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GENERALIZED MATRICES

FRIEDRICH ROESLER

Introduction. Similar to the multiplication of square matrices one can define
multiplications for three dimensional matrices, i.e., for the “cubes” of the vector
space

w ([’ K):.= {ﬂ = (a,\'y:)x,y,:el; xyz € K}

where / denotes a finite set of indices and K is any field. The multiplications shall
imitate the matrix multiplication: To obtain the coefficient ¥,,. of the product
(Viyz) = (0tyy2)(Byy2), all coefficients ayj, 1,7 € 1, of the horizontal plane with
index x of (a,,.) are multiplied with certain coefficients 8y, of the vertical plane
with index z of (8,,-) and the results are added:

M) Viyz: = Z a.xijﬁh(.ry:ij),g(,xy:ij),:

i, jel

where the mappings 4, g:1° — I determine the multiplication rule (M) in detail.
The aim of this paper is to construct and to interpret all possible multiplica-
tions of type (M) on W (I, K) which are associative with unit element

E = (&r.yéy,:).r,y,zel

and to determine the K-algebra structure on ‘W (I, K).

Section 1 deals with the construction. The key result is Proposition 4: Every
associative multiplication on W (I,K) with unit element E induces a natural
group structure G on /. This allows one to construct all associative multiplica-
tions on W (I,K) in the following way:

— First impose any group structure G on /.

— Then take any mapping f : G — G such that f(x,y,z) is bijective with
respect to y and

fle,y,e)=y"", f(x,e,e)=-¢e, f(x,x,x)=e.

(There are (n!)”~'n?~2" possibilities to choose f, where n = |G|.)
— Finally define the multiplication (M) with the mappings

h(x,y,z,1,j) = j,
g, y,2,1,)) = (. f &, i, ) fx,y,2),2),
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where f* denotes the inverse of f with respect to its second argument.

(Proposition 1 and Theorem 6.) Theorem 7 describes the structure of W (I, K)
as a tensor product: If G is the group induced on / by the multiplication on
W (I,K), then

Wd,K) =2 KIG]®k M,K)

where M (I, K) is the algebra of square matrices (o) yes Over K.

Section 2 deals with an algebraic interpretation of the cubes. Matrices give
a description, by matrix multiplication, of linear mappings between spaces of
column vectors. With this in mind one can interpret the cubes 4 € W (I,K)
(via cube multiplication) as linear mappings 4 ¢ between spaces of matrices:

é: WU,K)— Endg(MU,K)), 4+— a°

then becomes an embedding of the |/|>-dimensional algebra of cubes into the
|7|*-dimensional algebra of endomorphisms of M (I,K), with 2% B? = (4B )?
being a consequence of the associative law in W (I,K). To characterize the
cubes completely one has to impose K[G]-module structures on M(/,K) (via
the regular representation of G) and on W (I, K). The restricted ¢,

¢+ WI,K) — Endgiy(M U, K))

then is an isomorphism (Theorem 11), and 4 is invertible in W (I, K) if and only
if the (twisted) vertical planes of 4 form a K[G]-basis of M (I, K) (Corollary 12);
exactly as in the case of square matrices, which are invertible if and only if their
columns form a basis of the column space. Finally W (I,K) is embedded into
M(I?,K) (Theorem 14), which allows one to transfer the theory of eigenvalues
from the matrices to the cubes. For instance (Proposition 15): 4 € W (I,K) is
diagonalizable if and only if M (/,K) is the sum of the eigenspaces of 4.

I am grateful to Prof. A. Leutbecher for his suggestion that W (I, K) can be
represented as a tensor product.

