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MAXIMAL SUBALGEBRAS OF HEYTING ALGEBRAS
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1. Introduction

A Heyting algebra is an algebra (H; v, A, ->,0,1) of type (2,2,2,0,0) for which
(H; v, A , 0,1) is a bounded distributive lattice and -> is the binary operation of relative
pseudocomplementation (i.e., for a,b,ceH, a A c^biftc^a->b). Associated with every
subalgebra of a Heyting algebra is a separating set. Those corresponding to maximal
subalgebras are characterized in Proposition 8 and, subsequently, are used in an
investigation of Heyting algebras.

Heyting algebras are a generalization of Boolean algebras. In D. Sachs [13] (see also
G. Gratzer, K. M. Koh, and M. Makkai [8]) it is shown inter alia that, for a Boolean
algebra with at least eight elements, every non-trivial element is both included and
excluded by maximal proper subalgebras. Furthermore, every proper subalgebra is the
intersection of maximal subalgebras. The Frattini subalgebra of an algebra A, denoted
$(v4), is the intersection of the maximal subalgebras. As seen by the above, for a
Boolean algebra B, it is always the case that <5(B) = {0,1}.

It is interesting to compare Heyting with Boolean algebras. That, as for Boolean
algebras, maximal subalgebras occur freely in Heyting algebras is indicated in the
following:

Theorem 1. For a Heyting algebra H the following are equivalent:

(i) H has a meet irreducible zero.

(ii) H ^<$>(K) for some Heyting algebra K.

(iii) For infinite K^\H\, there is a family of non-isomorphic Heyting algebras (H^.iKl")
such that, for i<2K, | H J | = K and <D(/J,)s//. If H is finite there are, in addition,
infinitely many finite non-isomorphic Heyting algebras (//,:i<<y) such that

By contrast, Theorem 2 shows that the ubiquity of maximal subalgebras suggested in
Theorem 1 is after all illusory.

Theorem 2. For K^CO, there is a family (H,-:i<2K) of non-isomorphic Heyting algebras
such that, for i<tc, \H{\ = K and Ht has no proper maximal subalgebras.

•The support for the NSF (grant # 8402909) is gratefully acknowledged.

359

https://doi.org/10.1017/S0013091500017806 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500017806


360 M. E. ADAMS

The presentation uses topological duality for Heyting algebras. A brief summary of the
necessary required facts is given in Section 2: for further information see either of the
survey papers B. A. Davey and D. Duffus [6] or H. A. Priestley [12].

2. Preliminaries

For a poset P and Q E P , let (6] = {x:x:gy for some yeQ} and [g) = {x:x^y for
some yeQ}. If Q = {x] denote (Q], [Q) by (x], [x), respectively. Say Q is decreasing if
Q = (Q], increasing if Q = [_Q), and convex if Q = [Q) <">((?]. A mapping q>:P->P' is order
preserving if <p(x)̂ <p(.y) whenever x ^ y e P .

A pair (P, r) is a totally order disconnected space if P is a poset, z a topology on P,
and, for x,yeP, if x£y then there exists a clopen decreasing g g P such that x £ g and
yeQ. A compact totally order disconnected space is called a Priestley space.

In [11], H. A. Priestley showed that the category of distributive (0, l)-lattices with all
(0, l)-lattice homomorphisms is dually equivalent to the category of Priestley spaces and
continuous order preserving functions. Under the duality elements of a distributive
(0, l)-lattice L correspond to the clopen decreasing subsets of the associated Priestley
space (P, z). For aeL, let A <= P denote the clopen decreasing set that represents a. Then,
for a (0, l)-lattice homomorphism f;L-*U there corresponds a continuous order
preserving mapping <p:P'-*P, and /(a) is represented by q>~1(A). In addition, / is an
isomorphism iff <p is a homeomorphism and an order isomorphism.

Since Heyting algebras are distributive (0, l)-lattices, the category of Heyting algebras
is isomorphic to a subcategory of distributive (0, l)-lattices. An h-space is a Priestley
space (P, T) such that [<2) is clopen for every convex clopen £><=P. For ft-spaces P,P',
an h-map is a continuous order preserving map q>:P->P' for which (p({x]) = ((p(x)~\. The
following is now folklore: see, for example, H. A. Priestley [12].

Proposition 3. The category of Heyting algebras with all homomorphisms is dually
equivalent to the category of all h-spaces and h-maps.

For a Heyting algebra H, if a,beH then, under the duality, a->b corresponds to the
clopen decreasing set P\[A\B).

