-view
occlusion datasets. A visual representation of these datasets is shown in Figure 6.

4.2. Experimental environment

The dataset used in this study has a resolution of 256 x 256. The network model is built using the PyTorch
deep learning framework. The configuration for training the network model includes an AMDEPYC
7282 processor, 250 GB of memory, and an NVIDIA A100 80 GB PCle GPU. The training is carried
out using the GPU. In this paper, Adam optimization [31] was employed, the initial learning rate was set
to 0.001, and the cosine annealing strategy with thermal restart was applied to dynamically adjust the
learning rate. At epoch 20, the initial learning rate was restored for the first time, and each subsequent
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Table IV. Comparison of segmentation models on the UDODW dataset.

Models mloU (%) Acc(%) Re(%) F1(%) FLOPs(G) Params(M)
SegNet [34] 86.25 85.16 87.24 86.46 40.08 167.80
CrackFormer-II [32] 89.82 90.89 91.20 90.77 20.49 4.96
CarNet [33] 86.33 87.45 88.02 87.09 4.79 4.89
OSLPNet [12] 90.75 93.43 92.17 91.98 0.81 2.92
UISS-Net [35] 82.95 85.92 85.82 85.03 42.61 240.47
Proposed 92.79 93.36 93.51 93.27 1.07 4.09
UDODW UDODS UDPOD
Original view  New viewl New view2  Original view  New viewl New view2 Orlgmal view  New viewl New view2

Image

“

label

=T

——

Figure 6. Illustration of the images in the three datasets.

restoration doubled the previous one. The network was trained for a total of 120 epochs, with a batch
size of 4.

5. Experiments and results
5.1. Comparative experiments

In this section, the UDPOD dataset is randomly divided into a training set, a validation set, and a
test set in the ratio of 7:2:1. The proposed algorithm is compared with five other algorithms, namely
CrackFormer-1I [32], CarNet [33], SegNet [34], OSLPNet [12], and UISS-Net [35]. These compared
algorithms are all state-of-the-art segmentation networks in their respective fields, with UISS-Net [35]
being a segmentation network designed for underwater scenarios, and OSLPNet [12] being an occlusion-
resistant segmentation network. We also use the recommended parameter settings and run the source
code provided by the authors to achieve the best results for each method. Comparative experiments
are conducted on the UDODW, UDODS, and UDPOD datasets to demonstrate the superiority of the
proposed network model. Additionally, ablation experiments are performed on the UDPOD dataset to
assess the contribution of each module. The results of these experiments are as follows:

5.1.1 Comparative experimental results analysis

Qualitative analysis: From the comparative evaluation results, it is evident that the algorithm proposed
in this paper performs exceptionally well across all three datasets, especially in several key evaluation
metrics where it achieves significant improvements. In Table IV, although the accuracy (Acc) of this
paper’s algorithm on the UDODW dataset is slightly lower than the OSLPNet algorithm, it surpasses
it by 2.04% in the mean intersection over union (mloU). This indicates that the proposed algorithm is
better at distinguishing between cracked and non-cracked regions. Additionally, the F1 score of the pro-
posed algorithm is 1.29% higher than the second-ranked algorithm, demonstrating its improved ability
to identify cracked regions while minimizing false positives for non-cracked areas. Although the pro-
posed algorithm outperforms the OSLPNet algorithm in FLOPs (G) by 0.26G, it is still far lower than
the other compared algorithms, with a total of only 1.07G. Additionally, the number of parameters is
just 4.09M, which is sufficient for deployment on mobile devices, such as underwater robots. These
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Table V. Comparison of segmentation models on the UDODS dataset.

Models mloU (%) Acc (%) Re (%) F1 (%)
SegNet [34] 71.93 74.09 77.74 75.25
CrackFormer-II [32] 87.37 87.84 89.04 88.30
CarNet [33] 79.53 90.19 83.39 82.90
OSLPNet [12] 89.49 91.39 91.05 90.71
UISS-Net [35] 82.55 85.43 85.41 84.66
Proposed 90.93 91.58 92.07 91.64

Table VI. Comparison of segmentation models on the UDPOD dataset.

