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Cyclic Cubic Fields of Given Conductor
and Given Index

Alan K. Silvester, Blair K. Spearman, and Kenneth S. Williams

Abstract. The number of cyclic cubic fields with a given conductor and a given index is determined.

1 Introduction

Let K be a cyclic cubic extension of Q) so that [K:Q] = 3 and Gal(K/Q) ~ 7/37. By
the Kronecker—Weber theorem [10, p. 289] there exists a positive integer m such that
the cyclotomic field Q (em/ '”) D K. The smallest such m is called the conductor
of K and is denoted by f(K). The discriminant of K is given by d(K) = f(K)? [8,
p- 831]. The conductor f(K) of a cyclic cubic field is of the form

(1.1) f=pip2---pr,
wherer € Nand py, ..., p,, are distinct integers from the set
(1.2) P={9}U{p (prime) =1 (mod 3)} = {7,9,13,19,31,37,...},

see [8, p. 831]. Moreover each positive integer f of the form (1.1) is the conductor
of some cyclic cubic field; indeed it is the conductor of 21 cyclic cubic fields [8,
p- 831]. For any cubic field K it is known that its field index i(K) = 1 or 2 [5, p. 234].
For f of the form (1.1) and i € {1,2}, we define

(1.3)  N(f,i) = number of cyclic cubic fields K with f(K) = f and i(K) = 1,
so that
(1.4) N(f, 1)+ N(f,2) =2"".
In this paper we determine N( f, 1) and N(f, 2).
It is well known that each prime p = 1 (mod 3) has a unique representation in

the form

(1.5) 4p = a® +27b*, a,bEN,
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Cyclic Cubic Fields 473

see [1, Theorem 3.1.3, p. 105; Lemma 3.0.1, p. 101]. Clearly for such a representation
we have a = b (mod 2) and

(1.6) gcd(a,b) = 1or2.

It is a classical result of Gauss that 2 is a cubic residue (mod p) if and only if
gcd(a, b) = 2, see [1, Theorem 7.1.1, p. 213]. We set

(1.7) P, ={9}U{p (prime) = 1 (mod 3),4p = a* + 27b* gcd(a, b) = 1}
and

(1.8) P, = {p(prime) = 1 (mod 3),4p = a* + 27b*, gcd(a, b) = 2},

so that

(1.9) PLUP,=P, P NP, =¢.

Clearly
Py ={7,9,13,19,37,...}, P, ={31,43,109,127,...}.

If p is a prime in Py, then a = b = 1(mod2). Replacing b by —b, if necessary,
we may suppose that a = b(mod4). Setx = (a—b)/4 € Z, y = b € Z. Then
4x* 4+ 2xy + 7y* = p. Conversely if p = 4x? + 2xy + 7y* for some x, y € Z then y is
odd, ged(x, y) = 1 and 4p = a* + 27b* witha = |4x + y|, b = |y| and gcd(a, b) =
ged(4x + y, y) = ged(4x, y) = ged(x, y) = 1. Thus the primes in P; are precisely
those which can be expressed in the form 4x? + 2xy + 7y* for some x, y € Z. The
primes in P, are precisely those which can be expressed in the form x* + 27y for
somex, y € Z.
Now suppose that f is of the form (1.1) with

plaPZ,"‘;puEPl and pu+1apu+27"'aprep27

whereu € {0,1,...,r}. In Section 5 we prove the following result.

Theorem With the above notation, we have
1 r u~r—u 1 r—1 u~nr—u
N(f,l):§(2 — (=D*2""), N(f,2)25(2 + (=12,

In Sections 2, 3, 4 we give some results on representations of integers by binary
quadratic forms which will be needed in the proof of this theorem.
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2 The Form Class Group H(d)

Let H(d) denote the set of classes of primitive, positive-definite, integral binary quad-
ratic forms (a, b, ¢) = ax* + bxy + cy* of discriminant d = b*> — 4ac = 0 or 1 (mod 4)
under the action of the modular group. As ax® + bxy + cy? is positive-definite, we
have a > 0 and d < 0. The class of the form (a, b, ¢) is denoted by [a, b, c]. Multipli-
cation of classes of H(d) is due to Gauss and is described, for example, in [2]. With
respect to multiplication, H(d) is a finite abelian group called the form class group of
discriminant d. The order of H(d) is called the form class number of discriminant d
and is denoted by h(d). The identity I of the group H(d) is the principal class

) [1,0,—d/4] ifd =0 (mod 4),
1,1, —d)/4] ifd=1(mod4).

