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Abstract

Piccinini’s usability constraint states that physical processes must have “physically
constructible manifestation[s]” to be included in epistemically useful models of physical
computation. But to determine what physical processes can be implemented in physical
systems (as parts of computations), we must already know what physical processes can be
implemented in physical systems (as parts of processes for constructing computing systems).
We need additional assumptions about what qualifies as a building process. Piccinini
implicitly assumes a classical computational understanding of executable processes, but this
is an assumption imposed on physical theories and may artificially limit our picture of
epistemically useful physical computation.

1. Introduction
This discussion emerges from two fundamental questions: What is physically
computable? and What is the relationship between Turing computability and physical
computability? As Turing computability is the central force of computability theory,
the former question is often posed in terms of the latter (e.g., Arrighi and Dowek 2012;
Cotogno 2003; Hogarth 1994; Shagrir and Pitowsky 2003; Ziegler 2009, among
countless others). Piccinini’s (2011, 2018) discussion of the physical Church–Turing
thesis follows this format. He argues that if notions of computability are to be linked
to what is epistemically useful to finite observers, a modest version of the physical
Church–Turing thesis likely holds. This modest physical Church–Turing thesis states
that what is Turing computable acts as an upper limit for what is physically
computable, given some constraints on what is considered a physical computation.
These constraints are meant to restrict discussion to physical computations that
could be epistemically useful to finite observers.

Though the modest physical Church–Turing thesis may seem plausible, we will see
that the account of what counts as an epistemically useful physical computation that
Piccinini uses to argue for this thesis requires more explicit conceptual grounding. In
particular, I argue that it begs the question regarding what physical processes one
considers possible computational operations and implicitly fills this gap with the
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assumption that physical computational operations correspond to processes that
can be executed by physical systems that can be built using classical (Turing)
computational processes on physical systems.

Trying to determine which physical processes can correspond to epistemically
useful computational operations leads to a bootstrapping problem: we want to limit
epistemically useful computations to those with a physically buildable manifestation
for finite observers like ourselves; however, our criteria for determining which
physical processes finite observers can implement as part of a computational process
require us already to know which physical processes finite observers can implement
to build physical systems to implement that computation. This undermines the
usefulness of buildability as a constraint for determining which physical
computations are epistemically useful.

Piccinini implicitly assumes a classical (Turing) computation-based position in
which finite observers can implement Turing-computable processes to build
computing systems. Although this classical starting point is not without merit—an
assumed starting point is required, and I will argue in section 4.2 that a classical
computation-based one is a good default position—it is also not the only possible
position, and it might even be ill suited to describing what is possible for finite
observers in some physical theories. Additionally, this position may lead us to
overestimate the likelihood that the modest physical Church–Turing thesis holds.

Section 2 discusses what is meant by physical computability in the context of this
article. Section 3 discusses what a model of physical computation is in light of
Piccinini’s conditions for ensuring that physical computational models are
epistemically useful to finite observers. Section 4 argues that, given a physical
theory, there is an inherent freedom for selecting physical operations to ground what
counts as a model of computation in that theory. This results in a bootstrapping
problem, unless we impose a selection of what physically possible processes to
consider possible building blocks for models of computation in a theory. The
selection, implicitly made by Piccinini, derived from a classical computational
understanding of operations, though a particularly compelling response to this
freedom, is not without its weaknesses. Section 5 concludes.

2. Physical computability questions
Using Turing machines in classical universes whose spatial dimensions are described
by hyperreal, rather than real, lines, Aitken and Barrett (2009, 2010) show that what is
computable using a Turing machine depends on the physical theory in which it
resides. They conclude that, generally, what is physically computable depends on the
physical theory. Additionally, they propose that questions of physical computing
power can be answered only relative to a physical theory and a computational model
constructed relative to this theory. Thus questions about physical computability
should be answered relative to a particular computational model constructed relative
to a particular physical theory.

