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Cyclic Cubic Fields of Given Conductor
and Given Index

Alan K. Silvester, Blair K. Spearman, and Kenneth S. Williams

Abstract. The number of cyclic cubic fields with a given conductor and a given index is determined.

1 Introduction

Let K be a cyclic cubic extension of Q so that [K : Q] = 3 and Gal(K/Q) ≃ Z/3Z. By

the Kronecker–Weber theorem [10, p. 289] there exists a positive integer m such that

the cyclotomic field Q
(

e2πi/m
)

⊇ K. The smallest such m is called the conductor

of K and is denoted by f (K). The discriminant of K is given by d(K) = f (K)2 [8,

p. 831]. The conductor f (K) of a cyclic cubic field is of the form

(1.1) f = p1 p2 · · · pr,

where r ∈ N and p1, . . . , pr, are distinct integers from the set

(1.2) P = {9} ∪ {p (prime) ≡ 1 (mod 3)} = {7, 9, 13, 19, 31, 37, . . .},

see [8, p. 831]. Moreover each positive integer f of the form (1.1) is the conductor

of some cyclic cubic field; indeed it is the conductor of 2r−1 cyclic cubic fields [8,

p. 831]. For any cubic field K it is known that its field index i(K) = 1 or 2 [5, p. 234].

For f of the form (1.1) and i ∈ {1, 2}, we define

(1.3) N( f , i) = number of cyclic cubic fields K with f (K) = f and i(K) = i,

so that

(1.4) N( f , 1) + N( f , 2) = 2r−1.

In this paper we determine N( f , 1) and N( f , 2).

It is well known that each prime p ≡ 1 (mod 3) has a unique representation in

the form

(1.5) 4p = a2 + 27b2, a, b ∈ N,
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Cyclic Cubic Fields 473

see [1, Theorem 3.1.3, p. 105; Lemma 3.0.1, p. 101]. Clearly for such a representation

we have a ≡ b (mod 2) and

(1.6) gcd(a, b) = 1 or 2.

It is a classical result of Gauss that 2 is a cubic residue (mod p) if and only if

gcd(a, b) = 2, see [1, Theorem 7.1.1, p. 213]. We set

(1.7) P1 = {9} ∪ {p (prime) ≡ 1 (mod 3), 4p = a2 + 27b2, gcd(a, b) = 1}

and

(1.8) P2 = {p(prime) ≡ 1 (mod 3), 4p = a2 + 27b2, gcd(a, b) = 2},

so that

(1.9) P1 ∪ P2 = P, P1 ∩ P2 = φ.

Clearly

P1 = {7, 9, 13, 19, 37, . . .}, P2 = {31, 43, 109, 127, . . .}.

If p is a prime in P1, then a ≡ b ≡ 1 (mod 2). Replacing b by −b, if necessary,

we may suppose that a ≡ b (mod 4). Set x = (a − b)/4 ∈ Z, y = b ∈ Z. Then

4x2 + 2xy + 7y2
= p. Conversely if p = 4x2 + 2xy + 7y2 for some x, y ∈ Z then y is

odd, gcd(x, y) = 1 and 4p = a2 + 27b2 with a = |4x + y|, b = |y| and gcd(a, b) =

gcd(4x + y, y) = gcd(4x, y) = gcd(x, y) = 1. Thus the primes in P1 are precisely

those which can be expressed in the form 4x2 + 2xy + 7y2 for some x, y ∈ Z. The

primes in P2 are precisely those which can be expressed in the form x2 + 27y2 for

some x, y ∈ Z.

Now suppose that f is of the form (1.1) with

p1, p2, . . . , pu ∈ P1 and pu+1, pu+2, . . . , pr ∈ P2,

where u ∈ {0, 1, . . . , r}. In Section 5 we prove the following result.

Theorem With the above notation, we have

N( f , 1) =
1

3
(2r − (−1)u2r−u), N( f , 2) =

1

3
(2r−1 + (−1)u2r−u).