Let L be a distributive (0, l)-lattice with Priestley space (P,T), and Lx a (0,1)-
sublattice of L. The separating set of Lx is

S = {(x, y)ePx P:x}JLy and, for all aeLu xeA implies ye A}.

A set X£P is compatible with S if, for all (x,y)eS, xeX implies yeX. It was shown
in [1] (see also J. Hashimoto [9]) that Ll — {aeL:A is compatible with S}.

3. Separating sets for Heyting algebras

Since any subalgebra of a Heyting algebra is a (0, l)-sublattice, it is determined by an
appropriate separating set. The aim of this section is to characterize the separating sets
of maximal subalgebras of Heyting algebras. Throughout let H be a Heyting algebra
with /i-space (P,T).
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For distinct p,qeP, define

{p}:x£p and x^q}v{(x,q)ePx{q}:x^p and x£q}.

Lemma 4. For distinct p,qsP, i/(p] u {q}=(q'] u {p\, then S = Spq is the separating
set of a proper subalgebra of H.

Proof. First it must be shown that S is a separating set. Let C(S) denote the family
of clopen decreasing subsets of P compatible with S. Clearly, for a clopen decreasing set
A^P, AeC(S)iffpeA is equivalent to qeA. Thus C(S) is a (0, l)-sublattice of H with a
separating set that contains S. For every x^yeP and (x,y)4S, it is required to find
AeC(S) such that xeA and y$A. By total order disconnectedness, this is routine if
either x^p,q or x^p,q. Suppose, for example, x ^ p and x}£q. If q^y then, since
(x,y)$S, q>y. It follows that pity and, hence, x^.y. Consequently, q7£.y and there is a
clopen decreasing set A such that x,qeA and y$A. A similar argument in the event
that x ^ p and x^q completes the proof that 5 is a separating set.

It remains to show that S is the separating set of a subalgebra of H and not simply of
a (0, l)-sublattice. Suppose this is not the case and P\[A\B)$C(S) for some A,BeC(S).
With no loss of generality, assume peP\[A\B) and q$P\[A\B). Then pi\_A\B) and
qe[A\B). By hypothesis, qsA\B and, hence, peAnB. In particular, peB and q$B
which contradicts the choice of B. •

Lemma 5. For distinct p,qeP, if (p] u {<?}=(#] u {p}, ttoen t/ie subalgebra of H with
separating set S = Spq is maximal.

Proof. It is required that the subalgebra generated by the addition of any clopen
decreasing set A g P to C(S) be H. It is enough to show that every element of S may be
separated. Since A $ C(S), it separates p and q. Suppose, with no loss in generality, p e A
and q$A.

Consider (x,q)eS. If xeA then A separates x and q. If x$A, let 6 = ((x] n [p))\A By
hypothesis, #£[Q) and, since Q is closed, it follows from total order disconnectedness
that there exists a clopen decreasing set B with p,qeB and BnQ = 0. Observe that
y*tp,q for any yeR = (x']n(B\A). As R is closed, p,q$C for some clopen decreasing set
C^R. Observe that, by construction, B,CeC(S). Consider P\[B\(AuC)) (which
corresponds to fe-»(avc) in H). Since (x]n(B\(/luC)) = 0 and q e [B\(/1 u C)),
xeP\[B\(/l u C)) and q£P\[B\(/l u C)). The pair (x, q) has been separated.

Suppose q~^p. Then x£p,q for any xeQ = /4n(<?]. As g is closed there is a clopen
decreasing set B such that p,q$B and g g B . Clearly, p^P\[/l\B) and qeP\[A\B). Any
element (x, p) e S can now be separated by arguing as above. •

For a subalgebra Hy of H and aeH, let [Hi,a] denote the subalgebra generated by
/ / ^ { o } . For fce[H1(a] there is a Heyting polynomial p(x1,...,xn) and aieH1Kj{a) for
l ^ i ^ n such that ft = p(a1,...,an). Let b' = p(a'l,...,a'n) where al = a, for a.eHj and 1
otherwise.
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Lemma 6. For xeP and be{_Hua], ifxeA then (x]nB=(x]nB'.