On its own, this proposal tells us nothing about how we should select models of
computation relative to physical theories. But determining the limits of physical
computability and whether different versions of the physical Church–Turing thesis
hold relies on some assessment of what counts as a model of physical computation in
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some physical theory. If we do not properly restrict how computational states and
operations can be mapped to physical states and operations, then we can end up with
some version of pancomputationalism in which every physical system performs
either some computation or every computation.1

One might reasonably hope that appropriate physical computational models can
be selected in a principled way, ideally by catering our selection of computational
model to leverage a physical theory’s properties while reflecting what finite observers
governed by this theory could possibly achieve. We will explore such an approach
in section 4.1 and find that it succumbs to a bootstrapping problem without
supplementary assumptions that do not arise from the physical theory itself. Thus
Piccinini’s usability constraint requires additional specification of what operations
finite observers can utilize that do not arise from the physical theory or the usability
constraint itself. The necessity of additional constraints that do not arise from a
particular physical theory on allowed computational operations and arguments for
and against Piccinini’s position are discussed in section 4.2.

3. Models of physical computation
For the purposes of this article, a physical theory T will specify sets of objects J,
possible physical states Sj for these objects, and dynamical rules R that describe how
the states of these objects evolve and interact. For instance, the objects of J may be
particles or perturbations of a field and will constitute the physical systems used to
construct a model of computation. The states Sj will describe the properties of these
objects, such as location or energy level, and the dynamical rules R determine how
these objects and states can evolve. This definition is meant to be broad enough to
encompass a wide variety of physical theories.

Given an appropriate physical theory T , a model of computing in that theory can
be constructed in an immense number of ways. Any process can be considered to be a
computation of almost anything if one is liberal enough with what one considers a
computation, as the pancomputationalism literature demonstrates.2 We will want to
consider models of physical computation that follow Aitken and Barrett’s (2009, 2010)
prescription in light of Piccinini’s epistemological concerns. To give us a tractable
starting point, I will define a model of computation as follows.

A model of computation relative to T , MT , will consist of finite numbers of units
of information (“bits” of some sort) B and operations O that can be performed on
these units of information; these will arise from information-carrying objects B � J
and operator systems O � J that act on the elements of B according to dynamical rules
R to change their corresponding physical states. There may not be a one-to-one
correlation between units of information B and elements or even subsets of B. For
instance, a unit of information may be carried by one particle or multiple particles,
perhaps even within a single computer. Importantly, the physical states of B serve to
transmit information, and the evolution of these states according to the dynamical
rules R of the theory and through the influence of operator systems allows
computation.

1 See Piccinini (2017) for an overview or Müller (2014), Piccinini and Anderson (2018), and Piccinini
(2007) for some examples of critical responses to pancomputationalism.

2 See note 1.
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Piccinini proposes a usability constraint to restrict discussion of physical
computation to those physical computational models that would be epistemically
useful for finite observers:

Usability constraint. If a physical process is a computation, it can be used by a
finite observer to obtain the desired values of a function3 (Piccinini 2011).

This constraint is broken down into four subconstraints on physical processes
(Piccinini 2011, 741):

1. “An executable physical process is one that a finite observer can set in motion to
generate the values of a desired function until it generates a readable result.”

2. “An automatic physical process is one that runs without requiring intuitions,
ingenuity, invention, or guesses.”

3. “A uniform physical process is one that doesn’t need to be redesigned or
modified for different inputs.”

4. “[A] reliable physical process is one that generates results at least some of the
time, and, when it does so, its results are correct.”

Our concern will be a particular aspect of the executability criterion. To be
executable, a physical process must have inputs and outputs that are readable for a
finite observer, the ability to solve problems that can be “defined independently of
the processes that compute them,” the ability to be repeated, the ability to set the
computing system into a particular initial state, and a physically constructible
manifestation (Piccinini 2011). The constructibility criterion implies a distinction
between physically possible objects and processes and the physical processes and
objects that could be constructed by some physically possible finite agent. This limits
discussion of physical computation to things that finite observers could execute and
find epistemically useful.

