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Abstract

Robotic manipulation inherently involves contact with objects for task accomplishment. Traditional motion planning
techniques, while having shown their success in collision-free scenarios, may not handle manipulation tasks
effectively because they typically avoid contact. Although geometric constraints have been introduced into classical
motion planners for tasks that involve interactions, they still lack the capability to fully incorporate contact. In
addition, these planning methods generally do not operate on objects that cannot be directly controlled. In this work,
building on a recently proposed framework for energy-based quasi-static manipulation, we propose an approach to
manipulation planning by adapting a numerical continuation algorithm to compute the equilibrium manifold (EM),
which is implicitly derived from physical laws. By defining a manipulation potential energy function that captures
interaction and natural potentials, the numerical continuation approach is integrated with adaptive ordinary differ-
ential equations that converge to the EM. This allows discretizing the implicit manifold as a graph with a finite set of
equilibria as nodes interconnected by weighted edges defined via a haptic metric. The proposed framework is
evaluated with an inverted pendulum task, where the explored branch of the manifold demonstrates effectiveness.

Impact statement

This study addresses the problem of robotic manipulation by combining energy-based quasi-static assumptions with
numerical continuation techniques. The quasi-static assumption that all objects remain in equilibrium leads to the
generation of an EM. We define the configuration space using natural split variables that encompass both the robot
and other objects. Meanwhile, by introducing a manipulation potential that effectively captures the mechanical
interactions between the robot and its environment, we enhance the robots’ capabilities to plan and execute tasks that
require contact, which is a notable gap in conventional motion planning techniques. To efficiently explore the EM
under physical constraints, adaptive ordinary differential equations (ODEs) are developed, which help avoid the
burden of random sampling large datasets in ambient space. Additionally, we introduce a haptic obstacle, which is
represented by a squared-Hessian metric, to terminate the ODE when the mechanical system approaches physical
instability. The effectiveness of the proposed framework is demonstrated through a manipulation task involving an
inverted pendulum, where the inherent property of the inverted pendulum is ultimately proved.
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1. Introduction

Manipulation is the process of using one’s hands to rearrange one’s environment (Mason, 2001). Robotic
manipulation requires the robot to establish (typically stable) contact with objects to complete specific
tasks (Suomalainen et al., 2022). Consequently, motion planning is essential for the generation of a
trajectory that successfully accomplishes these tasks. However, classical motion planning algorithmsmay
not fully capture force interactions, as they typically avoid contact (S. M. LaValle, 2006). In manipulation
scenarios, while avoiding unintended collisions is crucial, making contact with objects is often necessary
to complete tasks. A prevalent approach to modeling contact between objects is the quasi-static
assumption, where equilibrium equations are derived from the point of contact and inertial terms are
considered negligible in the dynamic equation (Whitney et al., 1982). This approach is popular in
mechanical assembly tasks (Salem and Karayiannidis, 2020; Turlapati and Campolo, 2022; Yang
et al., 2023). Notably, a recently proposed framework for energy-based quasi-staticmanipulation reframes
quasi-static manipulation as a planning problem (Campolo andCardin, 2023a, 2023b), which: (i) captures
interaction energy between the robot and the object, where the gradient of energy represents the
interaction force, referred to as haptics, and (ii) treats the quasi-static assumption as a physical law,
ensuring that all objects remain in equilibrium. In the framework, the equilibria are defined through an
implicit manifold. As our work builds on this framework, determining the implicit manifold and
thoroughly exploring it becomes the focus of our research.

Navigation on implicit manifolds can be considered a planning problem. For conventional kinematics
planning, sampling-based methods have been around for decades, such as rapidly exploring random trees
(RRT) (S. LaValle, 1998). These methods typically involve sampling and branching within the config-
uration space but could be blocked in the presence of narrow corridors (Jaillet and Porta, 2012).
Meanwhile, the classical sampling-based approach is likely to generate invalid samples. Hence, the
numerical continuationmethod is introduced, with a local planner generating amotion in the local tangent
plane, and projecting back to the implicitly defined manifold, which is always derived from the
constraints. Subsequently, this step is iteratively repeated until the solution is found or the manifold is
fully explored (Allgower and Georg, 2012; S. LaValle, 1998). Consequently, efforts have been made to
integrate kinematic constraints within the classical configuration space in motion planning (Kingston et al.,
2018), where the constraint function is usually defined as a Riemannian manifold embedded in the
configuration space (Spivak, 1999). Several approaches have been proposed to locate such implicit
manifolds, including relaxation with increased tolerance for the constraint function (Bonilla et al., 2017),
projecting onto the manifold’s surface (Dennis Jr and Schnabel, 1996), and sampling in the tangent space to
generate validmotions (Kim et al., 2016).Additionally, continuation-basedmethods have been introduced to
explore the entire implicit manifold (Henderson, 2002; Jaillet and Porta, 2012), and also used to find the
optimal trajectory of a manifold (Safta et al., 2022). Although these methods are effective for geometrically
constrained motion problems, they typically lack a detailed description of contact interactions.