1. ProposITioN 1. If the multiplication (M) on ‘W (I,K) is associative with
unit element ‘E, then h(x,y,z,i,j) =]j.

Proof. Comparing corresponding entries on both sides of BE = B,8 =
(ﬁ.ryz).\‘,y.zel, gives

(1 > B =By
i, jel
h(xyzij)=g(xyzij)=z
for all x,y,z € I. BE = B for all B € W (I,K) then shows that (3. has to be
the only summand of the left hand sum in (1), hence

2 hx,y,2,y,2) = g(x,y,2,y,2) = 2
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for all x,y,z € I. The associative law
(EiiB)C = E(BC)
with
Evij = O udivbjwdupvwer and  C = (Vuywer

reads in components as
E ,Bh(xrsij),g(xrsij),s = E :ﬂ’l()"yiff)7"75 .
rs s

This being valid for all x,y,z,i,j € I and all §,,, € K implies that both sums
must contain the same 3’s. Now the first 3-index shows

3 hx,r,s,1,)) = h(x,y,2,1,))
for all r,s € I, and hence

J=h(x,i,j,i,j) by (2)

= h(x,y,z,i,))
by (3), for all x,y,z,i,j €1.
Proposition 1 shows that (M) can be simplified to
M) Yoz 1= ) g
i, jel

with g:1° — I. If such a mapping g is given, W (g,K) will denote the vector
space W (I, K) together with the multiplication (M’) on W ({,K).

Let G (I) be the set of all mappings g:/°> — I such that the multiplication
on W (g,K) is associative with unit element £. To survey all these multipli-
cations entails an analysis of the set G (/). The next proposition gives a first
characterisation for the elements of G (/):

ProrosiTioN 2. g € G (I) if and only if

(Gl)  g(x,y,z,*%,z):] — [ is bijective,
(G2) g,y z,i,)) = g, g(x,y,z,k, D), 2, g (x, 0, 1, ks D), ),
(G3) X, X, x,x,X) = x.

CoroLLary 3. (G1)—(G3) imply

(G4) g is bijective in its second and its fourth argument,
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(G5) g, y,z,y,2) =z,
(G6) glx,y,z,x,x) = y.

Proof. Eq. (1) in the proof of Proposition 1 shows that £ is a right unit if
and only if

4) g(x,y,z,i,z) = z is equivalent to { = y.

Similarly,
E(Bry:) = (Brgayzun)ery.z

shows that £ is a left unit if and only if

(5) g, y,2,%,x) =y

for all x,y,z € I. The associative law holds in W (I, K) as soon as one has
(EiB)C = Ei(BC)

for all x,i,j €I and all B,C € W (I,K), and this reads in components as

(6) Z Bj,g(,\'rsl:i)..\"ys‘g(,\'y:rs).:
rs

= Z Birs Vs.g g yzif) z.r.s).c -

rys

First we prove that g € G (/) implies (G1)~(G3): 4) withx =y =z =1
yields (G3).

Both sums in (6) must contain the same (3’s. Hence for all x,s,i,j € I the
mappings r +— g(x,r,s,i,j) are one-to-one, i.e., g is bijective in its second
argument, and one can substitute g(x,r,s,i,j) for » in the right hand side of
(6). Comparing the second 7Y-index proves (G2).

Suppose that there are indices x,y,z, i}, in I such that

glx,y,z,i1,2) = gx,y,2,i2,z) = 1 U.
Then by (G2) forv = 1,2

g(x,in,2,y,2) = g (2,8(x,i2y 2,0y, 2), 2,4, 2)
The bijectivity of g in its second argument and (4) yield

g(-".vi27z7ilvz) = g(x7i2727i272) =z
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But then i; = i; by (4), which shows (G1).
Now we prove the corollary: (G2) with j =z is

g(x’yzzﬂ",z) =8 (l,g(x,y,z,k,l),z,g(x,i,z,k,l),:) .
The left hand side is bijective in i by (G1) and hence the right hand side is it,

too. This implies that g must be bijective in its second argument.
Suppose that there are indices x,i,],z,k, k> in [ such that

glx, i, j ki z) = g(x,i,j kpyz) = 1w
(G2) with/ =z is
80,y 2,0, )) = g (2,8(x0,9,2,k,2), 2,8 (%, 14, K, 2), ) -
The left hand side is independent of k, hence
g (z,8(x,y,2,k1,2),z,w,j) = g (z,8(x,y, 2, k2, 2), 2, W, j) -
The bijectivity of g in its second argument implies
glx,y,z, ki, z) = g(x,y,z, ks, 2),
and (G1) yields k; = k, i.e., g is bijective in its fourth argument. This proves
(G4).
Choose in (G2) i =y, j =1 =z, and k such that
gx,y,z,k,z) =z
which is possible because of (G1). Then
gx,v,z,y,2) =g(z,2,2,2,2) =z

by (G3), and this is (GS).
G2y withi=j=k=1=x,w:=g(x,y,z,x,x) and (G3) show

w = g(x7w7 Z?'x7'x)

for all w € I, because g(x,y,z,x,x) is bijective in y by (G4). This is (G6).

