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A b s t r a c t . The recent long-term integration of JPL ephemeris DE403/LE403 
yielded lunar physical librations covering 6000 years. A Fourier analysis of a 718-
year subset of this span produced estimates of the component frequencies of the 
forced and free librations. A subsequent iterative least-squares estimation pro­
cedure provided precise values for phases and for time-varying amplitudes and 
frequencies. Two free libration modes were found; presence of a third is possible 
but close to the noise. 

1. Introduct ion 

Because of aspherical distribution of the lunar mass, the rotation of the 
Moon is not uniform. Departures from uniform rotation are called physical 
librations. There are two types of physical librations: forced librations, ari­
sing from time-varying torques on the lunar figure due to attraction by the 
Earth, Sun, and planets; and free librations, which are departures of the 
lunar angular position from an equilibrium state. In theory, the amplitudes, 
phases, and periods of the forced librations can be calculated from know­
ledge of the lunar figure, elastic deformation, and rotational dissipation. 
For the free librations only the periods can be calculated; the amplitudes 
and phases must be measured. 

There are three modes of free libration, one in longitude and two in 
pole position. The longitude mode is a 2.9-year pendulum-like oscillation 
about the lunar polar axis. The two remaining modes describe the variation 
of the lunar pole position about tha t determined by the 18.6-year forced 
precession and the periodic forced librations. The first pole mode is called 
the wobble mode and is analogous to the Chandler wobble on the Ear th . 
In a coordinate system rotating with the average sidereal rotation rate 
and orbital mean motion of the Moon, the polar axis traces out a prograde 
elliptical path with a 75-year period. The other pole-position mode is called 
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the free precession mode and corresponds to an 81-year motion of the pole 
in space. 

Over time the free librations will damp out due to energy dissipation. If 
free librations exist, they result from geologically recent stimulation, such as 
impacts, passage through a resonance with a forced libration, or a possible 
core-mantle interaction. 

A previous analysis of lunar laser ranging (LLR) da ta by Calame (1977) 
obtained the first detection of the free librations. Longer da ta spans and 
improved range accuracies now encourage a new analysis. Eckhardt (1981) 
published a comprehensive theory of the forced librations; results of this 
investigation are compared with tha t theory. Differences from Eckhardt 's 
theory due to planets are partly accounted for by comparison with Moons 
(1984), where Eckhardt 's theory is amended with a more extensive plane­
tary treatment . A comprehensive treatment of the investigation summari­
zed in this paper is given in Williams and Newhall (1997). 

2. M a t h e m a t i c a l M o d e l 

2.1. LIBRATION GEOMETRY 

The angular position of the lunar rotation is specified by a set of Euler 
angles transforming between the mean equator and equinox system of J2000 
and the selenographic principal-axis system. The three Euler angles are <f>, 
the angle along the Ear th ' s mean equator of J2000 from the equinox to the 
ascending node of the lunar equator; 6, the inclination of the lunar equator 
to the Ear th ' s equator; and ifi, the angle along the lunar equator from the 
node to the selenographic prime meridian [see Figure 1(a)]. 

The computation of the these three angles is part of the integration 
of DE403/LE403. However, their second derivatives are not integrated di­
rectly; instead, their first derivatives are expressed in terms of the compon­
ents of the body-fixed angular velocity vector u>: 

(j> = (OJXI sin tj) + uiyi cos ip) I sin 0 

9 = uxi cos ij) - Uyi sin if) (1) 

ip = uzi — 4>cos6 

where primes on the subscripts denote coordinates in the lunar principal-
axis system. The formulation for the integration of u> follows. 

2.2. EQUATIONS OF MOTION 

Central to the libration formulation is the assumption of a non-rigid, dis-
sipative moon. In such a situation the lunar moment-of-inertia tensor is 
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Figure 1. Part (a) shows the equatorial system in which libration Euler angles are 
integrated. [The value of the angle 4> shown in this diagram is negative.] Part (6) defines 
the ecliptic system angles to which the equatorial angles were transformed and analyzed. 

time-varying and is a function of the lunar s tate and rotation at a retar­
ded or displaced time t — r m , where r m is estimated from LLR da ta to be 
~ 4 hours. 