The last component of the executability condition—that the physical process
corresponds to some system that can be physically constructed—will be the main
target of our concern, because an investigation of this criterion reveals an
unrecognized assumption that guides the rest of Piccinini’s work on the modest
physical Church–Turing thesis. What we now want to consider is how this restriction
would play out when developing models of computation relative to a physical theory.
For the sake of avoiding confusion with other concepts, we will use “build” where
Piccinini uses “construct.”

4. Determining what is buildable
We will see that Piccinini’s executability subconstraint, owing to ambiguities in how
to determine what is buildable, can leave open a wider range of possibilities for
computational operations than seems desirable and that seems to have been
acknowledged in the literature. By investigating ways one can describe what counts as
“physically constructible” (what we call “physically buildable” to avoid confusion
with other ideas tied to the word constructible), we will see that Piccinini implicitly

3 Here Piccinini considers only processes that fit this constraint to be computations. I will instead
distinguish between usable physical computations that fit this constraint and physical computations
more broadly, which may or may not fit this constraint.
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supplements this concept with a notion of what operations finite observers can use
which is based in classical computation, rather than on the physical theory itself, in
contrast with the prescription Aitken and Barrett (2009, 2010) describe. Nonetheless, I
will argue that adapting the implicit classical notion underpinning Piccinini’s
discussion of his usability constraint to a particular physical theory is a strong
starting point for investigating physical computation in that theory, though we
should be explicitly aware that we are making an assumption.

4.1. Buildable physical systems and a bootstrapping problem
If our concern is what a physical theory allows finite observers to do, not all
physically possible system states may be useful for computation. For a model of
physical computation to pass Piccinini’s executability condition, finite observers must
be able to reliably build devices that manifest it. One then needs to understand what
processes finite observers can reliably use to build physical systems to act as
computers. If a finite observer cannot systematically put a system in (or extremely
near to) a state, then that state cannot be part of a model of computation that is useful
for finite observers, even if the state can be realized in a world governed by theory T .
This applies to both the information-carrying systems and the operator systems: we
need systematic processes within the theory to build the elements of B and O and to
set them up for a computation; otherwise, these states cannot be epistemically
usefully harnessed. These restrictions are motivated by epistemic considerations—
they are meant to limit usable models of physical computation to those that are not
just physically possible simpliciter but are physically possible ways for an observer
within the physical reality to use other systems within the same physical reality to
solve some problem (disregarding surmountable technological limitations). Ideally,
we would be able to define a notion of “buildability” that emerges from an account of
finite observers in a particular physical theory alone. However, we will see that the
situation seems not to be so simple and that deciding what counts as buildable
requires us to make stipulations that do not arise from the physical theory itself.

What can be built within different physical theories obviously varies; for instance,
quantum mechanics allows the construction of Hadamard gates, whereas classical
mechanics may not. Also, what building procedures are available may vary from one
theory to another. One theory may allow infinite-step processes to be completed,
whereas another does not, or, more typically, one theory may allow access to
different physical systems and different ways physical systems can be manipulated
than another. If theories allow different processes to manipulate physical systems,
they may also allow different operator and bit systems to be built and perhaps
different B and O, which can be used in computational models relative to the
theories. But finite physical systems can implement many processes that should not
be included in an account of epistemically useful physical computation. The task for
understanding useful physical computing is determining which of the physical
processes that finite systems can implement can be used to build operator and bit
systems for use in physical computers.

Suppose we want to determine what models of computation finite observers can
build relative to some physical theory. To determine what can be built for use in a
model of computation relative to our physical theory, we must first determine what
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physical processes in the theory can be used for building computer components. But
here we run into a problem—building some component for a computer requires a set
of operations we can perform on systems to change their states in order to build that
component. But this set of operations we can perform on systems is precisely what we
are attempting to discover, as these are the operations that can be used as part of a
model of physical computation. So we have a bootstrapping problem—we want to
know which physical processes a physical theory allows finite observers to reliably
implement (that would be used in computers), but to discover this, we must already
know what physical processes the physical theory allows finite observers to reliably
implement (that would be used in building computers).