Proof. Use induction on the length n of the polynomial p(x1,...,xn). Obviously
b e ^ u ^ } satisfies the inductive hypothesis. An inductive step where b = c v d or c Ad
is clear. Suppose then b = c-*d. It must be shown that (:>c]n(P\[C\D)) =
(x]n(P\[C'\D')). Let ye{x]. Then yeP\lC\D) iff yt\_C\D). This is equivalent
to (j>]n(C\£>) = 0 which holds iff ((y]nC)\((j>]nD) = 0. By hypothesis, ((j]nC)\

D) = ((y] n C')\{{y] n £>')• Thus y e P\[C\D) iff y e P\[C'\D'). Q

Lemma 7. Let Ht be a proper subalgebra with separating set S. If Ht is maximal then
S = Spqfor some p,qeP such that (p]u{^} = (^]u{p}.

Proof. Choose (x,y)eS. Let q = y and p be a minimal element of {x:(x,q)eS}.
If p 7/t x for some x < q, then there is a clopen decreasing set A £ P such that p, x e A

and <jf ̂  J4. Clearly, ,4 £ C(S) and, by Lemma 6, (p, x) is an element of the separating set
for [_Hua]. Since Hr is a maximal subalgebra, this is not possible. Thus, (?]S(p]u{^}.

There are two cases to consider.
First, q>p. Then Sp<q^S and (p]£(«].
Second, q^p. If {q,p)$S, then qe/1 and p^/4 for some ^eC(S). Let 2 = (p]n/4.

Since Q is closed, the choice of p implies that QgB and q$B for some J5eC(S).
Consequently, peP\[A\B) and q^P\[^\B). This is inconsistent with (p,q)eS. Thus
(q,p)eS and S p ,gS . As above, (q,p)eS and i ^ maximal yields (p]£(g]u{p}.

In either case, (p] u {q} =(q~] u {p} and Sp-,gS. By Lemma 4, S = SP:q. •

The above is combined in the following proposition.

Proposition 8. For a Heyting algebra H, S is the separating set of a maximal proper
subalgebra of H iff S = SPt9for distinct p,qeP with (p]u{q}=(q]u{p}.

4. Proof of theorem 1

Lemma 9. For a Heyting algebra H, $(//) has a meet irreducible zero.

Proof. Suppose a A b = 0 for non-trivial a,beH. Then A n B=0 and, since A, B=/=0, it
is possible to choose minimal elements pe.4 and qeB. By Proposition 8, Spq is the
separating set of a maximal subalgebra that contains neither a nor b. •

Since, in Theorem 1, (iii) implies (ii), it remains to show that (i) implies (iii). For the
remainder of this section let H be a Heyting algebra with a meet irreducible zero and h-
space (P, T). By the duality, P has a minimum element m.

Let B denote a Boolean algebra with at least one atom (and at least eight elements).
Any atom of B corresponds to an isolated point of its Stone space (Q, a): distinguish one
such point q e Q. (A Stone space is a Priestley space in which the order is trivial.) Endow
R = P xQ with the product topology and let (5, p) be the one point compactification of
/?\({wi} x Q) by an element M.
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Define a partial order on S as the transitive closure of the following relation:

(i) M^{x,y) for all (x,y)eS;
(ii) (x, q) g {y, q) for x g y in P;
(iiii) (x,y)^{x,q) for all x e P and yeQ.

It is readily verified that this is indeed a partial order on S.
To see that (S,p) is totally order disconnected consider (x,y)^(u,v). If x^u then

there is a clopen increasing set X g P such that xeY and u $ X. The set X x Q is clopen
increasing in S and separates the elements in question. Otherwise x<u and vj=q.
Choose clopen sets Y^X^P such that X is increasing, xeY, m$X, and u$Y. Then
7 x g u ( I x {q}) is a suitable clopen increasing set. Or x = u, y±v, and v=j^q. Choose
clopen sets X<=P and Y^Q such that X is increasing, xeX, m$X, yeY, qeY, and u£ Y
Then X x 7 is a suitable clopen increasing set.

Suppose I g S o s clopen and consider [X). Obviously, [X) is clopen whenever MeX.
Suppose M$X. It is enough to consider X=YxZ for clopen 7 g P and Z£Q. By
hypothesis [7) g p is clopen and so [X) = ([Y) x {q}) u ( 7 x Z ) is too.

The above combines to the following.

Lemma 10. (S, p) is an h-space.

Let K denote the Heyting algebra with Ji-space (S, p).

Lemma 11.