Models mloU (%) Acc (%) Re (%) F1 (%)
SegNet [34] 86.61 86.88 87.84 87.29
CrackFormer-II [32] 93.21 93.39 93.64 93.47
CarNet [33] 86.33 87.45 88.02 87.09
OSLPNet [12] 92.54 93.01 92.89 92.82
UISS-Net [35] 86.20 87.47 87.61 87.22
Proposed 95.36 95.71 95.64 95.57

results demonstrate that the proposed network can be efficiently deployed on mobile devices, offering
low computational complexity while ensuring excellent recognition performance in the presence of chal-
lenges such as occlusion and noise. In the UDODS dataset, shown in Table V, the proposed algorithm
improves by 1.45% in mIoU and 0.93% in F1 score. These results indicate that the algorithm exhibits
strong robustness in complex environments with significant noise, effectively handling interference from
highly noisy scenes. Table VI further confirms the exceptional performance of the proposed algorithm in
environments obscured by aquatic plants. All evaluation metrics of the proposed algorithm outperform
those of the other five compared algorithms. Specifically, the accuracy (Acc) and mloU are improved by
2.32% and 2.15%, respectively, over the second-place algorithm, while the F1 score shows an impres-
sive improvement of 95.57%. This highlights the algorithm’s excellent balance between segmentation
precision and recall. These results provide strong evidence that the proposed network excels in tackling
challenges such as occlusion and noise.

Quantitative analysis: Figures 7 and 8 demonstrate that the proposed network shows a consistent
improvement throughout the training process, with all evaluation metrics outperforming those of the
compared algorithms. The loss decreases smoothly without significant fluctuations, indicating that the
network exhibits strong learning ability and convergence. As shown in Figure 9, the proposed algorithm
demonstrates robust performance on both the UDODW and UDODS datasets, accurately segmenting the
target region. Although the OSLPNet and UISS-Net algorithms also perform well, their segmentation
masks display noticeable breakpoints and under-segmentation in regions where cracks are obscured. In
contrast, the segmentation masks of the SegNet and CrackFormer-II algorithms are generally larger than
the actual crack width, exhibiting significant noise and over-segmentation. This results in a higher num-
ber of false negatives (FNs), where non-cracked regions are misclassified as cracked regions. For the
UDPOD dataset, the real hydrilla occlusion better reflects the semantic correlation between objects,
necessitating stronger semantic reasoning and context-awareness from the algorithm. As shown in
Figure 9, the proposed algorithm still effectively segments the crack features in the occluded areas.
In contrast, other algorithms can only rely on the visible crack region to predict the occluded crack,
resulting in noticeable breakpoints in the segmentation mask and an inability to accurately segment the
occluded cracks.

As shown in Figure 9(g), in this crack scene, the homogenization of the background and crack fea-
tures is even more pronounced due to over-illumination, low image contrast, and the inherent noise

https://doi.org/10.1017/50263574725101835 Published online by Cambridge University Press


https://doi.org/10.1017/S0263574725101835

2494 Yukai Wu et al.

Loss

— CrackFormer-ll = CarNet = SegNet-
= Proposed == OSLPNet v

0.8
0.6
0.4

0.2

20 40 60 80 100

Figure 7. Illustration of the changes in loss during the training stage.
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Figure 8. Illustration of the changes in mloU, Acc, Re, and F1 during the training stage.
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Figure 9. Illustration of segmentation results of comparative experiments on diﬁerent datasets.
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Table VII. Ablation experimental results on UDPOD dataset.

Ablation Study w/o Module mloU (%) Acc (%) Re (%) F1 (%)
Baseline 90.97 90.37 90.54  90.04
Baseline + MVFF + MGAF w/o FRI-Encoder 91.07 91.74 92.15 91.71
Baseline + FRI-Encoder + MVFF w/o MGAF 94.55 94.62 93.89 9441
Baseline + FRI-Encoder + MGAF w/o MVFF 94.37 93.89 94.09 94.21
Proposed 95.36 95.71 95.64 95.57

effects of the underwater environment. This makes it difficult for the algorithm to accurately distinguish
between the occluded and unoccluded parts. Compared to other contrast-based algorithms, the pro-
posed algorithm effectively avoids excessive noise or over-segmentation and performs better. Despite
a few disconnected under-segmentations in the occluded areas, the algorithm still segments the overall
morphology of the cracks more effectively. This suggests that, in addition to improving the recognition
algorithm, the simultaneous optimization of other underwater recognition equipment is also crucial and
worthy of further consideration.

In summary, the algorithm proposed in this paper not only demonstrates excellent segmentation per-
formance but also maintains good robustness in complex environments where dam cracks are occluded
by aquatic plants, effectively addressing the occlusion problem in the recognition of dam cracks with
different morphologies.

