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Abstract 

Engineers widely use topology optimization during the initial process of product development to obtain a 

first possible geometry design. The state-of-the-art method is iterative calculation, which requires both time 

and computational power. This paper proposes an AI-assisted design method for topology optimization, 

which does not require any optimized data. The presented AI-assisted design procedure generates 

geometries that are similar to those of conventional topology optimizers, but require only a fraction of the 

computational effort. 

Keywords: topology optimisation, AI-assisted design, computational design methods,  
design evaluation, design to x (DtX) 

1. Introduction 
The presented paper deals with the solution of optimization problems by means of artificial 

intelligence (AI) techniques. Topology optimization (TO) was chosen as an application example, even 

though the described method is applicable to many optimization problems and thus has generality. 

TO is a method of optimizing the geometry of structures. In TO, the material distribution over a given 

design domain is the subject of optimization, i.e. minimization of a given objective function while 

satisfying given constraints (Sigmund and Maute, 2013). In most cases, suitable search algorithms 

solve the optimization problem mathematically. 

The combination of AI and TO in the state-of-the-art research mostly requires optimized geometries 

generated by conventional TO or FEM results as a basis for training. For this reason, they are subject 

to several limitations that affect those techniques, such as large computational effort and the need to 

prepare representative data. 

The approach proposed here aims at removing those drawbacks by generating all the artificial 

knowledge required for optimization during the learning phase, with no need to rely on pre-optimized 

results. 

1.1. Topology Optimization 

In this work, only the case of mono-material topology optimization is considered. The material of 

which the structure is to be build is a constant of the problem, and the geometry remains unknown. 

The function to be minimized in stiffness optimization is usually the scalar measure of structural 

compliance. In addition, the filling degree condition must be fulfilled. This filling degree corresponds 

to the fraction of the maximum possible amount of material (degree of filling) which is to be used in 

the design and is often also referred to as the volume fraction. Typically considered restrictions are the 

https://doi.org/10.1017/pds.2022.161 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2022.161


 
1590 ARTIFICIAL INTELLIGENCE AND DATA-DRIVEN DESIGN 

available design domain, the static and kinematic boundary conditions for the regarded load cases as 

well as strength thresholds. 

There are numerous possible approaches to TO (Sigmund and Maute, 2013). According to the "Solid 

Isotropic Material with Penalization" (SIMP) approach of Bendsøe (Bendsøe and Sigmund, 2003), a 

subdivision of the design domain into elements takes place. A factor, yet to be determined, scales the 

contribution of each element to the overall stiffness of the structure. 

The SIMP approach is able to provide optimized geometries for many practical cases by means of an 

iterative process. Each iteration involves computationally intensive operations: the most critical ones are 

assembling the stiffness matrix and solving the system's equation. The involvement of restrictions, such as 

stress restrictions, increases the complexity of the optimization problem (Lee, 2012; Picelli et al., 2018). 

1.2. Artificial Neural Networks 

Artificial neural networks (ANNs) belong to the area of machine learning (ML), which, in turn, is 

assigned to AI. ANNs are able to learn and execute complex procedures, which has led to remarkable 

results in recent years. ANNs or, more precisely, feedforward neural networks, consist of layers 

connected in sequence. These layers contain so-called neurons (Karayiannis and Venetsanopoulos, 

1993). A neuron is the basic element of an ANN. The combination of all layers is called a network. 

The neurons receive inputs, which are linearly combined and added to a bias value and passed as 

argument to an activation function. The coefficients of the linear combination are called weights. The 

weights and bias are also sometimes referred to as the trainable parameters. 

It is usual that several neurons have the same input. All neurons with the same inputs are grouped 

together in one layer (also called fully connected layer). The number of layers is also named depth of the 

network, which also originates the attribute "deep" in the term deep learning (DL). 

More details about the learning of an ANN can be found in literature, for example in (Basheer and 

Hajmeer, 2000; Goodfellow et al., 2016; James et al., 2021; Mohammed et al., 2016). 

1.3. Deep Learning-Based Topology Optimization 

In the current state of research, there are several publications dealing with ML in the field of TO. Most of 

these use conventionally topology-optimized geometries (Abueidda et al., 2020; Ates and Gorguluarslan, 

2021; Malviya, 2020; Nie et al., 2021; Rawat and Shen, 2019; Yu et al., 2019) for the training of the 

ANN. The ANNs learned to provide a geometry for specific boundary conditions that has similarities to 

the training data. As a consequence, the underlying mathematical relationship between the inputs and 

geometry, such as compliance, was not explicitly part of the training, which was merely data-driven. 