Incorporating physical laws into ordinary differential equations (ODEs) has proven effective for real-
world problems like heat transfer (Conti et al., 2023) and oscillation (Cross et al., 2024). In this article, we
introduce an adaptive ODE with a quasi-static assumption to guide robotic exploration on an implicit
constrained manifold which has been formalized in a recent framework (Campolo and Cardin, 2023a,
2023b). This ODE computes (i) the location of the nodes on the equilibrium manifold and (ii) the haptic
distance using a haptic metric. The ODE can be terminated by a haptic obstacle, ensuring stability and
continuity of the manipulation. With this ODE, we then propose a numerical continuation algorithm that
explores the implicit manifold and discretizes it into a graph of equilibria. Manipulation planning is then
recast as an optimal process on this finite graph.

We compute distances in our configuration space by considering both the robot and object states,
forming a graph that connects nearby nodes. Similarly to the “loop closure” concept in SLAM (Arshad
and Kim, 2021), manipulation tasks like valve turning and screwing, which involve circular or helical
motions, require precise classification. We validate our algorithm with an inverted pendulum example,
demonstrating that the pendulum’s internal space is topologically equivalent to S1 rather than ℝ1.
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The rest of the article is organized as follows. Our configuration space and haptic metric are detailed in
Section 2. Our methodology, including the extension via ODEs terminated by the haptic obstacle, and the
comprehensive algorithm for the continuation approach, is elaborated in Section 3. The manipulation of
the inverted pendulum, including the contact model and potential expression, is discussed in Section 4.
This section also showcases the algorithm’s application in exploring and trimming the control space,
exploring one branch of the manifold, and connecting it into a circle. Finally, conclusions are presented in
Section 5.

2. Quasi-static manipulation and numerical continuation

In this section, we first review the quasi-static framework (Campolo andCardin, 2023a, 2023b), including
the potential modeling and the haptic metric. Additionally, we recall the numerical continuation approach
for Euclidean space (Henderson, 2002).

2.1. Quasi-static mechanical manipulation system

As illustrated in Figure 1, starting with (Campolo and Cardin, 2023a, 2023b), the key steps for analyzing a
manipulation task involve (i) splitting of degrees of freedom into nondirectly controllable variables (e.g.,
environment) z∈Z ⊂ℝN and directly controllable variables u∈U ⊂ℝK . (ii) defining a manipulation
potential W z,uð Þ:

W :ℝN ×ℝK !ℝ,

z,uð Þ↦
X
i

Wel
i z,uð ÞþU zð Þ (2.1)

Assuming there are i contact points in total, each contact point is symbolized as ci zð Þ. The bodyℬ, which
denotes the internal states z, decides these contact points ci zð Þ. The control inputs ui, which connect to the
contact points via a virtual spring, capture these interactions. In general, the dimensionality of the control
space is often smaller than the dimensionality of the uncontrollable state, since K depends on the number
of actuators.

The configuration of the system is then determined solely by its manipulation potential W z,uð Þ. The
potential of objectsU zð Þ includes the contact energy between objects and the gravity potential. The elastic

Figure 1. Robots manipulate an object under equilibrium. The object z is an indirectly controllable
variable. Robots contact with the object at contact points ci zð Þ, and control inputs ui denote the desired

position of the robot. Virtual springs represent impedance control.
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potential Wel
i z,uð Þ captures the robot–environment interaction in terms of non-linear yet smooth inter-

actions elastic potentials, which is crucial, and corresponds to a regularisation of otherwise non-smooth
mechanical interaction. In particular, mechanical contact is modeled using nonlinear springs that exhibit
high stiffness when the robot end-effector penetrates objects in the environment and highly flexible
otherwise, with smooth transitions in-between. Each spring energy can be defined as