Proof. Suppose Q^A^S is clopen decreasing. If (x,y)$A for some ysQ\{q}, then
SM ( I ) | ) is the separating set of a maximal subalgebra of K which shows that, in this
case, a^$(K). Otherwise A^Px(Q\{q}). If a^O(X), then there is a maximal subal-
gebra with a separating set generated by some pair M or (x,y)eA together with
(u,q)$A. However this is impossible since (u,q)£M or (x,y) implies that (u,v)<(u,q)
and (u,v)£M or (x,y) for some veQ\{q}. Since, for any non-empty clopen decreasing
Xc.P,A = S\((P\X) x {q}) is clopen decreasing in S, O(K)sH. •

Lemma 12. For Boolean algebras B, B', B^B'iffKs K'.

Proof. Let X = {(x,y)eS:(x,y)^M}. For (x,y)±M, (x,y)eX iff y#«. Further, for
any (x,g)eS, the closed subspace {(y,z):{x,q)>-(y,z)} r\X is homeomorphic to the
subspace Q\{q} of g. •

The proof of Theorem 1 is concluded by observing that there are infinitely many non-
isomorphic finite Boolean algebras and 2" non-isomorphic Boolean algebras of cardin-
ality K for any K^CO.

5. Proof of Theorem 2

The construction of Section 4 clearly indicates one suitable for the proof of Theorem 2.
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Let Q = PX(CJ+1) inherit the product topology where B is a Boolean algebra with
Stone space (P, T) and co +1 has the interval topology (co +1 under this topology is the
Stone space of a finite co-finite Boolean algebra on a countable set). Define (R, a) to be
the one point compactification of Q\P x {co} by an element M. Let g be a partial order
on co for which it is a connected downward directed binary tree and define a partial
order on R as follows:

(i) M^(x,y)forall(x,j;)ee;

(ii) (x, y) tk (u, v) iff x = u and y ̂  v.

Clearly R is partially ordered.
Observe that, for any clopen X<^P, [Xx {y}) = X x [y) where [y)£<o is a finite chain.

Consider (x, y) £ (u,«). If x =/= M there is a clopen set X with x e X and M £ X. Thus
[X x {y}) is a clopen increasing set that separates the pair. Otherwise y£v and [P x {y})
will suffice. Thus (R, a) is a Priestley space. Furthermore, for any clopen set X <i Q either
M e X or X = (J (X{ x {_y,}: 1 ^ i :§ n) where Xt is clopen. In either case [X) is clopen and
(R, a) is an /j-space.

Since co is a downward directed binary tree under ^ , (p]u{g} and (g]u{p} are
distinct whenever p,qeR are. Thus if K is the Heyting algebra with fc-space (R,a), K
has no maximal subalgebras.

The proof of Theorem 2 is concluded by observing that the subspace of maximal
points of R is homeomorphic to P. Thus for non-isomorphic Boolean algebras B, B', the
Heyting algebras K,K' are also non-isomorphic.

6. Concluding remarks

By K. M. Koh [10], for every lattice L there is a lattice K such that L^<D(K). An
analogous statement was shown to hold in the variety of distributive lattices [1] and,
subsequently, in every non-trivial variety of lattices [2]. The variety of Boolean algebras
is the smallest non-trivial variety of Heyting algebras and, since the only Boolean
algebra with a meet irreducible zero is the two element Boolean algebra, Theorem 1
holds in this variety. However, it does not extend to every non-trivial variety. For
example, let (P, T) be the /i-space of a member H of the variety of Heyting algebras V
generated by all totally ordered sets. V is well known (see, for example, R. Balbes and
Ph. Dwinger [4]). For xeP, (x] is totally ordered. Consider a clopen decreasing set
0 dAcP and choose a minimal qeP\A. If (q] n A = Q then q is actually minimal in P. In
this case let p be a minimal element of A. Otherwise q^^p for some peA. Either way
(p]u{4} = ( 4 ] U { P }

 and> hence, a£<£(#). In short, <D(ff) = {0,1} for any HeV although
this variety clearly contains a proper class of non-isomorphic algebras with meet
irreducible zeros. (Clearly, Theorem 2 is already invalid in the variety of Boolean
algebras.)

By [1] and C. C. Chen, K. M. Koh, and S. K. Tan [5], there are finite distributive
lattices that are only isomorphic to Frattini sublattices of infinite distributive lattices. By
contrast, Theorem 1 shows that representation of Heyting algebras in this way may
preserve finiteness whenever it is required. (A characterization of the Frattini sublattices
of finite distributive lattices is still to be found.)
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Some of the results presented here were first announced by the author in Notices
Amer. Math. Soc. 21 (1974), A-524 (see also L. Vrancken-Mawet, Bull. Soc. Roy. Sci.
Liege 51 (1982), 82-94).
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