Let’s make this more concrete. Imagine we have some physical theory T with a set
of objects J that have possible physical states Sj and dynamical rulesR, which describe
how these states evolve. We want to know what bits B, corresponding with the
physical states Sj, and operations O, corresponding with dynamical operations on
these states fromR, could be used in epistemically useful models of computationMT

in this physical theory. To find this out, we must know what physical systems finite
observers can build to act as bit systems B and operator systems O in computing
systems. That is, to determine what B and O can be in an epistemically useful physical
computer, we must know how finite observers can systematically manipulate the
states S of physical systems J to build B and O. But knowing how finite observers can
systematically manipulate physical states for use in computing requires us to already
know what operations these finite observers can perform on the states of physical systems. We
need a way to select which physical processes that finite observers can implement to
include in our account of buildability in a particular physical theory.

Buildability needs supplementation to work as a useful constraint on what we
consider epistemically useful physical computation. Though epistemically useful
physical computation must in fact fit the buildability criterion, this criterion itself has
significant epistemic problems when we try to use it; we would need a full account of
what physical operations and states finite observers can and cannot reliably use in a
particular physical theory, but this list does not directly fall out of the laws of a
physical theory, as finite observers (acting as finite systems) can implement all sorts
of operations that we would not want to consider part of a computational model in
that theory.4 For instance, a system acting as a unitary operator in a real quantum
computer that we build will, with probability 1, correspond to some operator that is
classically noncomputable. Yet these operations are not considered part of quantum
computing; they can only be approximated, for example, with the Solovay–Kitaev
algorithm (Dawson and Nielsen 2006; Kitaev 1997). We turn to Geroch’s (2009) more
thorough discussion of this topic in the following section. We need additional rules for
determining which operations pass the buildability criterion.

Can the rest of Piccinini’s usability constraint free us from this problem? Let’s first
look at the rest of the executability subconstraint. Again, this requires that there be
readable inputs and outputs, the ability to solve problems defined independently of

4 Readers may find the work of Curiel (2020) (following the work of Stein 1995) on why “schematizing
the observer is required for an adequate philosophical analysis of the structure and semantics of
theories” helpful both for orienting themselves in this discussion and for investigating concerns in
philosophy of science that in many ways mirror the concerns of this article.
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the processes that compute them, repeatability, and the ability to set computing
systems into particular initial states, in addition to having a physically buildable
manifestation. Whether a process is repeatable and whether a computing system can
be set to a particular initial state are consequences of what is physically buildable—if
we can build components to act out some physical process, then we can do so
repeatedly, and we can do so to initialize the state of a computing system. The ability
to solve problems defined independently of the processes that compute them is a
matter of what computations can be said to compute but not of what basic operations
can be implemented on physical systems. Requiring readable inputs and outputs
seems to show the most promise, because presumably, finite observers cannot access
the complete dynamical consequences of all their actions. For instance, I may be able
to throw a ball some classically noncomputable distance (in meters), but I certainly
cannot read off the real number corresponding to this distance. But readability itself
is at least partially dependent on buildability, in that finite observers may be able to
use physical processes to change an output they cannot read into one they can.

The other subconstraints will be of no help. Whether a purported computing
system can be considered “automatic” will depend on what operations are considered
to be automatic processes, which in turn depends on what can be built to act as a
computing component and thus cannot be considered to be acting with intuition or
ingenuity. Whether a process is Uniform over different inputs and whether a process
is capable of getting correct results are properties of a purported computation as a
whole, not of its individual components.

Thus Piccinini’s executability criterion leaves us with a bootstrapping problem: we
want to figure out which physical processes we can implement on physical systems
(as part of a model of epistemically useful computation), but to determine this, we
need to already know what these operations are (for use in building computer
components to implement a model of computation). In the following section, we
discuss how to avoid this bootstrapping problem and one type of solution adapted
from Geroch’s discussion of quantum computation—namely, to take operations
corresponding to classical computational operations as a starting point—and why
this type of solution is likely the best starting point for investigating physical
computation, despite some weaknesses.