In Sections 2, 3, 4 we give some results on representations of integers by binary

quadratic forms which will be needed in the proof of this theorem.
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2 The Form Class Group H(d)

Let H(d) denote the set of classes of primitive, positive-definite, integral binary quad-

ratic forms (a, b, c) = ax2 + bxy + cy2 of discriminant d = b2 −4ac ≡ 0 or 1 (mod 4)

under the action of the modular group. As ax2 + bxy + cy2 is positive-definite, we

have a > 0 and d < 0. The class of the form (a, b, c) is denoted by [a, b, c]. Multipli-

cation of classes of H(d) is due to Gauss and is described, for example, in [2]. With

respect to multiplication, H(d) is a finite abelian group called the form class group of

discriminant d. The order of H(d) is called the form class number of discriminant d

and is denoted by h(d). The identity I of the group H(d) is the principal class

I =

{

[1, 0,−d/4] if d ≡ 0 (mod 4),

[1, 1, (1 − d)/4] if d ≡ 1 (mod 4).

The inverse of the class K = [a, b, c] ∈ H(d) is the class K−1
= [a,−b, c] ∈ H(d).

Each class of H(d) contains one and only one form (a, b, c) with

(2.1) −a < b ≤ a ≤ c, b ≥ 0 if a = c, b2 − 4ac = d, gcd(a, b, c) = 1,

see [4, pp. 68-71]. Let n ∈ N. If x and y are integers such that n = ax2 + bxy + cy2,

then (x, y) is called a representation of the positive integer n by the form (a, b, c). As

(a, b, c) is a positive-definite form, the number R(a,b,c)(n) of representations of n by

the form (a, b, c) is finite. If in addition the representation (x, y) satisfies gcd(x, y) =

1, then the representation is called primitive. The number of primitive representa-

tions of n by the form (a, b, c) is denoted by P(a,b,c)(n). Clearly,

(2.2) R(a,b,c)(n) =

∑

e2|n

P(a,b,c)(n/e2).

If (A, B,C) is a form equivalent to (a, b, c) it is well known that R(A,B,C)(n) = R(a,b,c)(n)

and P(A,B,C)(n) = P(a,b,c)(n). Hence we can define the number of representations of

n ∈ N by the class K ∈ H(d) by

(2.3) RK(n) = R(a,b,c)(n) for any (a, b, c) ∈ K

and the number of primitive representations of n ∈ N by the class K ∈ H(d) by

(2.4) PK (n) = P(a,b,c)(n) for any (a, b, c) ∈ K.

From (2.2)–(2.4) we deduce that for n ∈ N and K ∈ H(d)

(2.5) RK (n) =

∑

e2|n

PK (n/e2).

In particular, if n ∈ N is squarefree, we have

(2.6) RK(n) = PK (n).
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As each representation (x, y) of n by (a, b, c) gives a representation (x,−y) of n by

(a,−b, c) and conversely, we have for n ∈ N and K ∈ H(d)

(2.7) RK (n) = RK−1 (n), PK (n) = PK−1 (n).

For n1, n2 ∈ N with n1 squarefree, n2 squarefree and gcd(n1, n2) = 1, it is known that

(2.8) RK (n1n2) =
1

w(d)

∑

K1K2=K

RK1
(n1)RK2

(n2),

where K1, K2 run through all the classes of H(d) whose product is K, and

(2.9) w(d) = 6, 4 or 2 according as d = −3, d = −4 or d < −4,

see [9, (29) and Lemma 5.5]. The largest positive integer f such that f 2 | d with

∆ = d/ f 2 ≡ 0 or 1 (mod 4) is called the conductor of d. By a theorem of Dirichlet,

see [6], we have for gcd(n, f ) = 1

(2.10)
∑

K∈H(d)

RK (n) = w(d)
∑

e|n

( d

e

)

= w(d)
∑

e|n

(

∆

e

)

,

where
(

d
∗

)

is the Legendre–Jacobi–Kronecker symbol of discriminant d. If p is a

prime such that
(

d
p

)

= 1, then there is at least one class C ∈ H(d) which represents

p. If C = C−1, then C is the only class of H(d) representing p and RC (p) = 2w(d). If

C 6= C−1, then C and C−1 are the only classes of H(d) representing p and RC (p) =

RC−1 (p) = w(d). See [9, Lemma 5.3].