Conversely, we prove that (G1)—(G6) imply (4), (5), and (6): (4) is a conse-
quence of (G1) and (GS5). (5) is (G6). To prove (6) we substitute g(x,r,s,i,))
for r in the right hand side of (6), which is admissible because of (G4), and
then we use (G2) in the second 7Y-index.
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Remarks. (1) (G1), (G2), (G3) are independent: g(x,y,z,i,j) = j satisfies
(G2) and (G3) but not (G1). g(x,y,z,i,j) = i satisfies (G1) and (G3) but not
(G2). And if I = G is a group and ¢ # e is an element of its center, then

satisfies (G1) and (G2) but not (G3).
(2) In particular (G4) implies that for all x,y,z € I the mappings

P12 )= (j,gx,y,z,i))

are bijective. Hence the coefficient

/Y,\‘y: = § a,\'ijﬁj.g(xy:zj),:
ij

of C = 4B not only depends on all coefficients of the xth horizontal plane
of 4 (which is so by definition) but also on all coefficients of the zth vertical
plane of ‘B; in accordance with the matrix multiplication.

Every associative multiplication g of type (M’) on ‘W (I, K) induces a natural
group structure on the index set /, as the next proposition will show. Therefore
we require that / contains an element e which will always become the unit ele-
ment as soon as this group structure is imposed on /. Further, any multiplication
of elements in / will be carried out in this group.

A mapping p: 1> — I will be called a group mapping for /, if I together with
the multiplication xy: = p(x,y) on [/ is a group with unit element e. Then we
say that p induces a group structure on / and denote this group by G,.

ProposiTION 4. For every g € G(I)

Hg(X,}’)i =8 (e,x,e,g(e,e,e,y,e),e)

induces a group structure on I.
COROLLARY 5. g(e,x,e,y,e)=xy '

Proof. (G2), (GS), and (G6) imply for

v I? — 1, vx,y):=g(e,x,e,y,e):

(G2)  wx,y)=v (vix,2),v(y,2)),
(GY)  wvlx,x)=e,
(G6") v(x,e) = x.
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The multiplication on /, defined by p,, is
xy:=v (x,v(e,y)).
Unit element:

ex = v (e,v(e,x))
= v (v(x,x),v(e,x)) by (G5)
=v(x,e) by (G2)
=x by (G6').

Inverse:

v(e,x)x = v (v(e,x),v(e,x))

=e by (G5).
Associative law:

) viv (x,v(e,y)) .yl = vlv (x,v(e,y)) , v(y, e)] by (G6)
=vlv (x,v(e,y)),v (e,v(e,y))] by (G2'), (G5)
=v(x,e) by (G2
=x by (G6).

(8) vie,v(y,v(e,2)] = vlv(v(e,z2),v(e, 2)),v(y,v(e,2))] by (G5)
= VW("J)J] by (GZ/)

Hence

xy)z =vlv (x, I/(e,y)) ,v(e,z)]
= v[vlv (x,v(e,y)) ,yl,vlv(e,2),y1l by (G2)
=vlx,vle,v (y,lx(e,z))]] by (7), (8)
= x(yz).

And concerning the corollary:

gle,x,e,y,e)y =v(x,y)y

= v[r(x,y),vie,y)]
=v(x,e) by (G2).
— by (G6').

The group structure G = G, on I, induced by the group mapping ., g €
G (1), plays the central part in the description of the set G (/). The group structure
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itself deals with only two of the five dimensions of the domain I° of g. The
remaining three are taken care of by a mapping

f:G* =G

with the following simple properties:

(F1) f(x,*,2):G — G is bijective,

(F2) fle,y,e) =y,

(F3) f(x,e,e) =e,

(F4) f(x,x,x)=ce.