5.2. Ablation experiments

To evaluate the effectiveness of the FRI encoder, MGAF module, and MVFF module in segmenting
occluded cracks in submerged dams, this paper conducts ablation experiments on the UDPOD dataset.
The ablation experiment is designed as follows: Baseline, Proposed 4+ w/o FRI-Encoder, Proposed +
w/o MGAF, and Proposed + w/o Multi-view Occlusion Completion Module.

5.2.1 Ablation experimental results analysis

The results of the ablation experiments are presented in Table VII. Since the baseline model is not specif-
ically optimized for the occlusion problem under underwater non-uniform scattering conditions, the
algorithm proposed in this paper addresses the target loss issue in occluded areas by incorporating new
viewpoint features. Consequently, compared to the baseline, the proposed algorithm demonstrates sub-
stantial improvements across all evaluation metrics. Notably, the mean Intersection over Union (mloU)
improves by 4.39%, and the F1 score increases by 5.53%, which underscores the enhanced segmentation
stability of the model.

Further analysis of the impact of removing each design module reveals a significant decline in perfor-
mance metrics compared to the full model. First, when the multi-view feature fusion (MVFF) module is
removed, mloU and accuracy decrease by 1.99% and 2.82%, respectively. This suggests that the MVFF
module plays a crucial role in effectively fusing multi-view feature information and enhancing segmen-
tation performance under occlusion. Second, the removal of the feature refinement and integration (FRI)
encoder results in a marked decrease in evaluation metrics, with mloU and F1 dropping by 4.29% and
3.86%, respectively. This indicates that the FRI encoder significantly mitigates the challenges of feature
extraction caused by underwater nonuniform noise, thus improving the model’s robustness. Finally, the
removal of the MGAF module leads to a decrease of 0.81% in mloU and 1.16% in F1, further demon-
strating the contribution of the MGAF module in enhancing model accuracy. Visual results presented
in Figure 10 corroborate these findings. When the MVFF module is omitted, the segmentation results
shown in Figure 10(e) reveal poor crack identification in the occluded region. Due to the lack of feature
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Figure 10. Illustration of segmentation results of ablation experiments on UDPOD dataset .

information from the occluded area, the network attempts to infer features based on crack connectiv-
ity but is limited in its ability to perform effective recognition. This highlights the critical role of the
MVFF module in addressing the occlusion problem by compensating for missing information through
multi-view feature fusion. In contrast, the segmentation of local details (e.g., texture information such
as edges and shapes) improves significantly when the FRI-Encoder module is introduced, as shown
in Figure 10(d) and (e). In Figure 10(c), where the FRI-Encoder module is absent, the crack bound-
aries are noticeably under-segmented, underscoring the encoder’s role in alleviating feature extraction
difficulties caused by underwater non-uniform noise. When only the MGAF module is removed, the
segmentation results shown in Figure 10(d) reveal obvious breakpoints in the crack boundaries, indicat-
ing the loss of information during the up-sampling stage. In contrast, the comparisons in Figure 10(f)
and Figure 10(c) demonstrate that the MGAF module effectively compensates for information loss dur-
ing the up-sampling process, mitigating segmentation discontinuities and improving both segmentation
accuracy and coherence.

Overall, the visual and quantitative results of the ablation experiments clearly demonstrate the effec-
tiveness of the FRI encoder, MGAF module, and MVFF module. Furthermore, they highlight that the
proposed MVFD-Net model offers a significant advantage in comprehensive segmentation capability,
effectively addressing occlusion and noise challenges, and providing stable and accurate segmentation
results in complex underwater environments.

5.3. Practical application and result analysis

5.3.1 Introduction to remotely operated vehicles

In this paper, the BlueROV2 underwater robot, shown in Figure 11, is employed for practical application
validation. The specific parameters of the robot are provided in Table VIII.

5.3.2 Application validation settings

In this section, we deploy the optimal model weights—trained on the UDPOD dataset—onto an under-
water robot that is tethered via cable to an offshore mobile display unit. Under full-power, uniform
illumination, the robot conducts field tests along the embankment of Dingguo Lake in Xinxiang City,
Henan Province. To evaluate the algorithm’s performance, we selected three crack scenarios (Test 1,
Test 2, and Test 3). During each scenario, the robot sequentially captures images of the same occluded
crack from three positions (PO, P1, and P2), yielding three distinct viewpoints (Image 1, Image 2, and

https://doi.org/10.1017/50263574725101835 Published online by Cambridge University Press


https://doi.org/10.1017/S0263574725101835

2498 Yukai Wu et al.

Table VIII. Specific parameters of the BlueROV2 underwater

robot.