The inverse of the class K = [a, b, c] € H(d) is the class K~' = [a, —b,c] € H(d).
Each class of H(d) contains one and only one form (a, b, ¢) with

(2.1) —a<b<a<c b>0ifa=c, b*—4dac=d, gcd(a,b,c)=1,

see [4, pp. 68-71]. Let n € N. If x and y are integers such that n = ax? + bxy + cy?,
then (x, y) is called a representation of the positive integer #n by the form (a, b, ). As
(a, b, c) is a positive-definite form, the number R, ;) () of representations of n by
the form (a, b, ¢) is finite. If in addition the representation (x, y) satisfies gcd(x, y) =
1, then the representation is called primitive. The number of primitive representa-
tions of n by the form (a, b, ¢) is denoted by P(, 1, ) (n). Clearly,

(2.2) Riap,e(n) = Zp(u,h,c)(”/ez)-

e2|n
If (A, B,C) isaform equivalent to (a, b, ¢) itis well known that R4 p.c) (1) = R(ap,c) (1)
and Py pc)(n) = Pape(n). Hence we can define the number of representations of
n € N by the class K € H(d) by
(2.3) Ri(n) = Rape)(n) for any (a,b,c) € K
and the number of primitive representations of # € N by the class K € H(d) by
(2.4) Px(n) = P (n) forany (a, b, c) € K.
From (2.2)—(2.4) we deduce that for n € Nand K € H(d)

(2.5) R(n) = Px(n/e®).

e2|n
In particular, if n € N is squarefree, we have

(2.6) R (n) = Px(n).
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As each representation (x, y) of n by (a, b, ¢) gives a representation (x, —y) of n by
(a, —b, ¢) and conversely, we have for n € Nand K € H(d)

(2.7) Ri(n) = Rg-1(n), Pg(n) = Px-1(n).
For ny, n, € Nwith n; squarefree, #n, squarefree and gcd(ny, n,) = 1, it is known that

(2.8) Ri(nny) = ﬁ K}%;KRKI ()R, (),

where Kj, K, run through all the classes of H(d) whose product is K, and
(2.9) w(d) = 6,4 or 2 accordingasd = —3, d = —4ord < —4,

see [9, (29) and Lemma 5.5]. The largest positive integer f such that f?|d with
A =d/f? =0or1(mod4) is called the conductor of d. By a theorem of Dirichlet,
see [6], we have for ged(n, f) =1

(.10) > rem = wid) 3 () =wa3(2),
KEH(d) o o

where (£) is the Legendre-Jacobi-Kronecker symbol of discriminant d. If p is a

prime such that (%) = 1, then there is at least one class C € H(d) which represents

p. IfC = C™1, then C is the only class of H(d) representing p and Rc(p) = 2w(d). If
C # C7!, then C and C~! are the only classes of H(d) representing p and Rc(p) =
Rc-1(p) = w(d). See [9, Lemma 5.3].

3 Representations of Integers by [1,0,3]
From (2.1) with d = —12 we find

H(—12) = {I}, h(-12) =1,

where
I=11,0,3].

Here f =2and A = —3.

Lemma 3.1 Let py,...,p: (t > 0) be distinct primes = 1 (mod 3). Then

Ri(py---p) =2 Pilpy---py) =2,
Ri(9py -+ p) =21 Pi(9pi -+ p;) = 0.
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Proof If n € Nissuch that ged(n,2) = 1, by (2.9) and (2.10) with d = —12, we
have

(3.1) Ri(n) :22(%3)
eln

Taking n = py - - p;, as (%3) =1(=1,...,t),weobtain
R(py---p)=2 Y 1=2:2"=2""
elpi-pe

Then, appealing to (2.6), we obtain

2t+1

Pi(pr---pr) =

=3
3

Riopi-py=2 Y () =2 3 () =2

el9p1-pe elprpe

Taking n = 9p; - - - p; in (3.1), since (52) = 0 we obtain

Finally, by (2.5), we have

Ri(9p1---pt) = Pr(9p1---p:) + Pr(p1 -~ pr),

so that
PI(9p] .. pt) — 2t+1 _ 2t+1 — 0

This completes the proof of the lemma. ]

4 Representations of Integers by [1,0,27] and [4,2,7]
From (2.1) with d = —108 we find
H(—108) = {I,A,A*} ~7/37, h(—108) = 3,

where
1=11,0,27], A=1[4,2,7], A>=][4,-2,7], A’=1I.

Here f = 6and A = —3.
Let p be a prime with p = 1 (mod 3). Then

d —108 —22.3° -3
) =5 =) =)=,
so that p is represented by some class in H(—108). If p is represented by I, then (as
I = I71) I is the only class representing p, and

(4.1) Ri(p) =4, Ra(p) =Rp(p)=0.
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If p is represented by A or A2, then (as A # A~!) the only classes of H(—108) repre-
senting p are A and A2, and

(4.2) Ri(p) =0, Ra(p) =Ra(p) =2.