In space-fixed coordinates, the equation relating angular momentum 
L and torque N is L = N . The angular velocity u> is connected to L 
by L = Iw, where I is the lunar moment-of-inertia tensor. Because I is 
expressed in selenographic (body-fixed) coordinates, we must express all 
vectors and derivatives in tha t system. The relation between derivatives in 
the two systems is 

dt selenographic dt 
- C J X 

space 

The torque equation in selenographic coordinates becomes 

d . x —(Iu>) = N - u ; X la; 
dt 
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from which we get 

lu> = - l u ; -u> X IOJ + N (2) 

2.3. DEFINITION OF THE INERTIA TENSOR 

The lunar inertia tensor is modeled as consisting of a diagonal portion corre­
sponding to the rigid-body contribution and two time-varying components 
describing the effects of elasticity and dissipation. The complete expression 
for the inertia tensor is: 

I = G 
A 
0 
0 

0 
B 
0 

0 
0 
C 

WmfteR 
R e 

xy 
xz 

xy 

v2 - M 
a 3'me 

+ 
k2mRl 

W2 _ i(fc,a _ B 2 } 

uxuz 

yz 

W7. 

xz 

yz 

z1 - M 
* 3'me UxUy 

UyUz 

uxuz 

UyUJz 

w 2 _ I ( u ; 2 + 2 n 2 ) J 

The first term is the rigid-body component, with the customary principal 
moments of inertia A, B, and C. The second term expresses the effect of 
the Ear th 's tidal deformation of the lunar moment of inertia, and the third 
matrix accounts for the deformation due to lunar rotation. Here, G is the 
gravitational constant [it appears explicitly or implicitly as a factor in every 
term], him is the lunar Love number; //e is G times the mass of the Earth; 
Rm is the equatorial radius of the Moon; rme is the Earth-Moon distance; 
x, y, and z are the components of the Earth-Moon vector expressed in 
the selenographic system; ux, uy, and uz are the components of u> in the 
selenographic system; and n is the average lunar mean motion. It must be 
stressed that all variable quantities in I are evaluated at time t — Tm, and 
that the torque N depends on I. 

3 . Integrat ion and Transformation of Librations 

3.1. NUMERICAL INTEGRATION 

The lunar physical librations </>, 0, and ip defined above were integrated si­
multaneously with the lunar and planetary equations of motion during the 
creation of DE403/LE403. During the integration the derivatives 0, 0, and 
tp were computed from Equations (1); the derivatives of the components of 
UJ were obtained by solving Equation (2). The starting epoch for the inte-
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gration was J E D 2440400.5 [June 28, 1969]; the integration was extended 
forward to the year 3000 and backwards to the year —3000. 

3.2. TRANSFORMATION OF THE LIBRATIONS 

The object of this effort was to estimate periodic components of the libra-
tions. The quantities used by Eckhardt are denoted r , p, and la and are 
based on the of-date ecliptic system. The equator-system Euler angles <̂>, 
0, and ij) were transformed to the ecliptic system, giving new Euler angles 
<f>c, the angle from the equinox of date to the descending node of the lunar 
equator on the ecliptic; 6C, the inclination of the lunar equator to the ec­
liptic; and ipc, the angle along the lunar equator from its descending node 
on the ecliptic to the selenographic prime meridian [see Figure 1(6)]. 

3.2.1. The Parameter p 
One of the parameters analyzed is derived from 9C. The angle 6C is modeled 
as 6C = I + p, where / is a linear polynomial and p is defined to be the 
periodic part of the solution. 