Parameter Specification
Dimensions (LxWxH) 460 mm * 560 mm * 255 mm
Weight 12 kg

Max operating depth 300 m

Lighting output 1500 lumens per light source
Sonar localization system Detection resolution: less than lcm
Camera type Wide-angle low-light camera
Image resolution 1080p Full HD

Frame rate 30fps

Gimbal tilt range +45°

thruster

electronic
compartment

Extension
side panel

Camera

Figure 11. BlueROV2 underwater robot.
Test 2

Figure 12. lllustration of relative positions of the underwater robot. The red circle denotes the location
of the dam crack and the yellow guide line represents the direction of the robot’s view.

Image 3). As illustrated in Figure 12, we annotate the robot’s acquisition positions corresponding to
each image across all test scenarios.

In this study, the underwater robot is remotely operated from an offshore unit and maneuvered to
a position at a distance r from the embankment crack area. At this location, the robot autonomously
calculates multiple image acquisition viewpoints to capture crack images. To mitigate the impact of
uneven viewpoint distribution on testing accuracy, a viewpoint constraint model is established to ensure
that the acquisition points for each crack are both accurate and reasonably distributed.

Due to the highly nonlinear motion behavior of the robot in complex underwater environments, the
robot’s depth and orientation in the vertical direction are adaptively adjusted according to the acquisition
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Figure 13. Schematic layout of underwater robotic imaging positions centered on dam cracks.

task requirements and terrain constraints. This ensures that the camera’s optical axis remains focused on
the embankment cracks. On the horizontal plane, the multi-viewpoint positions are uniformly distributed
by applying a viewpoint distribution constraint model.

Specifically, the camera position of the underwater robot in space is treated as the origin, while the
observable range of the crack is abstracted as a semicircular region centered at the crack center with
radius r. A total of n acquisition points are deployed along this semicircular arc to evenly cover the
visible range of the crack. Let the initial azimuth angles of the acquisition points satisfy:

¢s < $0(0) < 91(0) < 2(0) <+ - - <, (0) <P, (B=neN") (15a)

where ¢ and ¢ denote the start and end boundaries of the arc, respectively.

In this section, for illustration purposes, three angle ranges are selected: the first quadrant [0, 7], the
second quadrant [, ], and the combined first and second quadrants [0, 7], which correspond to the
three test scenarios, Test 1, Test 2, and Test 3 shown in Figure 12. The distribution of the multi-viewpoint
acquisition points along the semicircular arc with ¢s = 0 and ¢ = 7 is illustrated in Figure 13.

The discrete evolution equation for the deployment of multi-viewpoint acquisition points is defined

as follows:
¢tk + 1) = ¢i(k) + ui(k) (16a)
_ T (k)
u(k)=—t - Ag(k) (172)

where k denotes the iteration step, ¢;(k) is the azimuth angle of the underwater robot at acquisition point
P;in step k, and ¢ is the learning rate, set to 0.1. T'(k) represents the cost function, and u;(k) is the negative
gradient-based control law used to update the robot’s acquisition point based on 7'(k) (detailed later in
this section).

Let P, denote the left neighbor of acquisition point P;, and let L; denote the angular distance (arc
length) between P; and P;,, along the clockwise direction. This distance is computed as

Li(k) = ¢psi(k) — k), O<i=<n-—1 (18a)

To ensure both uniform distribution and sufficient angular coverage of the embankment crack from
multiple viewpoints, we introduce two constraint metrics: consistency, quantified by the sum of abso-
lute differences between neighboring distances, and coverage, defined by the deviation of the minimum
neighbor distance from the ideal uniform spacing.
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Accordingly, the cost function for the entire multi-viewpoint distribution is defined as:

(pE_ S
n—1

n—1
Ty =a- Y |Lii(k) — Lk + B (

i=0

— min (L,-(k))) (19a)

where T'(k) > 0, and « and 8 are weighting coefficients corresponding to distribution uniformity and
angular coverage, respectively. In this study, both are set to 0.5. When T'(k) tends to 0, the viewpoints are
optimally and uniformly distributed along the semicircular arc and achieve complete angular coverage.
Taking into account environmental constraints, a practical convergence threshold of 7'(k) = 0.2 is used
to terminate the iteration and determine the final configuration of the acquisition point.