Wel
i z,uð Þ¼ 1

2
∥ui� ci zð Þ∥2K i

(2.2)

where ∥a∥2A≔aTAa denotes theMahalanobis distance, and K i denotes the stiffness matrix for the virtual
spring. Once a robot-environment potential function W z,uð Þ is defined for a problem, as outlined in
(Campolo and Cardin, 2023a, 2023b), quasi-static manipulation can be seen as an optimization problem
taking place on the so-called Equilibrium Manifold (EM) Meq, defined as the subspace space of
mechanical equilibria with equilibrium condition as

∇zW z∗m,u
� �¼ 0∈ℝN (2.3)

We define ∇qW � ∂q1W ,…,∂qaW
� �T

, where the nabla (column) operator is defined as ∇q ¼
∂q1 ,…,∂qa
� �T

. Meanwhile, define the shorthand notation ∇2
z � ∇z∇T

z

� �¼∇z∇T
z for Hessians and mixed-

derivative operators. Meanwhile, z∗m represents the potentially multiple solutions, with m≥ 1 indicating the
multiplicity of equilibria. In otherwords, for the same control input of the system, the uncontrollable state can
have multiple situations. As such, the EM is defined when u is seen as a parameter, that is,

Meq z,uð Þ∈Z ×U j∇zW z,uð Þ¼ 0f g (2.4)

is a smooth embedded submanifold in the ambient spaceZ ×U . The state transitions are purely controlled
by the robotic agent u. Meanwhile, A point is strictly stable when its Hessian is positive definite,
i.e., ∇2

zzW
��
∗ ≻ 0. Meanwhile, following (Campolo and Cardin, 2023a, 2023b), the haptic distance S

between any two points u0 to u1 on control space is defined as,

S u cð Þ½ � ¼
Z u1

u0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
duT

dc
G2

m uð Þdu
dc

r
dc, (2.5)

where S u cð Þ½ � represents the robot’s cost when following a control policy u cð Þ. The greater the force
required by the robot during manipulation, the larger the value of S, and Gm uð Þ is the control Hessian
(Campolo and Cardin, 2023a, 2023b) defined at equilibria z∗m,u

� �
:

Gm uð Þ :¼ ∇2
uuW�∇2

uzW ∇2
zzW

� ��1∇2
zuW (2.6)

2.2. Numerical continuation approach

In differential geometry, it is established that a manifold can be characterized by a set of local
parametrizations known as charts, which are collectively organized within an atlas (Do Carmo, 2016).
(Henderson, 2002) introduced a continuation method to explore a manifold which is implicitly defined by
a series of overlapping neighborhoods. The concept involves covering a flat manifold,ℝk, with spherical
balls, or projecting from the tangent space onto a general manifold. Therefore, each chart is defined as
Ci uið Þ, including a center ui and a polygon Pm

i as an approximation, wherem denotes the number of steps.
The relationships between these balls can be categorized based on their spatial interactions: they may

be external to each other, one ball may be completely inside another, or they may intersect. These
relationships are determined by comparing the distance between the centers of two balls with their radius
R. To compute the intersection of a sphere that lies within a convex polyhedron defined by the inter-
section of half spaces, Henderson employs a finite convex polyhedral, CRi uið Þ, to cover each spherical
ball. Consequently, the boundary of this collection of balls is formed by the union of all the individual ball
boundaries and the polygons. Efficient exploration of the entire space hinges on expansion along these
boundaries. A practical approach involves extending from the exterior vertices of the polygons. Here,
“exterior” refers to vertices where the distance from the vertex to the center exceeds the radius (Eq. 2.7).
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To manage this process, a waiting list for spheres is maintained, which helps in prioritizing expansion
points.

Bm
list ¼ ij∃v∈ vertex Pm

i

� �
s:t:jvj>Ri

� 	
(2.7)

From this exterior vertex, a new ball is generated along with its corresponding polygon. Subsequently,
a trimming function is applied to reduce the overlapping volume between nearby polyhedra.

Pm
i ¼f∅ if for any j∈ Jmi , ∣uj�ui∣<Rj�Ri,

CRiðuiÞ∩j∈ Jmi ðHSijÞ otherwise
(2.8a)

HSij ¼ uj u�uið Þ � uj�ui
� �

≤
1
2

R2
i �R2

j þ uj�ui
�� ��2
 �� 


(2.8b)

This entails identifying the intersection or cross set between a half-space (HSij) and the polyhedron. This
step of the framework is called POLYTRIM. For any two polyhedra, we trim them by Algorithm 1.