3.2.2. The Parameter la 
Because the inclination 9C is small (J « 5553'.'6 « 1?542 « 0.0269 rad, 
and | / J | ^ 1 3 0 " , if axis offsets are ignored), the angles 4>c and ipc are poorly 
defined, so direct analysis of these two angles is subject to error. To select 
parameters immune to small-angle problems, we note that 6C is the angu­
lar displacement (colatitude) of the instantaneous selenographic north pole 
from the ecliptic pole, and tha t the instantaneous longitude of the seleno­
graphic pole is 4>c + 90°. Uncertainties in the value of (f>c are reduced by 
the factor sin 6C when mapped to uncertainties in pole position. Therefore, 
because sin 6C « sin / fa I, the quantity analyzed is I<f>c. 

The ascending node of the lunar orbit on the ecliptic precesses retro­
grade with a period of 18.6 years. The descending node of the selenographic 
equator on the ecliptic is locked to within a maximum of about 1?3 of the 
ascending orbit node and oscillates around it. We assume <j>c = fi+cr, where 
Q is the longitude of the orbit node and a is the instantaneous difference 
between the two nodes. We model I<f>c = IQ + la as consisting of a cubic 
polynomial plus periodic terms and define la to consist of a constant and 
the periodic part of the solution. 

3.2.3. The Parameter r 
The third parameter estimated is derived from ij)c. The angle i/)c suffers 
the same small-angle indeterminacy as <f>c, but with the opposite sign on a: 
ipc = T — a + F+ 180°, where F is the lunar argument of latitude. We note 
that a is absent from the sum $c + ipc = T + Q + F + 180°. As with I<f>c, 
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we model <f>c + ipc as a cubic plus periodic terms and define r to consist of 
a constant and the periodic part of the result. 

4 . Es t imat ion of t h e Libration Parameters 

4.1. FOURIER ANALYSIS 

To estimate the components of the parameters I<f>c, 6C, and <f>c+ipc, a general 
model was needed. If we let / represent any of those three quantities, the 
general form for / was taken to be 

m n 

f = J2 aitJ + X ^ 1 + €«*)[C» cos(w,-t + Vit2) + Si sin(w,-t + u{t
2)] (3) 

j=o i=i 

where m = 1 for 0C and m = 3 for I<j>c and <f>c + t()c. The coefficients £,-
are introduced to allow for a time-varying amplitude, and the v\ allow the 
estimation of variable frequencies. For each quantity I(f>c, 6C, and <f>c + ^c se­
parately we estimate a set of aj, C;, 5,-, and Wj, deferring the determination 
of any et and V{ until later. 

The estimation procedure went as follows: First, a set of 131,072 (217) 
values of I<j>c, 0C, and <j>c + t^c was obtained by reading and transforming 
the equator-system librations from the ephemeris file at two-day intervals, 
giving a total span of 262,144 days (~718 years). Next, treating each quan­
tity separately, the polynomial coefficients aj were least-squares estimated. 
Then an iterative loop was entered: 

1. The polynomial coefficients aj and whatever Fourier amplitudes C» and 
Si and frequencies u>,- had been determined in the previous iteration 
were used to evalute Equation (3) at each of the 131,072 points in the 
set of derived libration quantities. These values were subtracted from 
the original values, giving the residuals (O — C). 

2. A Fast-Fourier Transform was done on the residuals, and the approxi­
mate frequencies u>; corresponding to the six largest amplitudes were 
obtained from examination of the spectra. 

3. Using these frequencies as input, partial derivatives of the quantity 
being analyzed [Equation (3)] with respect to the Fourier coefficients C; 
and Si were generated, and the Ci and Si were estimated simultaleously 
with new values of the polynomial terms and of any previous C,-, Si, 
and w,-. 

4. Partial derivatives for Equation (3) with respect to w,- were generated, 
and the new set of w,- was estimated simultaneously with all other 
parameters obtained up to this point. 

5. Control returned to Step 1 of this loop, and iteration continued un­
til a sufficient number of parameters had been estimated to cover all 
amplitudes of interest. 
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4.2. VARIABLE AMPLITUDES AND FREQUENCIES 

In a few cases, the post-fit Fourier spectra exhibited noticeable residual 
amplitudes near frequencies tha t had been estimated. The theory of lunar 
motion and librations suggests that in some cases the Fourier amplitudes are 
variable, and in others the frequency variation is large enough to estimate. 