Let F (I) denote the set of all pairs (u,f) such that u: /> — I is a group map-
ping for / and f:Gf1 — G, satisfies (F1)=(F4). F (I) represents all associative
multiplications (M) on ‘W (I,K):

THEOREM 6. For g € G (I) define
fe: Gy — Gy,
by

M")  fox,y,2): = g(z,8(x,e,e,y,2),e,e,e).
(1) f(xvy7z)=f(xvivj)f(jvg(xvyvz’ivj)vz)

holds for f = f,. This equation reflects exactly the position of the indices in the
cube multiplication (M').

(i1) O: G — F WD), D)= (kg,f)
is bijective.

(iii) In particular if (u,f) € F (I) is given, then Eq. (M"), to be read in G,,
determines g = ®~! ((u,f)) uniquely.

Proof. (i) Let
w(X7Y)3= g(X,)/ae,fae)-

Then

9) g(zyeie) = gle, g(zyeee), e, g (zieee),e] by (G2)

w(z, )z, i)
by Corollary 5, and hence

(10) w(x,y) = g(xyeee)
= g[z, g(xyeiz), e, g(xeeiz), e] by (G2)

=w (z, g(xyeiz)) w (z, g(xeeiz))ﬁl
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by (9). This shows

foxyz) = wlz, g(xeeyz)]
= wlz, glJ, g (xeeij), e, g (xyzij), z]] by (G2)
= wlj, g(xeej)wlz, glj, e, e, g(xyzij), z]] by (10)
= fo iy (J, g (yzif), ) -

(ii) First we show that f, satisfies (F1)—(F4):
(F1) is an immediate consequence of (G4).

(F2):
foleye) = g (e,g(eeeye),e, e,e)
= g(eeeye) by (G6)
=y by Corollary 5.
(F3):
folxee) =g (e,g(xec’e(’), e,e, e)
= g(xeeee) by (G6)
=e by (GS5).
(F4):

foloxx) = f, (x,g(xxxxx),x) by (G3)
= fo(xxx)” 'f,s.(xxx) by (M")

=e.

Hence (p,,f,) € F () for every g € G (I).
Now we show that @ is injective: Assume that there are g;,g> € G (/) such
that
Hgy = Hg, = 1 and ffs'l :«fk’z = f
Then (M”) yields
pUf ), f (J, g1(eyzif), 2) ] = f(xyz)
= plf i), f (J, g20xvzif), 2) 1.

4 is injective in its second argument because it is a group mapping, and f is
injective in its second argument by (F1). Hence g, = g».

To prove that @ is surjective, take any (u,f) € ¥ (/). We will define g € G (/)
in the group G, such that ®(g) = (u,f). By definition of ¥ (1), f: G; — G,
satisfies (F1)—(F4). In particular, (F1) implies that the equation

M")y £ (), gxyzif), z) 1 = f(xij) ' f (xyz)
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determines a mapping g:/° — I. Now we show that
(I) g satisfies (G1)~(G3), and hence g € G (/),
(D) py = p,
() f, = .
ad (I): The definition of g in (M") shows that (F1) implies (G1).

Flsgll, g(xyzkl), z, g (xijkl), 1, z]
=1 (L, gxijkD), j) ' f (1, gCyzkD), ) by (M")
= [f kD™ F DI Lf kD)™ fyz)] - by (M™)
= f (i)™ 'f (xyz)
= flJ,g(ryzij), z]
by (M), and the injectivity of f in its second argument yields (G2).
[ (x, gloxexx),x) = e by (M")
= f(xxx)