Thus, while these methods are able to provide directly nearly optimal geometries, they can also produce 

not interpretable results, such as disconnected structures. 

Alternative approaches establish ML as part of the iterative topology optimization process to reduce 

computation time by partially replacing some of the FEM algorithms with ML algorithms (Behzadi and 

Ilies, 2021; Chi et al., 2021; Kallioras et al., 2020; Qian and Ye, 2020; Sosnovik and Oseledets, 2017; 

Yamasaki et al., 2021; Zhang et al., 2019). Even though these approaches sometimes reduce the 

computation time considerably, they often have to be trained again for new boundary conditions/inputs. 

This paper investigates the possibility, which differs from the state-of-the-art methods, to train an ANN 

without the use of optimized or computationally prepared data. The generation of training data points 

and the training itself are merged in one single procedural step.  

2. Method 
The presented method is based on an ANN architecture called predictor-evaluator-network (PEN), which 

was developed by the authors for this purpose. The predictor is the trainable part of the PEN and its task 

is to generate, based on input data, optimized geometries. 

As mentioned, unlike the state-of-the-art methods, no conventionally topology-optimized or 

computationally prepared data are used in the training. The geometries used for the training are created 

by the predictor itself on the basis of randomly generated input data and evaluated by the remaining 

components of the PEN, called evaluators (see Figure 1). 
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Figure 1. The basic principle of the Predictor-Evaluator-Network (PEN) 

The evaluators perform mathematical operations. Other than the predictor, the operations performed 

by the evaluators are pre-defined and do not change during the training. 

Each evaluator assesses the outputs of the predictor with respect to a certain criterion and returns a 

corresponding scalar value as a measure of the criterion's fulfillment. The deviation from the 

fulfillment of the considered criterion is the loss or the error of this evaluator. 

A scalar function of the evaluator outputs (the quality function) combines the individual losses. During 

the training, the objective function computed for a set of geometries (batch) is minimized by changing 

the predictor's trainable parameters. In this way, the predictor learns how to produce optimized 

geometries. 

2.1. Basic Definitions 

In topology optimization, the design domain is typically subdivided into elements by appropriate 

meshing. Figure 2 visualizes the elements (with one element hatched) and nodes. 

 
Figure 2. Design space overview with elements, nodes and dimension 𝒅 (square case) 

In this work, we examined only square meshes with equal numbers of rows and columns. However, 

this method can be used for non-square and three-dimensional geometries.  

The total number of elements is as follows: 

𝑛 = 𝑑𝑥𝑑𝑦 (1) 

where 𝑑𝑦 is the number of rows and 𝑑𝑥 the number of columns (see Figure 2). In the square case, the 

number of rows and columns are equal (𝑑𝑥 = 𝑑𝑦 = 𝑑), so that the total number of elements is 𝑑2. 

The 𝑑2 design variables 𝑥𝑖 {𝑖 = 1,… , 𝑑
2}, termed density values, scale the contributions of the single 

elements to the stiffness matrix. The density has a value of one when the stiffness contribution of the 

element is fully preserved and zero when it disappears. 

The density values are collected in a vector 𝐱. In general, the density values 𝑥𝑖 are defined in the 

interval [0, 1]. In order to prevent possible singularities of the stiffness matrix, a lower limit value 

𝑥min for the entries of 𝐱 is set as follows (Bendsøe and Sigmund, 2003): 

0 < 𝑥min ≤ 𝑥𝑖 < 1,   𝑖 = 1,2, … , 𝑑
2. (2) 

Although a binary selection of the density is desired (discrete TO, material present/not present), values 

between zero and one are permitted for algorithmic reasons (continuous TO). To get closer to the 

desired binary selection of densities, the so-called penalization can be used in the calculation of the 

compliance. The penalization is realized by an element-wise exponentiation of the densities by the 

penalization exponent 𝑝 >  1 (Sigmund, 2001).  

The arithmetic mean of all 𝑥𝑖 defines the degree of filling of the geometry as follows: 

𝑀is =
1

𝑑2
 ∑ 𝑥𝑖

𝑑2

𝑖=1  (3) 

Evaluators

M
Minimization

  

Quality function

Output Data
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Evaluator 2

Evaluator 1
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The target value 𝑀tar is the degree of filling that is to be achieved by the predictor. 

Investigations showed that the training speed (see section 2.8) could be increased, for high-resolution 

geometries, by dividing the training into levels with increasing resolution. Since smaller geometries 

are trained several orders of magnitude faster and the knowledge gained is also used for higher 

resolution geometries, the overall training time is reduced, compared to the training that uses only 

high-resolution geometries. The levels are labeled with the integer number Λ. 