Algorithm 1 Trim two polyhedra

Subsequently, the classical numerical continuation approach to move on the constrained manifold is
depicted in Figure 2. Each chartCi is approximated by polygonPi, with a spherewith radiusRi. During the

Figure 2.ChartCi andCj are approximated by polygon covering circle with centers ui and uj. Each chart
Ci is expressed in the tangent space at is center ui. Black circle in the tangent space at uj is projected to the
manifold as the red circle, then onto the tangent space at ui as the pink circle. The half space HSij pass

through the intersection points between the green circle and the pink circle.
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(Henderson, 2002) process, two projection steps are performed on the manifold. One is to project the
black circle in the tangent space at uj to manifold as the red circle. The other is to project the black circle
onto the tangent space at ui as the pink circle. The former is used to cover the manifold, the latter is aimed
at finding the half space HSij to execute the trimming process. The projection step requires iterations to
find the solution on the manifold. Moreover, each step during trim and growth requires a projection
operation, and this projection-based growth is widely used in other constrained motion planning
techniques (Jaillet and Porta, 2012; Kingston et al., 2019).

3. Haptic continuation exploration

The necessity of the projection operation in the methods mentioned above is due to the inherent property
of the classical numerical continuation approach, where the new node is far from the parent node on the
manifold. As such, to remain on the manifold, the new node needs the iterative projection operation.

Different from the classical approach, we employ an adaptive ODE to simultaneously compute nodes
and geodesics as we explore through our configuration space without using the iterative projection. The
exploration strategy, derived from (Henderson, 2002), is adapted within our control space U ∈ℝK . This
method is integrated into our framework, with vertex properties as both frontier and haptic obstacles,
which are specialized for manipulation tasks. The process solely requires a potential function for the
system, from this point, all subsequent steps are derived.

3.1. Exploring via adaptive ODE

The Equilibrium Manifold (EM) Meq is therefore implicitly defined and, given an initial solution
z0,u0ð Þ∈Meq, a first-order approximation on the equilibrium manifold is given as,

δz¼� ∇2
zzW

� ��1∇2
uzWδu (3.1)

Eq. 3.1 is depicted as a blue arrow in Figure 3(a), which illustrates the linear relationship with an
infinitesimal change between z and u. The calculation of an implicit manifold from a given set of
(nonlinear) equations invariably relies on standard iterative methods such as Newton–Raphson, as in the
case of (Henderson, 2002; Jaillet and Porta, 2012). Recently, it was shown that the classical iterative
Newton–Raphson method can be transformed into an adaptive ODE (Schneebeli and Wihler, 2011).

Figure 3. The evolution of physic-informed adaptive ODE exploring manifold.
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Therefore, based on quasi-static assumptions, we propose evaluating the evolution t! z tð Þ∈ℝN when-
ever the control parameters t! u tð Þ∈ℝKare (quasi-statically) varied by (numerically) solving a set of
adaptive ODE. The Newton-Raphson “infinitesimal” adjustments, when u¼ const gives rise to the out-
of-equilibrium dynamics, depicted as a red arrow in Figure 3(a).

δz¼�α ∇2
zzW

� ��1∇zWδt, (3.2)

where α represents step size in theODE (Schneebeli andWihler, 2011), which influences the convergence
of the ODE. If α is too small, the ODE may fail to converge within the given time. Conversely, if α is too
large, the ODE might jump to a different branch of the EM.

Clearly, if out of equilibrium (i.e.Wz ¼ 0), for a fixed u and by virtue of the positive-definiteness of the
Hessian W zz > 0, this term drives the variables toward the equilibrium manifold Meq.