by (F4), hence with (F1), g(xxxxx) = x, i.e., (G3).
ad (II): We have to show p, (x,y) = xy in G, with u, as defined in Proposition
4.
Ng(x7y)_l =f(e,ug(x,y),e) by (FZ)
=fle,gle;x,e,g(eeeye),el el by definition of p,
=f (e, g(eeeye),e) " flexe) by (M")
= [f(eye)™'f (eee)]”'f (exe) by (M)
= f(eye)f (exe) by (F4)
=yl by (F2).
ad (IlT): We have g € G(I) by (I). Hence (i) shows that in G, Eq. (M")
holds for f,, and further G,, = G, as shown in (II).
(D) fy(xye) = fy(xee) 'fy(xye) by (F3)
=f; (e,g(xyeee),e) by (M)
= glxyeee)™! by (F2) for f,
=f (e,g(xyeee),e) by (F2) for f
= f(xee)”'f(xye) by (M"”)
Now finally
Fo i)™ fe (xye) = f, (Js g (xyeij),e) by (M”)
=f (J,gveij),e) by (11)
= fif)~'f (xye)
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by (M), and (11) yields
fo i)™ = f)

hence f, = f.
The proof of (iii) is contained in the proof of (ii).

Remarks. (1) Theorem 6 shows that all associative multiplications of type
(M) on W (I,K) with unit element ‘E can be constructed by

— first imposing any group structure G on /,

— then taking any mapping f: G* — G which satisfies (F1)—(F4),

— finally calculating g: I° — I out of (M").

(2) Examples. Let G be a finite group. The following table lists all mappings
f: G* — G of the form

feya= T X5, Xwe{xyzhen€{0,1,-1},

1Sm<4

which satisty (F1)—(F4). The column beside it contains the corresponding map-
pings g:

floy, ) gy, z,0,))
y 'z yi~'j  (“standard example W (G,K)")

zy yzfljiflz

2y 12 yzjli 2o
22yl yz 22112
Xyl J i 12
zx_ly_'x jJF'yxz"jx_li_lxzj’l
x 'y lxz jxlyitx

zxy 'x7! F oz i )

1 1

xz il
X zy x ey iy,
,F'y"zx .7')('lz"yi*'jxj‘l

1

Xy zx zj~

x_ljz

xXzy X jilxyzﬁlji_
xzx Ty yxz iz
y e g e i e
oyt
vz Jzi ez Ty !
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(3) An easy calculation shows that for a group G of order n there exist
(n")"~'n?>~2" different mappings f: G> — G satisfying (F1)—~(F4). The next
theorem shows that the corresponding K -algebras W (g, K) are all isomorphic:

Tueorem 7. Let g € G(I), ®(g) = (u,f), G = G, and let f*: G} — G denote
the inverse of f with respect to its second argument, i.e., f*(x,f(x,y,2),z) = y.

YW (g,K)— K[G]®x M(G,K),
¥ (((X.\‘y:)) L= Z_Y ® (a_r,_/'*(,\‘y:),:).\‘,:EG

veG

is a K-algebra isomorphism from W (g, K) onto the tensor product of the group
algebra of G over K and the algebra of square matrices (B-).-cc over K.

Proof. ¥ is K-linear and bijective, for f* is bijective in its second argument
by definition. It only remains to prove the multiplicativity of ‘P

Y(AA)V(B) = (Z U (a_\',f‘(xu:),: )x,:) (Z VR (Bx,f‘(.x'\':),: ).\‘,:)

u v

- Z w (Z QX (), j ﬂ/.fwv:x:)
u,v J X,z
y iJ

X,z

¥(AaB) = ‘P( (Z a\'i/ﬂi.gu;v:im:) >
i i
=) y® <Z aw:/ﬁj,gLnf*(xy:x:,f,j),:)
v i Xz
= Zy ® (Z Qo f(ij), j ﬁ/,mx,f*(xy:),:,f*(x-ij),./>,:) :
y iJ Xz

And, by definition of f*:

FUSGity),z) =iy
= f (e f*Gi)g) " f (e f 0y2),2)
:f[j7g[x7f*(-xyz)7va*('rij)ajlvz]

by (M"), which, by (F1), yields

FrGyi "y, 2) = g (x f oyz), 2,7 (i), ) -
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CoroLLARY 8. For g € G(I), ®(g) = (pg,fe), and G = G,
% ((a\y:)\‘.y.:) = (a\'.:_)‘;.(.\‘_v:)*'.:).\.y.:

is a K-algebra isomorphism from the standard example W (G,K) onto ‘W (g,
K).