Increasing Λ by one results in doubling the number 𝑑 of rows or columns of the design domain's mesh. 

This is done by quartering the elements of the previous level. In this way, the nodes of the previous 

level are kept in the new level. The number of row or columns at the first level is denoted as 𝑑inp. 

 
Figure 3. Nodes and elements at different levels 𝚲 (resolutions). The boundary conditions do 

not change 

Input data can be only defined at the initial level and do not change when the level is changed. Hence, 

new nodes cannot be subject to static or kinematic boundary conditions (see Figure 3). When the level 

is changed, only the dimension of the outputs changes; the dimension of the inputs remains constant. 

The change in level occurs after a certain condition, which will be described later, is fulfilled. 

2.2. Predictor 

The predictor is responsible for generating, after training, the optimized result for a given input data 

point. Its ANN-architecture consists of multiple hidden layers, convolutional layers and output layers. 

All parameters that can be changed during training in order to minimize the target function, such as 

the bias and the weights of the hidden layers, are generally referred to as trainable parameters in the 

following. The predictor's topology is shown in  Figure 4 in a simplified form. 

 
Figure 4. Predictor’s artificial neural network (ANN) topology (simplified) 

An input data (top left) is processed by several successive hidden blocks and then passed on to some 

ResNet-blocks. A hidden block is a combination of a hidden layer and an activation. ResNet-blocks 

consist of multiple convolutional and activation layers (He et al., 2016) (see Figure 4). At this stage, 

the output is at the highest resolution. The sigmoid function is well suited as an activation function for 

the output layer because it provides results in the interval (0, 1). This makes the predictor's output 

directly suitable to describe the density values of the geometry. Average pooling is used in order to 

reduce the resolution to a lower level Λ. 
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2.3. Evaluator: Compliance 

The task of the compliance evaluator is the computation of the global mean compliance. For this 

purpose, an algorithm based on FEM (Sigmund, 2001) is used. The compliance 

𝑐 = 𝐔𝑇𝐊𝐔 = 𝐔𝑇𝐅 (4) 

can be calculated using the stiffness matrix 𝐊, the forces 𝐅 and the displacements 𝐔. The stiffness 

matrix is linearly dependent on the geometry 𝐱 and is defined as follows: 

𝐊 =  ∑ 𝑥𝑖
𝑝
𝐊𝑖

𝑑2

𝑖=1  (5) 

Where 𝑝 is the penalization parameter and 𝐊𝑖 is the unscaled element stiffness matrix. As is usual in 

(Andreassen et al., 2011; Sigmund, 2001), in the following, the units will be omitted for the sake of 

simplicity. 

2.4. Evaluator: Degree of Filling 

The task of this evaluator is to determine the deviation of the degree of filling 𝑀is (see (3)) from the 

target value 𝑀tar as follows: 

𝑀 = |𝑀tar −𝑀is| (6) 

By considering the filling degree's deviation 𝑀 in the objective function, the predictor is penalized 

proportionally to the extent of the deviation from the target degree of filling 𝑀tar. 

2.5. Evaluator: Filter 

The filter evaluator searches for checkerboard patterns in the geometry and outputs a scalar value 𝐹 

that points to the amount and extent of checkerboard patterns detected. These checkerboard patterns 

consist of alternating high and low density values of the geometry. They are undesirable because they 

are difficult to transfer to real parts. These checkerboard patterns exist due to bad numerical modeling 

(Díaz and Sigmund, 1995).  

Several solutions for the checkerboard problem were developed in the framework of conventional 

topology optimization (Sigmund and Petersson, 1998). In this work, a new strategy was chosen, which 

allows for inclusion of the checkerboard filter into the quality function. In the present approach, 

checkerboard patterns are admitted but detected and penalized accordingly. 

Since the type of implementation is fundamentally different, it is not possible to compare the 

conventional filter methods with the filter evaluator. 

2.6. Evaluator: Uncertainty 

When calculating the density values of the geometry 𝐱, the predictor should, as far as possible, focus 

on the limit values 𝑥min and 1 and penalize intermediate values. The deviation from this goal is 

expressed by the uncertainty evaluator with the scalar variable 𝑃. This value increases if the predicted 

geometry deviates significantly from the limit values and thus penalizes the predictor. This approach 

differs from the conventional penalization approach: conventional penalization has a direct influence 

on the compliance. The presented approach only influences the objective function in the form of an 

evaluation. For this reason the penalization factor (see (5)) is set to 𝑝 = 1 for the training. 