Libration theory requires that the frequencies for la and p be identical; 
therefore, frequencies common to both sets of u;t- were constrained during 
estimation to be equal. The fourth largest term in both sets has a period 
of 6797 days (18.61 years). The period of node 0, of the lunar orbit (and of 
the lunar equator) on the ecliptic is 6798.4 days. There are two unresolved 
lines, and their relative motion causes the amplitude of the blended pair to 
exhibit a secular change. The quantity €4 was estimated for both la and 
/?, with the constraint tha t they be equal. The result was €4 = — .00752/cy. 
The Fourier post-fit residuals for this frequency disappeared when £4 was 
estimated. 

The three largest amplitudes also exhibited significant post-fit Fourier 
spectra at their estimated frequencies. Theory shows that these terms arise 
from /, the lunar mean anomaly, and F, the lunar argument of latitude (see 
Table 1). 

TABLE 1. Terms with estimated variable frequencies. 

la Amp ["] 

101.33 
78.91 
24.58 

P Amp ["] 

99.02 
78.95 
24.65 

Period [days] 

27.55 
27.21 
26.88 

Source 

I 
F 

2F-1 

»i [7cy2] 

32.01 
-12.61 
-57.22 

The estimated quadratic frequencies given in the last column of Ta­
ble 1 are in close agreement with the expected quadratic components of 
the corresponding quantities in column 3. 

A similar analysis for r yields a variable amplitude of — 0.002511/cy at 
the period 365.2596 days, due to varying eccentricity of the Ear th ' s orbit, 
and another variable amplitude of — 0.002055/cy at the period 6798.37 days 
arising from a 31000-year beat period between two closely spaced lines. A 
variable frequency large enough to be reliably estimated occurred for the 
term with period 1095.175 days. Its value is —80''006/cy2; it arises from 
the lunar term ( 2 F - 2 / ) . 

5. Est imated Librations 

The iterative procedure described above was followed to extract the periodic 
components of the three parameters /<r, p, and r . The number of terms and 
the minimum amplitude estimated are shown in Table 2. 
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TABLE 2. Libration terms estimated. 

Parameter Smallest Amplitude Estimated Number of Terms 

Iff 0'.'022 31 
p (/.'022 30 
r (y.'l55 29 

5.1. FORCED LIBRATIONS 

For both of la and p, all of the estimated forced-libration terms arise from 
Earth-Moon-Sun effects, where theory identifies the only sources as various 
combinations of the angles from lunar theory /, /', F, D, and Q. For r , eight 
of the estimated terms are identified as having contributions from planetary 
effects. 

5.1.1. Terms with Lunar-theory Argument 

There was disagreement between only one of the estimated lunar-argument 
forced terms and the corresponding terms from Eckhardt 's (1981) theory. 
The effects on the lunar orbit of the Ear th 's J2, the rotation of the ecliptic, 
and Earth-Moon figure-figure interaction lead to a term actually composed 
of two periods approximately four days apart whose combination is 6797.025 
days. The beat period between these two terms is close to 31,000 years. This 
case is where a variable amplitude was estimated for all three libration 
parameters. The differences between the amplitudes estimated here and 
those in Eckhardt 's (1982) theory are 0'/25 for la, 0'.'37 for p, and 0'/47 for 
T. [It should be noted that , because of its nature, the variable amplitude 
cannot account for the these amplitude differences.] 