Meanwhile, the underwater robot is equipped with a high-precision inertial measurement unit, a
sonar-based localization and obstacle-avoidance module to realize safe and precise movement from one
point to the next. Navigation control is divided into two steps: Path generation and Position revision.

Path generation: The current acquisition angle is ¢, and the next is ¢,,, so the planar coordinates at
P; are given by x; = r cos ¢; and y; = r sin ¢;. We divide the angular distance L, = ¢, — ¢;intol =L, /o
segments, where o is the robot’s minimum response step. Discrete trajectory points are then:

0= ((1 — )X Xipr, (1 — )y + w; y,-+1) (20a)

Forj=0,1,...,I with u; =j/I, yielding a smooth sequence {O,, ..., O;} from Oy =P; to O; =P;,,.
Between each O; and O, the robot advances at constant speed.

Position revision: After reaching O; = (x;,1, ¥;11), the sonar localization provides the actual position
(Xreal» Yrea) and the errors :

€x = Xit1 — Xreal» €y = Yitr1 — Yreal (213)

The correction step is Ap =K, (e,,¢,)" with K, =5. If \/e? + 2 > ¢, (¢, denotes the position error
threshold, which is set to 0.05 m), the robot iteratively applies Ap until \/e; + e} < ¢,. Once positional
accuracy is met, the robot adjusts its attitude so the camera’s optical axis points precisely at the crack
center and completes image acquisition.

Finally, the final multiview dam crack images—Imagel, Image2, and Image3—are fused and pro-
cessed by pretrained weight files deployed on the underwater robot to recognize dam cracks. The entire
recognition pipeline operates at 25 fps, satisfying the real-time detection requirements. The recognition
results are subsequently transmitted to an offshore mobile computing device via a wired connection.

5.3.3 Application validation results and analysis

Figure 14 illustrates the real-time segmentation results produced by the proposed algorithm for three
test scenarios. Figure 14(d) presents the crack labels corresponding to Figure 14(a), while Figure 14(e)
displays the predicted segmentation masks generated by the proposed algorithm for Figure 14(a).
Figure 14(f) shows the superimposed results of these predicted masks on the original image in
Figure 14(a).

In Test 1, the prediction mask generated by the proposed algorithm is compared with the crack labels
corresponding to Figure 14(a) for images containing more complex crack shapes. Although minor under-
segmentation occurs in regions with complex crack shapes, the overall crack structure is segmented
with high accuracy, particularly in masked regions where cracks are well recognized. In Test 2, the
algorithm demonstrates strong robustness by achieving accurate segmentation of fine cracks, highlight-
ing its capability to handle detailed complexities effectively. In Test 3, where cracks are significantly
obscured by aquatic plants, the predicted segmentation masks exhibit minor noise (i.e., some non-crack
areas are misclassified as cracks). Nonetheless, the final segmentation results effectively capture the
overall morphology of the cracks.

Experimental results demonstrate that the algorithm proposed in this paper exhibits strong accuracy
and robustness in segmenting underwater occluded dam cracks in practical application scenarios.

https://doi.org/10.1017/50263574725101835 Published online by Cambridge University Press


https://doi.org/10.1017/S0263574725101835

Robotica 2501

Imagel Image2 Image3 Label Mask Combined

(Po) (P1) (P2)

- .
- A
Test 2
- . ' '
A My )
(a) (b) () (d) (€) ®

Figure 14. lllustration of segmentation results of the proposed algorithm in three test scenarios.

6. Conclusions

In underwater dam crack detection, cracks are often obscured by aquatic plants, and underwater tur-
bulence causes nonuniform diffusion of suspended sediments, resulting in varying degrees of feature
submergence across different viewpoints. To address these challenges, we propose a MVFD-Net for
occluded underwater dam crack detection, MVFD-Net. First, the FRI-Encoder integrates multi-scale
local features extracted by a CNN with global representations from a transformer encoder and per-
forms feature reconstruction fusion at the encoder output to suppress non-uniform scattering noise.
Second, we introduce the MGAF module, which employs a pyramid structure to perform gated feature
fusion between the encoder and decoder, thereby recovering lost details. Finally, within the segmen-
tation network, we design an MVFF module to enhance crack integrity and recognition accuracy by
incorporating features from additional viewpoints to repair occluded regions. We validate MVFD-Net
on a self-constructed dataset, demonstrating its superior generalization and significantly improved seg-
mentation performance under aquatic plant occlusion. Future work will focus on optimizing the device
functions that accompany the algorithm and developing quantitative crack analysis methods to provide
a more scientific basis for crack repair.
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