2.7. Quality Function and Objective Function 

The quality function combines all evaluator values into one scalar. In general, the following formula is 

used: 

𝑓𝑄 = ∏ (𝛼𝑖𝐸𝑖 + 1)
𝑛
𝑖=1 , (7) 

where 𝐸𝑖 represents an evaluator output, 𝛼𝑖 is the corresponding weighting factor and 𝑛 is the total 

number of evaluators. Using the presented evaluators, this equation becomes 

𝑓𝑄 = (𝛼𝑐 + 1)(𝛽𝑀 + 1)(𝛾𝐹 + 1)(𝛿𝑃 + 1). (8) 
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Since the training based on single geometries requires large computational effort and would lead to 

instabilities of the training process (large jumps of the objective function output), a given number of 

geometries (batch) is predicted and the corresponding quality functions are combined to one scalar 

value, which acts as the objective function for the optimization determining the training. 

During the training 𝛼, 𝛽, 𝛾 and 𝛿 have the values 2, 5, 1 and 1 respectively. 

2.8. Training 

Within one batch, the input data points are randomly generated, and the predictor creates the 

corresponding geometries 𝐱. Afterwards, the quality function is computed from the evaluators' losses. 

The value of the objective function is then calculated for the whole batch. Then, the gradient of the 

objective function, with respect to the trainable parameters, is calculated. The trainable parameters of 

the predictor for the next batch are then adjusted according to the gradient descent method to decrease 

the value of the objective function. In order to apply the gradient descent method, the functions must 

be differentiable with respect to the trainable parameters (Kingma and Ba, 2017). For this reason, the 

evaluators and the objective function use only differentiable functions. 

When the level increases, the predictor outputs a geometry with higher resolution, and the process 

starts again. 

It is important to stress that, unlike conventional topology optimization, the PEN method does not 

optimize the density values of the geometry, but only the weights of the predictor. 

3. Application 

3.1. Implementation 

The implementation of the presented method takes place in the programming language Python. The 

framework Tensorflow with the Keras programming interface is used. Tensorflow is an open-source 

platform for the development of machine-learning applications (Abadi et al., 2015). In Tensorflow, the 

gradients necessary for the predictor learning are calculated using automatic differentiation, which 

requires the use of {differentiable} functions available in Tensorflow (Baydin et al., 2015). 

The predictor's topology, with all layers and all hyperparameters, is shown in Figure 5. The chosen 

hyperparameters were found to be the best after a grid search of all parameters in which the deviations 

of the predictions from the ones obtained by conventional TO were evaluated. The hyperparameters 

are displayed by the shape (numerical expression over the arrow pointing outside the block) of the 

output matrix of a block or by the comment near the convolutional block. The label of the output 

arrow describes the dimensions of the output vector or matrix. The names of the shapes in Figure 5, 

e.g. "Conv2D", correspond to the Keras layer names. 

 
Figure 5. Predictor's artificial neural network (ANN) architecture 
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As already mentioned, the training of the predictor is based on randomly generated input data sets. All 

randomly chosen input data are uniformly distributed in the corresponding interval. They are 

generated according to the following features: 

Kinematic boundary conditions 𝐫k 

o Fixed degrees of freedom along the left side in 𝑥- and 𝑦-directions. 

Static boundary condition 𝐫s 
o Position randomly chosen among all nodes (except the nodes that have a fixed degree of 

freedom) of level one. 

o Randomly chosen direction in the interval [0°,   0°] 
o Fixed magnitude 

Target degree of filling 𝑀tar 
o Randomly chosen direction in the interval [0.2,0. ] 

3.2. Results 

The training of the predictor lasted 3.25 h (3:15:56), which can be subdivided according to the 

individual levels as follows: 16%, 7%, 42%, 35%. The training processed approximately 7.6 million 

randomly generated training data points. As expected, the training time increases proportionally with 

the size of the geometry. While the first level processed over 3400 data points per second (𝑑𝑝𝑠), it 
became less with each level (928 𝑑𝑝𝑠,  2 𝑑𝑝𝑠,   𝑑𝑝𝑠). This is due to the additional computational 

effort and the need to reduce the batch size due to higher memory requirements with higher levels at 

constant available memory. 

The training history shows the progression of the objective function (see Figure 6). The smaller batch 

size at higher levels produces more oscillation of the curve and therefore, makes it difficult to identify 

a trend. For this reason, the curves shown in the figures are filtered, using the exponential moving 

average and a constant smoothing factor of 0.873 (Nicolas, 2017) for all levels. This filtering does not 

affect the original objective function and serves only visual purposes. 