5.1.2. Planetary Terms 

The effects of the orbits of Venus (V), Earth (T), Mars (M) , and Jupiter 
(J) arise in some of the estimated forced libration terms for the variable 
r . Most of the estimated amplitudes of those terms are somewhat smaller 
than Eckhardt 's (1982) theory predicts, though there is one severely dis­
crepant term with argument 2T — 2 J + 2D — 2/ whose estimated amplitude 
0'/257 is 62% larger than the 0'/159 value from the theory. The remaining 
term involving Jupiter has the argument 3 J — 2T — 2D + 2/; the estimated 
amplitude 0'/287 is 10% smaller than the theory value of 0'/320. Moons' 
(1984) independent theory (amplitudes 0''253 and 0'/285, respectively) has 
better agreement with our estimated terms and shows that the discrepan­
cies involving Jupiter 's effects is due to the fact tha t Eckhardt did not apply 
perturbations by Jupiter on the radial coordinate of the lunar orbit. 
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5.2. FREE LIBRATIONS 

Free librations are implicit in the equations of motion for the rotation of 
the Moon. The estimation process produced nine frequencies tha t have no 
counterpart in the results from theory and hence that are possible compon­
ents of free librations. 

5.2.1. Wobble Mode 

For each of the quantities la and p, there are three terms tha t are combined 
to produce the elliptical path of the principal body axis rotating at the 
sidereal rate. The semi-axes of the ellipse are 8''19 and 3'.'31, with the major 
axis parallel to the lunar principal y-axis of inertia. The wobble period is 
74.63 years. There are no nearby forced terms. 

5.2.2. Precession Mode 

Detection of a precession-mode free libration is less certain. Fits to la and p 
separately produce a term in each with amplitude 0'/022, which is above the 
noise of the spectra but close to tha t of the LLR data . When these terms 
are combined, the result in a coordinate frame rotating with the retrograde 
node rate is tha t the actual pole describes a prograde circular motion about 
its mean position with radius 0'/022 (about 18 cm at the lunar surface) and 
a period of 24.16 years. In a space-fixed frame, the motion is retrograde 
with a period of 80.77 years. 

5.2.3. Longitude Mode 

Results for the free libration in longitude are less transparent. The theore­
tical value for the longitude period is approximately 1056.1 days. However, 
there are two forced libration terms tha t arise from the perturbation of the 
lunar orbit by Venus; their periods are 1056.342 days and 1056.415 days, 
too close to separate with the 718-year span of the analysis. 

The term in r exhibiting a possible blend of free and forced librations 
has period 1056.197 days, amplitude 1^807, and phase 224° at epoch J2000. 
To estimate a minimum amplitude for the free-libration component, a se­
quence of free-libration periods between 1055.80 days and 1056.30 days was 
established, and the corresponding amplitudes and phases of the two Venus 
forced terms were derived using Eckhardt 's (1982) theory. In each case the 
derived forced quantity was vectorially subtracted from the blend, leaving 
the free libration amplitude and phase resulting from that assumed period. 

In no case could the theory accept an assumed free period and yield 
values of forced amplitude and phase tha t completely account for the esti­
mated blend term. By matching the apparent period, the best estimate of 
the value of the free value gives an amplitude of l'/4 at period 1056.12 days. 
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5.3. IMPLICATIONS OF FREE LIBRATIONS 

The damping times for librations in pole position are typically 105-106 years 
or more; tha t for the librations in longitude is ~10 4 -10 5 years, implying the 
necessity for some sort of excitation mechanism to account for the findings 
of this paper. Proposed mechanisms include: 

Impact by a Large Body. Large impacts are statistically unlikely, all the 
more so when constrained to have conditions tha t would produce a small 
precession-mode libration. 

Passage Through a Resonance. Eckhardt (1993) proposed that over long 
times the slowly varying frequency of a Venus forced term could assume 
the natural frequency of the longitude libration and serve as a resonant 
longitude stimulation [two such terms were found in this study]. However, 
there are no candidate terms for the pole-position librations. 

Existence of a Liquid Lunar Core. Yoder (1981) has proposed tha t the 
Moon has a liquid core, with at tendant turbulent coupling with the mantle 
at the core-mantle boundary [see also Dickey et al. (1994)]. The core rota­
tion axis would not in general be aligned with the 18.6-year precession of 
the mantle; the offset might stimulate the pole-position librations. There­
fore, it appears tha t a combination of two excitation sources are needed to 
account for the observed free librations. 
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