Proof. Concerning the standard example we have f(x,y,z) = y~'z and hence
fray, ) =zt

¥ ((a.\‘y:)) = Z,V ® (a.\u:y",:).\‘.:v

Wy W (g, K) — K[G] & MG, K),
¥, ((a.\'y:)) = Zy ® (a.\Af;(,\'_v:).:).\‘,:

are isomorphisms by Theorem 7, and
q"2_l <Z y ® (O‘,\‘y: )x ,:) = (O(,\'.[U(,\y:),:),\',y.:-
y

Hence ¢, = ¥, ! oW, is an isomorphism, too.
The cube multiplication (M')
fY.\‘y: = Z a.w’jﬁj,g(x‘y:ij),:
i, jel
was introduced as an imitation of the matrix multiplication

Yz = Z a.\‘iﬁg,,(.\‘:i):» go(x,z,1) = 1.

i€l

In fact g,(x,z,i) = i is the only mapping /> — [ which makes the matrix
multiplication associative with unit element £ = (0, -), .. Uniqueness arises for
the cube multiplication, too, when, in accordance with g,, one demands that g is
independent of its horizontal plane index x and its vertical plane index z. Then
the resulting cube algebras are exactly the standard examples W (G, K).

ProposiTiON 9. Let g € G(I). g(x,y,z,i,)) is independent of x and z if and
only if
glx,y,z,i,j) = yi'j

inG,,ie., if W (g,K) is the standard example ‘W(GM_,K).
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Proof. Assume that g(x,y,z,7,j) is independent of x and z. Then

fe(ve) = g (e,g(xeeye),e,e,e) by definition of f,
=g (e,g(eeeye),e,e,e) by assumption

! by Corollary 5.

= y_
Hence

folayz) = fo(xyelfe(z, g (xyeyz),e) ™ by (M)

=y~ 'g(yeyz)
=y 'g(xyzyz) by assumption
=y lz by (GS5).

Finally, (M") shows that

f;g(X,)HZ) :yilz

implies

g(x,y,zi,j) = ylil‘/

2. The matrices can be viewed as linear mappings between spaces of column
vectors. Similarly we will interpret the cubes as linear mappings between spaces
of matrices. Let g € G(I), ®(g) = (¢,f), G = Gy, and n = |G|. For u € G one
has the canonical (untwisted) embeddings and projections between the matrix
algebra M (G, K) and the standard example W (G, K):

Ly M(G,K) — W(G,K),

LZ ((,B.x'y)x,ye(}) L= (ﬁ,ry‘su,:),\',y,:e(?v
pu: W(G,K) — M(G,K),
[7,(; ((ﬁxy:),\‘,y,ze(}) L= (ﬂ.\yu).x,ye(]-

They allow one to define an operation of 4 € W (g,K) on M(G,K) via the
multiplication in W (g, K) exactly as M(G, K) operates on K":
AB):=p (4B)), BeMG,K).

u

But computing coefficients shows

AB) = (Z ij3). x(\yuij))
i

X, veG
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hence this operation may depend on the choice of u € G, if one does not take
the standard multiplication

gx,y,z, iy =yi'j

on the underlying set ‘W (I, K). To avoid this one has to use twisted embeddings
and projections, and the adequate twist is the isomorphism 1), of Corollary 8:

L M(G,K)— W (g,K),

b ((Buy)) = Braringsy Buduy s
pui: W(g,K)— M(G,K),
pu=plovy, ',

Pu ((ﬁry:)) (51( 6,y uyu), W,y

where as in Theorem 7 f* is the inverse of f with respect to its second argument.
If W(g,K)= WI(G,K) is a standard example, then ¢, = ¢? and p, = p and
the twist disappears.