 
Figure 6. Progression of the objective function value during training 

The dashed vertical lines (labeled with the value of Λ) in Figure 6 indicate the change in level. It can 

be seen that the objective function value improves significantly in the first level 𝛬 and in the following 

levels only slightly. The reason for this is that learning in one level optimizes the resolution in 

subsequent levels as well. 

The results were validated using 100 optimization problems. The input data for validation was 

randomly generated and not used for training. The corresponding optimized geometries were 

conventionally calculated by the top88 algorithm by (Andreassen et al., 2011). 

The results of the comparison (PEN and top88) of the 100 validation data points are summarized in the 

plots in Figure 7. 

On average, the ANN-based TO can deliver almost the same result as the conventional method in 

about 5.2 ms, while the conventional topology optimizer according to (Andreassen et al., 2011) 

requires, on average, 1.9 s (and is, therefore, roughly 364 times slower); see Figure 7 (left). It can also 

be seen that the majority of geometries generated by PEN have a compliance that is close to the 
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geometries generated by top88; see Figure 7 (middle). The geometries deviate in the degree of filling 

to about one percent; see Figure 7 (right). 

 
Figure 7. Computing time (left) and compliance (middle) and degree of filling (right) 

comparison 

The examples in Figure 8 show that the predictor can deliver geometries that are similar to the 

conventional method, as well as some weaknesses. For instance, some geometries lack details (see 

Figure 8, column four or five). This may be improved by an appropriate choice of layers or 

hyperparameters of the predictor and by adapting the quality function. For all sample geometries in 

Figure 8, the compliance is reported under the geometry diagram. 

 
Figure 8. Sample geometries: a) generated with predictor–evaluator network (PEN), b) 

conventionally generated validation data 

It was mentioned that the PEN method is orders of magnitude faster than top88 in predicting 

geometries. However, the predictor profits from a computationally intensive training. If this training 

has to be performed globally once, and the topology optimization application is based on this trained 

predictor, the training time for the end users can be effectively neglected. 

3.3. Interactivity 

Due to the ability to quickly obtain the optimized geometry by the predictor, the ANN-based TO can be 

executed interactively in the browser. Under the address: https://www.tu-chemnitz.de/mb/mp/forschung/ai-

design/TODL/ (accessed on 22 February 2022), it is possible to perform investigations with different degrees 

of filling as well as static boundary conditions. 

4. Conclusions 
In this work, a method was presented to train an ANN using online deep learning and use it to solve 

optimization problems. In the context of the paper, Topology optimization (TO) was chosen as the 
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problem to be solved. The ANN in charge of generating topology-optimized geometries does not need 

any pre-optimized data for the training. The generated geometries are, in most cases, very similar to 

the results of conventional topology optimization, according to (Andreassen et al., 2011). 

This topology optimizer is much faster, due to the fact that the computationally intensive part is 

shifted into the training. After the training, the artificial neural network based topology optimizer is 

able to deliver geometries that are nearly identical to the ones generated by conventional topology 

optimizers (top88 was used as mathematical optimization algorithm). This is achieved by using a new 

approach: the predictor-evaluator-network (PEN) approach. PEN consists of a trainable predictor that 

is in charge of generating geometries, and evaluators that have the purpose of evaluating the output of 

the predictor during the training. 

The method was tested for the 2D case up to an output resolution of      . This choice is not a 

limitation of the method and can be improved by using better hardware for training or by high-

performance computing. The use of the method for the 3D case and higher resolutions is conceivable. 

For this, the predictor would have to output a 3D geometry and the evaluator for compliance would 

have to be adapted for the 3D case. The optimization of the computational efficiency of the training 

phase was not the first priority of this project since the training is performed just once and, therefore, 

affects the performance of the method only in a limited fashion. 

A critical step is the calculation of the displacements in the compliance evaluator. The use of faster 

algorithms (e.g., sparse solvers) could remove the mentioned limitations. One approach to improve the 

learning process would be to train only in areas where there is a high potential for improvement, 

through appropriate selection of training data points. 

The results of the PEN method are comparable to the ones of the conventional method. However, the 

PEN method could prove superior in handling applications and optimization problems of higher 

complexity, such as stress limitations, compliant mechanisms and many more. This expectation is 

related to the fact that no optimized data are needed. All methods that process pre-optimized data 

suffer from the difficulties encountered by conventional optimization, while managing the above-

mentioned problems. Because the PEN method works without optimized data, it could also be applied 

to problems that have no optimal solutions or solutions that are hard to calculate, such as the fully 

stressed truss optimization. 

To date, variable kinematic boundary conditions have not been tested. This will be done in future 

research, together with resolution improvement and application to three-dimensional design domains 

and different optimization problems. 
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