3 Representations of Integers by [1,0,3]

From (2.1) with d = −12 we find

H(−12) = {I}, h(−12) = 1,

where

I = [1, 0, 3].

Here f = 2 and ∆ = −3.

Lemma 3.1 Let p1, . . . , pt (t ≥ 0) be distinct primes ≡ 1 (mod 3). Then

RI(p1 · · · pt ) = 2t+1, PI(p1 · · · pt ) = 2t+1,

RI(9p1 · · · pt ) = 2t+1, PI(9p1 · · · pt ) = 0.
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Proof If n ∈ N is such that gcd(n, 2) = 1, by (2.9) and (2.10) with d = −12, we

have

(3.1) RI(n) = 2
∑

e|n

( −3

e

)

.

Taking n = p1 · · · pt , as (−3
pi

) = 1 (i = 1, . . . , t), we obtain

RI(p1 · · · pt ) = 2
∑

e|p1···pt

1 = 2 · 2t
= 2t+1.

Then, appealing to (2.6), we obtain

PI(p1 · · · pt ) = 2t+1.

Taking n = 9p1 · · · pt in (3.1), since
(

−3
3

)

= 0 we obtain

RI(9p1 · · · pt ) = 2
∑

e|9p1···pt

( −3

e

)

= 2
∑

e|p1···pt

( −3

e

)

= 2t+1.

Finally, by (2.5), we have

RI(9p1 · · · pt ) = PI(9p1 · · · pt ) + PI(p1 · · · pt ),

so that

PI(9p1 · · · pt ) = 2t+1 − 2t+1
= 0.

This completes the proof of the lemma.

4 Representations of Integers by [1,0,27] and [4,2,7]

From (2.1) with d = −108 we find

H(−108) = {I, A, A2} ≃ Z/3Z, h(−108) = 3,

where

I = [1, 0, 27], A = [4, 2, 7], A2
= [4,−2, 7], A3

= I.

Here f = 6 and ∆ = −3.

Let p be a prime with p ≡ 1 (mod 3). Then

( d

p

)

=

( −108

p

)

=

( −22 · 33

p

)

=

( −3

p

)

= 1,

so that p is represented by some class in H(−108). If p is represented by I, then (as

I = I−1) I is the only class representing p, and

(4.1) RI(p) = 4, RA(p) = RA2 (p) = 0.
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If p is represented by A or A2, then (as A 6= A−1) the only classes of H(−108) repre-

senting p are A and A2, and

(4.2) RI(p) = 0, RA(p) = RA2 (p) = 2.

Now let m be a product of distinct primes ≡ 1 (mod 3). By (2.9) and (2.10) we have

RI(m) + RA(m) + RA2 (m) = 2
∑

e|m

( −3

e

)

= 2τ (m)+1,

where τ (m) denotes the number of primes dividing m. As RA(m) = RA−1 (m) =

RA2 (m) by (2.7), we deduce that

(4.3) RA(m) = RA2 (m) = 2τ (m) −
1

2
RI(m).

By (2.8) we have for p ∤ m

(4.4) RI(pm) =
1

2

(

RI(p)RI(m) + RA(p)RA2 (m) + RA2 (p)RA(m)
)

.

Appealing to (4.1)–(4.4), we obtain

(4.5) RI(pm) =

{

2RI(m) if RI(p) > 0,

2τ (m)+1 − RI(m) if RA(p) > 0.

We now use (4.5) to prove the following result.

Lemma 4.1 Let p1, . . . , pl be l(≥ 0) distinct primes ≡ 1 (mod 3), which are repre-

sented by I = [1, 0, 27], and let q1, . . . , qm be m(≥ 0) distinct primes ≡ 1 (mod 3),

which are represented by A = [4, 2, 7]. Then

RI(p1 · · · plq1 · · · qm) =
1

3

(

2l+m+1 + (−1)m2l+2
)

,

RA(p1 · · · plq1 · · · qm) = RA2 (p1 · · · plq1 · · · qm) =
1

3

(

2l+m+1 − (−1)m2l+1
)

.