The twisted embeddings and projections have the usual properties: Let

= (6.\',u§y,ulszm)\‘.y.::~ ueg,

denote the canonical idempotents of W (g,K) and W,:= W (g, K)E, the cor-
responding left ideals. Then

(12) T =8By = E,
ueG
(13) Pu© by = b,0idp G k),

(14) (Lu o pu)l W = (Su,\'id%{ Ll
(15) leuopu = id’W(;,',K)'

ueG

Now we define the operation of 4 € W (g,K) on M(G,K) by

ﬂ¢(B) = (Z au/ﬁ/ yf(i) >

iJ Yy

This yields the desired independence of u and hence corresponds to the matrix
situation.

Prorosition 10. 4¢(B) = p, (52[ L,,(B)) foralluedG.
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Proof.

Pu (/q [’M(B)) = Pu ((a.ry: )(ﬂ,\'.:f(.ry:)*'(su,: ),\'.y,:)

:pu((z ari[ﬁj.:f(j7g(x)’21j )7 Z)I‘Su.:) )

i

= (Z i B g e, oy )il )

i Y

= (Z a-xi/ﬂj,,»f(-\ii)) ;
ij

X,y
for

y u=f (o, f ey u), u)
= fQipflj,g (x, £,y uyu),uyisj)ul by (M)

¢: W (g,K) — EndgM(G,K), 4 — 4%, is K-linear and injective into the
endomorphism algebra of M (G, K), and the multiplication in ‘W (g, K) becomes
the composition of mappings in End¢M (G, K):

(A% 0 B*)C) = A% (pu(BL.(C)))
= Pul A (0 p)(B L (C))]
= p[A(BL(C)] by (14)
= p.[(AB),(C)] by the associative law in W (g,K)
= (4B)°(C).

Thus W (g,K) can be viewed as a n*-dimensional subalgebra in the K -algebra
EndgM (G, K) of dimension n*. This subalgebra can be characterized by impos-
ing K[G]-module structures on M(G,K) and W (g,K): Let

R:G — M(G,K)*, Ru):= (6:uy)r,yec
denote the regular representation of G. By

Bu:= BR(u), B eM(G,K), ueG
and linear continuation M (G, K) becomes a K[G]-module. Similarly

R:G— W(g,K), RW:= Ofpyoetubv:)r,yeG
is an injective group morphism, and by

Bu:= BR (u), BecW(g,K), uecG
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and linear continuation ‘W (g, K) becomes a K[G]-module, too.
A straightforward calculation shows that the K[G]-module structures on
W (G,K) and ‘W (g,K) are compatible with the isomorphism

w\L’: W(G’K) - W(gvK)
of Corollary 8:
wg(q; u) = ¢g($)u

Further, the K[G]-module structures on M(G,K) and W (g, K) are compatible
with the twisted embeddings and projections:

(16) L (Bu) = l/v(B)uv
(7 pu(Bu) = py(B)u.

Finally the mappings 4%, 4 € W (g,K), respect the K[G]-module structure
on M(G,K):

A%Bu) = A°B)u.
This turns out to be a consequence of the associative law in W (g,K):

ﬂ“’(Bu) =p, (/‘Z{ LV(BU))
=p (AB)R () by (16)
=p, ((Au(B)R () by the associative law in W (g,K)
=p (AuB)) u by (17)
= 2°B)u.

Thus the cubes in W (g, K) can be interpreted as endomorphisms of the K[G]-
module M (G, K).

Theorem 11. ¢: W (g,K) — EndkiiM (G,K), 4 — A9, is a K-algebra
isomorphism.

CorOLLARY 12. Let {E,: = (6uxbu,y)x,y; U € G} denote the canonical K|G]-
basis of M(G,K). Then

AYE) = pu(A),
i.e., the images of the canonical basis elements under 4 are the twisted vertical

planes of A4 . In particular A is invertible if and only if its twisted vertical planes
form a K[G]-basis of M(G,K).
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Proof of Theorem 11. It only remains to show that ¢ is surjective. Take
n € Endg(giM (G, K) and define for u € G:
(axyu)x,y: =nk,), A:= (axy:) ew (G,K).

Then for ¥,(A4) € W (g,K),

e (AN (E) = pu (Vo (A)u(EL))

= pu (Ve (A)E,)
=pu (Yo (AF))  since Yy (E) = T,
= p2(AE,) by definition of p,
= (a,\'yu).\',y
= U(Eu)v
hence
Ye(A)? = 1.