From a given initial solution z0,u0ð Þ∈Meq, a new nearby solution z1,u1ð Þ for a new parameter u1 at
constant rate _u¼ u1�u0ð Þ=T , can be evaluated by numerical integration of the adaptive ODE. Hence, the
adaptive ODE becomes

d
dt

z

u

ϕ

2
64

3
75¼

� ∇2
zzW

� ��1∇2
uzW _u�α ∇2

zzW
� ��1∇zW

u1�u0ð Þ=Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_uTG2

m uð Þ _u
q

2
664

3
775,

z 0ð Þ
u 0ð Þ
ϕ 0ð Þ

2
64

3
75¼

z0
u0
0

2
64

3
75 (3.3)

Meanwhile, we introduce the concept of a haptic obstacle,

det ∇2
zzW z∗ uð Þ,uð Þ� �

≥ λ > 0 (3.4)

where λ is a threshold. The haptic constraint (Eq. 3.4) is imposed because the inverse of the Hessian is
required, so� ∇2

zzW
� ��1

should be sufficiently small to avoid significant changes of z. Meanwhile, λ> 0
indicates the Hessian is positive definite, suggesting the node is stable on the equilibrium manifold. The
stable points are also referred to as nondegenerate critical points (Poston and Stewart, 2014). The adaptive
ODE with haptic obstacles always starts from a stable point and avoids exploring unstable critical points,
as the surrounding region of an unstable critical point is inherently unstable. To prevent numerical
instabilities, the ODE can be terminated by haptic obstacle, ensuring stability and continuity in the
manipulation process while avoiding singularities.

3.2. Numerical continuation in control space

In our framework, we can only control the robot u, the directly controllable variables, rather than the entire
implicit EM. Hence, we explore the control space via the numerical continuation approach. Each chart Ci

is represented as a node in a graph. These charts include information about Ci � ui,zi,Ri,Pm
i

� �
, where i

denotes the index of this chart, andm represents the number of exploration steps. It is important to note that
only the polyhedral can be revised during exploration, as Pm

i is determined by both i and m.
Similarly toHenderson’smethod, ourwaiting list stores the polyhedra to be explored. Each polyhedron

contains several vertices and is associated with two lists of properties: isExteriorVertex and isDeadVertex,
abbreviated as EV and DV. The EV label is initially set to T for all vertices, but is
reassessed after every trimming session. This label indicates whether a vertex is a frontier that needs to be
explored, defined as

EXVTX kð Þ¼ TRUE if ∥vk∥>Rielse FALSE,∀vk ∈ vertex Pm
i

� �� 	
(3.5)

where k is the index of vertex, i denotes the index of polygon, EXVTX includes all the vertex of a polygon.
The second label, DV, is initialized for all the vertex as F, and it is evaluated during the growth

phase to determine if a vertex leads to a dead end; this status is maintained even after trimming.
When selecting a polyhedral from thewaiting list, we choose a vertexwhere EV is true andDV

is false. Unlike Henderson’s method, which directly grows a new sphere, our strategy involves extending

Data-Centric Engineering e18-7

https://doi.org/10.1017/dce.2025.11 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2025.11


from the center ui to the vertex vi using the adaptive ODE from Eq. 3.3. This ensures that all steps in the
manipulation are quasi-static, enhancing the precision and stability of the robot’s movement. For each
ODE, representing the growth step from the center to the vertex over a specified time range, termination
can occur due to a haptic obstacle or upon reaching the target vertex. The label DV is updated based on
the outcome u Tð Þ from ODE (Eq. 3.3), defined as:

DDVTX kð Þ¼ FALSE if u Tð Þ¼ vk else TRUE jvk ∈ vertex Pm
i

� �� 	
(3.6)

This also implies that we can only update one vertex i for the list DV within each growth.
Meanwhile, the edgeweight between two nodes is evaluated asEij ¼ Sij ¼ ϕ Tð Þ. As such, the continuation
exploration can be visualized in Figure 3(b), where each growth begins from the center of a polyhedron
and targets a frontier vertex. The entire ODE (Eq. 3.3) stays on EM, shown as the curve on EM. There is
sometimes a risk that the ODE may leave the EM, resulting in loss of stability. In such cases, the
corresponding vertex will be labeled as DV. Conversely, the ODE may be completed successfully,
indicating that the growth step is finished.