https://doi.org/10.4153/CMB-2006-046-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2006-046-1


478 A. K. Silvester, B. K. Spearman, and K. S. Williams

Proof By (4.5) we obtain

RI(p1 · · ·plq1 · · · qm)

= 2RI(p1 · · · pl−1q1 · · · qm)

= 22RI(p1 · · · pl−2q1 · · · qm)

= · · ·

= 2lRI(q1 · · · qm)

= 2l
(

2m − RI(q1 · · · qm−1)
)

= 2l
(

2m − 2m−1 + RI(q1 · · · qm−2)
)

= · · ·

= 2l
(

2m − 2m−1 + 2m−2 − · · · + (−1)m−222 + (−1)m−1RI(q1)
)

= 2l
(

2m − 2m−1 + 2m−2 − · · · + (−1)m−222
)

=
1

3

(

2l+m+1 + (−1)m2l+2
)

,

as required. Then, by (4.3), we obtain

RA(p1 · · · plq1 · · · qm) = 2l+m −
1

2

( 1

3

(

2l+m+1 + (−1)m2l+2
)

)

=
1

3

(

2l+m+1 − (−1)m2l+1
)

,

as asserted.

5 Proof of Theorem

There is a one-to-one correspondence between cyclic cubic fields K and triples

(a, b, f ) ∈ N3 with

a2 + 27b2
= 4 f , gcd(a, b) = 1 or 2, f = p1 · · · pr,

r ∈ N, p1, . . . , pr ∈ P, pi 6= p j (1 ≤ i < j ≤ r),

see [3, Section 6.4.6, pp. 336–343]. The cyclic cubic field corresponding to the triple

(a, b, f ) is K = Q(θ), where θ3 − 3 f θ + f a = 0. The conductor of K is f . The index

of K is

i(K) =

{

2 if a is even,

1 if a is odd,

see [7, Theorem 4, p. 585]. If a is even, then b is even and
(

a
2

) 2
+ 27

(

b
2

) 2
= f with

gcd
(

a
2
, b

2

)

= 1. Thus

N( f , 2) =
1

4
P[1,0,27]( f ).
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First suppose that 9 ∤ f . We may suppose that p1, . . . , pu ∈ P1 (so they are repre-

sented by [4, 2, 7]) and pu+1, . . . , pr ∈ P2 (so they are represented by [1, 0, 27]) with

u ∈ {0, 1, 2, . . . , r}. Then, by (2.6) and Lemma 4.1 (with l = r − u and m = u), we

have

P[1,0,27]( f ) = R[1,0,27]( f ) =
1

3
(2r+1 + (−1)u2r−u+2),

so that

N( f , 2) =
1

3
(2r−1 + (−1)u2r−u), 9 ∤ f .

Now suppose that 9 | f . We may suppose that p1 = 9, p2, . . . , pu ∈ P1 (so they are

represented by [4, 2, 7]) and pu+1, . . . , pr ∈ P2 (so they are represented by [1, 0, 27]).

As 9 | f we have

f = x2 + 27y2 ⇐⇒ f /9 = (x/3)2 + 3y2

so that

R[1,0,27]( f ) = R[1,0,3]( f /9).

As f /9 is squarefree, we have

R[1,0,27]( f /9) = P[1,0,27]( f /9).

From (2.5) we deduce

R[1,0,27]( f ) = P[1,0,27]( f ) + P[1,0,27]( f /9).

Thus

P[1,0,27]( f ) = R[1,0,3]( f /9) − R[1,0,27]( f /9).

Appealing to Lemma 3.1 (with t = r − 1) and Lemma 4.1 (with l = r − u and

m = u − 1), we obtain

P[1,0,27]( f ) = 2r −
1

3

(

2r + (−1)u−12r−u+2
)

=
1

3

(

2r+1 + (−1)u2r−u+2
)

so that

N( f , 2) =
1

3
(2r−1 + (−1)u2r−u), 9 | f .

Finally, from (1.4), we obtain in both cases

N( f , 1) = 2r−1 − N( f , 2) =
1

3
(2r − (−1)u2r−u).

This completes the proof of the theorem.
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