Proof of Corollary 12.
AE,) = pu (AuE) = pu(AE,) = pu(A).

In the case of the standard example the analogy to the matrix situation be-
comes obvious.

COROLLARY 13. 4 = (ay,.) € W(G,K) is invertible if and only if the vertical
planes (ayy:)y yeG, 2 € G, of A form a basis of the right K|G|-module M (G, K).

Remark. Similarly, one can define the embeddings ¢, and the projections
pu via the horizontal planes of the cubes. If then B € W (g,K) operates on
M(G,K) from the right side,

(A’ B = p, (L(A)B),

one can show that B is invertible if and only if its (twisted) horizontal planes
form a basis of M(G,K) as a left K[G]-module.

THEOREM 14. Let g € G(I). Then for every u € 1

W (g, K)— MUI*K),

L ((axy:).\',y,zel) L= (aj.g(uvwij ),w)(i,j).(v.w)elZ

is an injective K -algebra morphism.
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Proof. u is K-linear, and (G4) implies the injectivity.

WUE) =1 (e :y-))
= (&) g umwipw )i, j).vw)
= (0],w0 g (uvwiv) w )i, (v, w)
= (6jwbin )i, j)uvow)s

for g(u,v,w,i,w) = w if and only if i = v, by (G5) and (G1).

AB) =1 (Z a.\'/'sﬁs.g(,\)c)‘s),:)
s X, YaZ
= (Z Qs By g, Gvwi >,w,r,s>,w)
rys

- (Z Of.i,g(mzw'>,s/3x.g[j,g<uvwrj>.w,g<ursz‘j>,s1,w) by (G4)

r,s

(5 )W)

= (Z aj,g(ursij),S/B,\',g(u\’wrs),w) by (G2)
rys

v ow)
= (G gqwrsity ), s )i, j ),(r, ) B g wrs)w ), 5),v,w)
t(A)W(B).

The injection ¢ can be used to transfer the eigenvalue theory from the square
matrices to the cubes. Let us call the monic polynomial

xa(X): = det (XE — «(A)) € K[X]
of degree n’ the characteristic polynomial of 4 € W (g, K). It is invariant with
respect to conjugation of 4 :

x5-128X) = xaX).
The “eigenvalues” of 4 are the roots of x 4 (X). If A € K is an eigenvalue of 4,

then the eigenspace E(A4 , \) of 4, consisting of the eigenmatrices corresponding
to A,

E(A,\):={B € M(G,K); A°(B) = AB}
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is a non-trivial K[G]-submodule of M (G, K). Different eigenspaces of 4 have
intersection {o}. Further we call

det 4:= (—1)" ya(0) = det((4))

the determinant of 4. Then 4 is invertible in W (g, K) if and only if det 4 # o.

ProposITION 15. 4 € W (g,K) is diagonalizable if and only if M(G,K) is
the sum of the eigenspaces of 4.

Proof. Suppose first that 4 is diagonalizable, i.e., that

B'ap = Z’\ﬁ-’ A\ €K,

z€G

for some B € W (g,K)*. Then

A°(Pu(B)) = pu (A, op)(B)) by Proposition 10
= pu(2B)

o(o(227)

= )\u pu(fB )

by (14), and the twisted vertical planes p,(B), u € G, of B form a K[G]-basis
of M(G,K) by Corollary 12.
Conversely, if the matrices B,, u € G, form a K[G]-basis of M(G,K) and

/q¢(3u) = /\uBm MEK, ue G»

then with
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B:= ZL,,(B,,) and D:=» X\,

u z

BD = (ZLLAB,,)) (Z A:ﬂ) by (A2)

u

= Z tu{AuBu)

_ ¢
- Z L (A°BY) by Proposition 2
= u u A u Bu
Z”ju °pu) (Aul(B) by (Ad)
= Z(Lu Opu)(/q Z L\'(B\'))
= 4B

by (15), and
pe(B) =p, (Z L,,(B,,)) =B., vea,

is a K[G]-basis of M (G, K), hence ‘B is invertible by Corollary 12.
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