Algorithm 2 Extend a node in the Graph

Hence, the algorithm for E_G becomesAlgorithm 2, the function starts by inputting a chart
Ci, where we extract the centre point u0,z0ð Þ and the polyhedron Pm

i (line 2). We also select a vertex
labeled as EV is True and DV is False, indicating that this vertex is a frontier and is achievable,
having not encountered the haptic obstacle (line 3). Subsequently, we execute theODE (Eq. 3.3) (line 4) to
determine whether it can integrate to this vertex (line 5). If it is true, indicating that the ODE was not
terminated by a haptic obstacle, we add a new node to our graph (line 6), and also append the index m of
this new chart to the waiting list (line 7). After adding a new node, we enter the trimming phase. We loop
through all existing charts (lines 8 and 9), and assess whether they are sufficiently close (line 10). If they
are, we compute the ODE from the new chart Cm to the nearby existing charts (lines 11 and 12). A new
edge is then added to the graph based on the geodesic ϕ (line 13). Subsequently, we trim both polyhedrons
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separately with the PT function via Eq. 2.8 (lines 14 and 15). The final step involves checking the
new polyhedron. If this polyhedron no longer has any frontier vertices, it is removed from the waiting list.
Conversely, if the growth is terminated by a haptic obstacle, the correspondingDV label is set to True.

The charts are only trimmed when they are near. Different from Henderson’s method, we define the
distance function as

dist Ci,Cj
� �¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∥ui�uj∥2þ l mod zi� zj,2π

� �� �2q
(3.7)

where l relates to the size of the object to make same dimension for translation and rotation (Campolo
et al., 2013). This formula reflects that the rotational periodicity of real-world components (e.g., motors) is
2π. Hence, we define the function N_C as in Algorithm 3 where RiþRj defines the distance
in the control space, Rz defines the distance in the state space. As the difference between zi and zj equals
2π, two nodes are still near each other.

Algorithm 3 Decide nearby charts

3.3. Overall algorithm

We start our exploration by placing a node on the EMand defining a radiusRi for the corresponding sphere
to generate a polyhedron. We maintain a waiting list Bm

list of these polyhedra (line 1). In each iteration of
our process, as long as the waiting list is not empty (line 2), we select the first index from the waiting list
(line 3) and identify its charts (line 4), if this chart does not have an unexplored frontier vertex, which
means Ci:EXVTX⊆Ci:DDVTX, we remove it from the waiting list. Otherwise, we start to grow once
using Algorithm 2. Finally, we sort the sequence of polyhedra in the waiting list to determine the
exploration strategy, such as whether to explore the most distant polyhedron first or start from the nearest
to the origin.

Algorithm 4 Haptic graph exploration
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4. Simulation validation: manipulation of an inverted pendulum

We validate our algorithm through the inverted pendulum task. (Campolo and Cardin, 2023a, 2023b) has
previously explored the EM of an elastically driven inverted pendulum, aiming to stabilize it in an
arbitrary position.We apply the energy-based numerical continuation approach to this example, where the
manipulation of the pendulum is similar to a “staircase” within the configuration space. We start with
modeling the inverted pendulum task and show the performance of our method.

4.1. Inverted pendulum model

In a 2D plane, the system comprises a pendulummodeled as a superquadric with length L0 and massm. A
virtual robot agent is connected to the pendulum via a nonlinear spring. The pendulum is hinged at one
end to the origin of the world, and a body frame is attached to the center of mass (CoM). As depicted in
Figure 4, the uncontrollable state variable of the system is the rotation angle z¼ θ∈ S1, and the control
vector is the position of the robot u¼ ½ux,uy�T ∈R2.

Hence, the total manipulation potential W z,uð Þ consists of contact energy between the robot and the
pendulum, and gravity potential.

W z,uð Þ¼Wgrav zð ÞþWctrl z,uð Þ,
¼ 1
2
mgL0 sinθþ

1
2
k ux�L0 cosθð Þ2þ uy�L0 sinθ

� �2
 �
,

(4.1)

where k is the nonlinear spring stiffness, capturing the interaction between the robot and the pendulum.

k dð Þ¼ kminþ1� tanh d=d0ð Þ
2

kmax: (4.2)

The variable l serves as a signed distance for mechanical contact. When l< 0, it indicates that the robot u
has penetrated the pendulum, signifying that contact has occurred. This results in a large contact force due
to the high stiffness parameter kmax. Conversely, when there is no contact between the robot and the
pendulum (l> 0), the resultant force should be zero, indicated by a significantly lower stiffness
(kmax ≫ kmin). The parameter l0 is utilized to facilitate a smooth transition between contact and no-contact
states, to guarantee a smooth and differentiable manifold.

4.2. Exploring and trimming in control space

We first show how the numerical continuation approach expands in the control space and how 

operates. We set Ri for each polyhedron to be the same as the red circles in Figure 5(a). We observe that a
convex polyhedron (represented as a square in 2D space) contains a sphere (represented as a circle in 2D
space). Then,  identifies the half-space between two nearby polyhedra. The polyhedron is
trimmed until the square fits within the circle, indicating no more frontier vertices.

