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Spaces having no large dyadic subspace

Jason Gait

Gi IIman-Henriksen have defined a class of spaces, containing the

discrete spaces and their Stone-Cech compactifications, called

F'-spaces. The dyadic spaces are the continuous images of

products of finite discrete spaces - a class which contains the

compact metric spaces and all compact topological groups. In

this paper it is shown that F'-spaces have no infinite dyadic

subspaces and, almost always, no dyadic compactifications. An

interesting corollary is that if &X \ X is dyadic, then X is

pseudocompact.

The purpose of this paper is to investigate the relationship between

dyadic spaces and the F'-spaces of Gi IIman-Henriksen. Nearly all

F'-spaces are shown to be without large dyadic subspaces, and without

dyadic compactifications. This fact is exploited to see that the

dyadicity of either &X or $X \ X determines that X is pseudocompact,

while the more delicate question of whether the presence in £>X \ X of a

large dyadic set determines X to be pseudocompact is only partly

answered: in such case X cannot be Lindelof. A topological space is

said to be dyadic, in a terminology taken from (but not originating with)

Engelking and Pefczynski [4], if it is a continuous image of a product of

finite discrete spaces. Following Gi IIman and Henriksen [5], we define

F'-spaces (F-spaces) as those spaces in which disjoint cozero sets

(disjoint open F -sets) have disjoint closures.

Among other things Engelking and Pefczynski prove that extremally

disconnected spaces (= the closure of each open set is open) have no large
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dyadic subspaces, a theorem that was subsequently extended to basically

disconnected spaces (= the closure of each countable disjoint union of

clopen sets is open) by Efimov and Engelking [2]. In Theorem 1 this result

is generalized to F'-spaces, which need not be totally disconnected and

may in fact even be connected. The theorem is downright easy to prove, but

its strength may be seen in subsequent applications.

THEOREM 1. Let X be an F'-space. Then each dyadic subspace of

X is finite.

Proof. Since each dyadic space is compact and compact subspaces of

F'-spaces are F-spaces, we are reduced to showing that a dyadic F-space

is finite. Suppose Y is an infinite dyadic F-space, and let / be in

C(Y) such that the cardinality of fl is infinite. By a theorem of

Corson [7] there exists a compact metric space Z contained in Y such

that fZ=fX. By lUN of [6] Z is finite, so Y is finite.

COROLLARY. If X is any space and &X (= Stone-Cech

compactification of X) is dyadic, then X is pseudocompact.

Proof. Suppose X is not pseudocompact, then there exists a compact

6Z - G& set U contained in &X \ X . How U is dyadic by a theorem of

Efimov [3], and as U is an F-space it must be finite by Theorem 1. But

no finite subset of &X \ X is a BX - (Jx set, so X must be
o

pseudocompact.

This Corollary is actually another substantive result of Engelking

and Pefczynski. The relatively easy proof is given in order to exploit

Theorem 1, which has another application in the proof of Theorem 2. While

it is known that any space Y can be represented as (3X \ X for some

pseudocompact space X [6], in general such a representation may exist

for non-pseudocompact X as well. In other words &X \ X need not

determine X . Conditions on gX \ X that determine X are therefore of

considerable interest, and dyadicity is such a condition.

THEOREM 2. Let &X \ X be dyadic. Then X is pseudocompact.

Proof. Suppose not; then X contains a C-embedded copy of the

natural numbers N . Map N onto the rationals and extend this map to a

map f of &X into $R . Now f($X \ X) is a dyadic subset of B/? and
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meets the compact G.-set f?i? \ i? in an infinite set, which is dyadic.

But this violates Theorem 1, as 3i? \ i? is an F-space. Hence X is

pseudocompact.

In particular, Theorem 2 says that if BX \ X is a compact metric

space then X is pseudocompact. For an example of a pseudocompact

locally compact space X such that BX \ X is not dyadic, let

X = flff \ (Bff \ N) . Then X is pseudocompact. and BX = BR [6], but

BX \ X = &N \ N which is an F-space, so cannot be dyadic.

COROLLARY. Let X be a locally compact a-compact space. Then no

infinite compact subset of BX \ X is dyadic.

Proof. BX \ X is an F-space.

One instance of the Corollary is particularly interesting: no

infinite compact subset of &N \ N is dyadic. It would in fact be

surprising if any non-pseudocompact space X had an infinite dyadic

subset in BX \ X . This question must be left open, however the result

of the Corollary does extend to Lindelof spaces. One consequence of

Theorem 3 to follow is that no metric space having an infinite compact

subset, in particular no locally compact non-discrete metric space, can be

BX \ X for any Lindelof space X . The following easy Lemma is the

necessary prelude to Theorem 3.

LEMMA. If X is Lindelof', then each compact set contained in

BX \ X is contained in a compact BX - G. set, which is itself contained

in BX \ X .

THEOREM 3. If X is Lindelof, then no infinite compact subset of

BX \ X is dyadic.

Proof. Suppose K is a dyadic set in BX \ X . By virtue of the

Lemma there is a compact BX - G& set U contained in BX \ X such that

K is a subset of U . But any compact BX - G? set contained in BX \ X

is an F-space, so K must be finite by Theorem 1.

We now turn to the question of whether an F'-space can have any

dyadic compactifications. Although Engelking and Efimov have

characterized the dyadic compactifications of metric spaces as precisely
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those which are metrizable, it is still largely not known which spaces do

have dyadic compactifications. We can say that the countable discrete

space N has C-many dyadic compactifications, for each finite-point

compactification is metrizable and hence dyadic, and each uniformly closed

subalgebra of C*{N) which has a finite point compactification of N as

its maximal ideal space is itself separable metric, and since C*{N) is

the uniform closure of an ascending chain of such subalgebras, there must

be C-many of them as C*(N) is not separable. (We have not necessarily

singled out all the dyadic compactifications of N in this way. ) It is

notable that no other discrete space has any dyadic compactifications at

all, and in fact we are able to prove a similar result for any F'-space,

other than N itself.

THEOREM 4. Let X be an F' -space (not homeomorphia to N). Then

X has no dyadic compactification.

Proof. We may as well assume X to be non-discrete and take x to

be a non-isolated point in X . Let 7 denote a dyadic compactification

of X and without loss of generality assume x to be a sequence in

1 \ X that converges to x . Let / be a continuous map from &X to Y

that is the identity on X and carries &X \ X onto Y \ X . Let A

be the union of the inverse images under / of the points x . Then the

closure of A in X is A u {x} and A is 0-compact, hence

C*-embedded in its closure as $X is an F-space. We have that

fL4 = A u {x} , so ^ is necessarily pseudocompact. But this is not

possible, so X can have no dyadic compactification.
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