4.2. Avoiding the bootstrapping problem by stipulating constraints
Developing a notion of what is buildable in a physical theory requires us to already
have a concept of what operations and systems are allowed in a notion of buildability.
Because of the bootstrapping problem, we cannot simply read a notion of buildability
off of a physical theory’s treatment of finite systems. Instead, we must stipulate on the
theory some external criteria to determine which physical processes finite systems
can implement to be considered relevant to physical computation. These criteria do
not arise directly from the physical theory or its properties but instead are external
constraints on which physical processes are allowed in building procedures and hence
which operations and states are considered buildable. This helps us determine what to
count as an epistemically useful model of physical computation in a particular
physical theory.
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To avoid the bootstrapping problem, we could appeal to classical computational
processes as a starting point. That is, we would assume that analogues to classical
computational operations can be executed in a physical theory, namely, we can execute
finite-step processes where steps involve discrete changes in a physical system’s state, and
these discrete changes are classically (Turing) computable. For instance, a rotation of a
state through an angle described by a classically computable number is allowed,
whereas a rotation of a state through a classically noncomputable angle is not—
unless we are able to reliably build an operator system that rotates a state through a
classically noncomputable angle by using a finite number of classically derived
operations. This solution allows us to bypass the bootstrapping problem by selecting
the physical processes used to build systems to act as computational states and
operations.

Geroch describes a version of this strategy in his discussion of plausible limits to
quantum computability that the quantum computational literature implicitly
assumes. He argues that unitary operators that rotate a quantum state through a
classically noncomputable angle, though they are allowed by the laws of quantum
mechanics, should not be permitted in a model of quantum computation, because a
classical, stepwise method of building systems that perform these operations would
require hypercomputation (see Geroch 2009, chap. 8). Though finite quantum systems
can execute classically noncomputable unitary operations, Geroch argues for their
exclusion from quantum computation based on an appeal to classical computational
principles. Similarly, Piccinini assumes this classical computational strategy in his use
of physical constructibility, as seen in his discussion of why “unconstrained appeals to
real-valued quantities” should not be considered part of epistemically useful physical
computation: “there is no reason to believe that a finite observer can use the Turing-
uncomputable operations : : : to compute in the epistemological sense that motivates
CT [the modest physical Church–Turing thesis] in the first place” (Piccinini 2011, XX).

One reason for adopting the classical starting point for buildability—at least
regarding the exclusion of real-valued quantities—noted by Piccnini (2011, XX) is that
“there is no reason to believe that : : : unbounded precision is available to a finite
observer.” Relatedly, the original arguments for what Piccinini calls the
“Mathematical Church–Turing thesis”5—that “any function that is computable by
following an effective procedure is Turing computable”—may bolster this position.
Particularly, Turing argues in favor of the notion of computability given by Turing
machines on the grounds that they limit the set of computational states and
operations to those corresponding to what a human (with pen and paper) would be
able to use (Turing 1936–37, repr. in Turing 1965). This suggests that Turing machines
and Turing (classical) computable processes probably capture the types of processes
that (human) finite observers can reliably execute and thus are likely the best starting
point for developing physical computation in some physical theory, even though the
classical computational processes were not developed to most optimally leverage the
properties of that particular physical theory.

Also, appealing to classical computational operations is a particularly salient
strategy when investigating physical theories, such as quantum mechanics or
relativity, that are supposed to subsume physical theories that give rise to classical

5 Not to be confused with either the modest or the bold physical Church–Turing thesis
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computation, such as classical physics. We can often assume that a physical theory at
least allows classical finite state automata, which then provide us with information on
some, if not all, B and O systems we may be able to build. This strategy also allows us
to utilize an enormous amount of information about the processes we can use to build
B and O systems in a theory, as we have a robust understanding of what classical
computational processes look like and what they can do.