The final result is shown in Figure 5(b), we plot the entire “staircase” branch of the inverted pendulum
task in the configuration space. Each polyhedron is depicted as a blue square since control space U ∈ℝ2.
The polyhedra in control space is moved down to better indicate the idea of control space with respect to

Figure 4. Inverted pendulum task, where the contact interaction is captured by non-linear stiffness.
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configuration space. The implicit manifold is illustrated with orange dots in the background, while the red
dots represent the nodes in the graph.We observe that all the red nodes remain on the EM,which validates
the accuracy of our adaptive ODE.

We identify two boundaries of red nodes. The outer circle, representing a haptic obstacle, indicates
instability and helps avoid loss of singularity. The inner circle, also a haptic obstacle, suggests that the
robot is exerting excessive force on the pendulum, leading to instability. Furthermore, the connectivity in
the implicit manifold indicates that rotating the pendulum full circle is equivalent to returning to the
starting point, thus forming a loop closure for manipulation. We demonstrate that this task inherently
exhibits a circular nature, as opposed to a helical one, and confirm that ourZ space belongs to S1 instead of
ℝ1. Hence, our algorithm enables the robot to recognize that the inverted pendulum task is a circular
motion, which is crucial for selecting the appropriate manipulation strategy. For instance, understanding
that circular tasks (e.g., valve turning) require no translational motion, while helical tasks (e.g., bottle
opening) necessitate it, ensures the robot can recognize these differences. Meanwhile, by applying
Topological Data Analysis (TDA) (Joharinad and Jost, 2023; Nathaniel Saul, 2019), the graph has a
genus of 1, which supports our results. This means the object has one hole in its structure from its
topological perspective.

Remark 1: In the real-world scenario, observed z∗ could be noisy but the control u is always accurate.
Therefore, this means the initial guess of our ODE is noisy. However, with the help of the attractor
properties of Newton–Raphson and the description of the embedded manifold within our ambient space
ensure that our ODE still functions correctly, ultimately attracting the node back to the manifold.

Remark 2: It is worth noting that our work fundamentally differs from classical inverted pendulum
studies (Irfan et al., 2024), which primarily focus on control, aiming to stabilize the pendulum without
considering contact dynamics. In contrast, ourmethod incorporates contact interactions between the robot
and the pendulum, with the goal of exploring the entire manipulation manifold while emphasizing its
connectivity and topological properties. From a broader perspective, our work aligns more closely with
motion planning approaches for pendulum-like objects such as door handles (Shaikh-Mohammed et al.,
2023).

Remark 3: Conventional motion planning methods typically default to directly controlled variables,
which may not fully capture the interaction between robot commands and manipulated objects. In
contrast, our approach considers both indirectly and directly controllable variables. Additionally,
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Figure 5. The implicit manifoldMeq is discretized via aGraph having as nodes a finite set of equilibria in
Meq interconnected weighted edges defined via the G2 metric. Manipulation planning can therefore be

recast into an optimal process on finite Graphs.

Data-Centric Engineering e18-11

https://doi.org/10.1017/dce.2025.11 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2025.11


constrained motion planning approaches rely on task-specific constraint functions. For example, in the
case of manipulation of the inverted pendulum, a task-based constraint function (Kingston et al., 2018) on
u is required to generate a feasible control path to invert the pendulum, while our framework does not
require any task-specific constraint function.

5. Conclusion

In this work, an energy-based numerical continuation approach is applied to a novel quasi-static
manipulation framework. This approach integrates the classical numerical continuation method with
an adaptive ODE, which is terminated by a haptic obstacle to ensure the stability of the exploration and
guarantee that all nodes remain on the EM. Additionally, a distance measurement is employed to identify
neighboring nodes in the graph, aligning with our framework that accounts for both robot and object
states. The effectiveness of the proposed method has been validated through an inverted pendulum
example. The results demonstrate that our method can successfully discover the branch of the EM while
being terminated by a haptic obstacle. We also observe the connectivity of the graph, confirming the
inherent property of the pendulum task as a circular motion. In future work, we plan to extend our
framework to real-world scenarios, and the implicit manifold can be reconstructed from observed data,
accounting for potential noise and practical challenges. Additionally, we aim to implement an adaptive
mechanism for the exploration radius to improve computational efficiency.
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