Now let m be a product of distinct primes = 1 (mod 3). By (2.9) and (2.10) we have

Ri(m) + Ry(m) + Ry2(m) = 22(%3) — grime1,

elm

where 7(m) denotes the number of primes dividing m. As Ry(m) = Ry—1(m) =
Ry2(m) by (2.7), we deduce that

(43) Ra(m) = Rya(m) = 27—~ Ry(m).

By (2.8) we have for p { m

(44)  Re(pm) = 3 (R(PIRi(m) + Ry ()R (m) + R (p)Ra(m))
Appealing to (4.1)~(4.4), we obtain

ZRI(WI) lfR[(p) >0,

(4.5) Ry(pm) = {zf(m)ﬂ — Ry(m) if Ry(p) > 0.

We now use (4.5) to prove the following result.

Lemma 4.1 Let py,...,p;bel(> 0) distinct primes = 1 (mod 3), which are repre-
sented by I = [1,0,27], and let qi, . .., q, be m(> 0) distinct primes = 1 (mod 3),
which are represented by A = [4,2,7]. Then

(21+m+1 + (_1)m21+2) ,

W —

RI(PI e piqr qm) =

1
RA(p1 cepig - qm) :RAZ(pl - piqy qm) — 5(zlerJrl _ (_l)mzlJrl) )
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Proof By (4.5) we obtain
Ri(py---pidy -+ qm)
=2Ri(p1--- pi-1q - - - Gm)
=2°Ry(p1-- pradi -+ Gm)

=2'Ri(q1 -+ qm)
=2(2" = Ri(q1 -+ qm—1))

=21(2" = 2"V 4 Ri(q1 - Gm—2))

=2/(2m =2 2 - (=) T2 4 (1) Ri(qy))
_ 21(2m _gm=l om=2 _ 4 (_l)m—222)
— %(21+m+1 + (_1)m21+2) ,

as required. Then, by (4.3), we obtain
1/1
Ra(py---pigr - qm) = 25" — = ( 5(21+m+1 n (_1)m21+2))

(21+m+1 _ (_1)m21+1> ,

W | —

as asserted. |

5 Proof of Theorem

There is a one-to-one correspondence between cyclic cubic fields K and triples
(a,b, f) € N’ with

a* +27b* = 4f, gcd(a,b) =lor2, f=pi---p,,

reN, pi...,pr€P pi#p; (1<i<j<r),
see [3, Section 6.4.6, pp. 336-343]. The cyclic cubic field corresponding to the triple
(a,b, f)is K = Q(0), where #> — 3f0 + fa = 0. The conductor of K is f. The index

of K is
) 2 ifaiseven,
i(K) = .
1 ifaisodd,

see [7, Theorem 4, p. 585]. If a is even, then b is even and ( %) : + 27( %) 2 f with
ged( 4 9) = 1. Thus

272

N(£.2) = ;Paaan ()
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First suppose that 9 1 f. We may suppose that p;, ..., p, € P; (so they are repre-
sented by [4,2,7]) and py+1, ..., pr € P> (so they are represented by [1, 0, 27]) with

ue {0,1,2,...,r}. Then, by (2.6) and Lemma 4.1 (with | = r — w and m = u), we
have

1 -
Pro271(f) = Ruoan(f) = g(zm + (=127,

so that
1 — Uunr—u
N(f,2) =3 P+ (=D"2"), 9t f.
Now suppose that 9| f. We may suppose that p; = 9, pa,..., pu € Py (so they are

represented by [4,2,7]) and py+1, - . ., pr € P; (so they are represented by [1, 0, 27]).
As 9| f we have

f=x*+27y* < /9 = (x/3)* +3y*

so that
Ri1,0271(f) = Rpi0.3(f/9).

As f/9 is squarefree, we have

Rp0271(f/9) = Prio27(f/9).

From (2.5) we deduce

Rp10271(f) = Ppo271(f) + Proan (f/9).

Thus
P10271(f) = Rp031(f/9) — R o7 (f/9).

Appealing to Lemma 3.1 (with ¢t = r — 1) and Lemma 4.1 (with [ = r — u and
m = u — 1), we obtain

1 1
P[1.0.27](f) — 2r _ 5 (zr + (_l)u—lzr—u+2) — g(2r+1 + (_1)u2r—u+2)

so that
N(f,2) = %(2’—1 +(=1"2"7"), 9] f.

Finally, from (1.4), we obtain in both cases
1
N(f,1) =2""=N(f,2) = 3@ - (D2,

This completes the proof of the theorem. ]
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