Though the strategy of appealing to classical computational processes is strong, its
limitations should be noted. Most significantly, it is not a strategy that emerges from
considerations of a particular physical theory at hand. Restricting ourselves to
computational systems that can be built using classical processes and not theory-
specific processes may unnecessarily limit the models of computation that we can
build relative to a theory. Operations that the theory allows but that cannot be
implemented by systems built using classical procedures cannot be used, and there
may exist some systematic theory-specific methods for finite observers to build
systems that carry out these operations. There may be an operating system O that can
be reliably built by finite observers but could not be built by finite observers limited
to construction processes using only classically computable operations. So although
the classically grounded approach may be a powerful starting point in theories that
are amenable to classical computational operations, it may also unduly constrain the
models of computation we can build relative to a theory because it may not allow us
to fully leverage the unique properties of that theory. Ruling out a building process that
cannot emerge from classically computable steps for finite observers in any physical theory is a
significant assumption that we should make consciously.

These problems are particularly important because we live in a universe that is not
classical. To better utilize the particular properties of a physical theory, such as
quantum mechanics, we may find we want to select some plausible theory-specific
operations as our starting point, instead of or in addition to the classical operations.
The bit systems B and operator systems O that we deem credible will thus be whatever
can be built using some preselected set of operations allowed by the theory’s
dynamics, similar to the classical solution but not necessarily reliant on concepts or
operations from classical computing models.

The nonclassicality of our world already throws the modest physical Church–
Turing thesis in doubt; for instance, quantum mechanics allows a genuine random
number generator by using multiple measurements of superposition states. Perhaps
we will find that we are able to harness quantum operations in a way that surpasses
the limits of Geroch’s classical building approach, or perhaps some other physical
theory will allow us to surpass this classical framework for building processes. In any
case, we should be mindful of the assumptions in our discussions of physical
computation, which we may want to drop when exploring epistemically useful
computation in other physical theories.

5. Remarks
Tying our accounts of physical computation to what would in fact be epistemically
useful for finite observers requires restrictions on what models of physical
computation are considered. Piccinini gives a usability constraint that is meant to
achieve this goal. But part of this constraint lacks adequate conceptual grounding, in

982 Timothy Schmitz

https://doi.org/10.1017/psa.2023.91 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2023.91


lieu of which Piccinini has implicitly appealed to classical computing notions to
determine which physical processes can be included in epistemically useful models of
computation. Classical computation so deeply underlies discussions of computation
that this assumption may be intuitive to the point of escaping detection, but we
should be aware when we are making it in discussions of physical computation,
especially as the world we inhabit is not, in fact, classical.

As Aitken and Barrett (2009, 2010) note, what is physically computable depends on
the selection of a model of computation relative to a particular physical theory, so we
may hope that our understanding of what is buildable, and hence potentially usable
for finite observers, in a physical theory will emerge from the physical theory and its
descriptions of finite systems. However, attempting to derive a notion of buildability
directly from an account of finite systems in a physical theory succumbs to a
bootstrapping problem, in which our notion of what is “buildable” is meant to allow
us to determine which physical processes finite observers can reliably implement (as
part of a computation), but determining what counts as buildable requires that we
already know which physical processes finite observers can reliably implement (as
part of building the components of computing systems). We are then left with a
choice of how to select what physically possible states and operations we will include
in building processes. In this situation, the classical-based approach used by Piccinini
and explicitly stated by Geroch is an especially strong starting point for investigating
what models of computation could be epistemically useful in a physical theory,
though we should be aware that it is one of many possible selections we can make
when discussing physical computation. Although a classically founded notion of
buildability is a strong default starting point for investigating what models of
computation could be epistemically useful in a physical theory, it limits what physical
processes are included without attending to the particular properties of a given
physical theory, and adopting it without being aware that it is an assumption we are
making may lead us to pick sides in debates regarding physical computation without
adequate conceptual grounding.
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