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BETWEEN PROOF CONSTRUCTION AND SAT-SOLVING

ALEKSY SCHUBERT, PAWEŁ URZYCZYN, AND KONRAD ZDANOWSKI

Abstract. The classical satisfiability problem (SAT) is used as a natural and general tool to express and
solve combinatorial problems that are in NP. We postulate that provability for implicational intuitionistic
propositional logic (IIPC) can serve as a similar natural tool to express problems in Pspace. We demonstrate
it by proving two essential results concerning the system. One is a natural reduction from full IPC (with
all connectives) to implicational formulas of order three. Another result is a convenient interpretation
in terms of simple alternating automata. Additionally, we distinguish some natural subclasses of IIPC
corresponding to the complexity classes NP and co-NP.

§1. Introduction. Everyone knows that classical propositional calculus (CPC) is
a natural language to represent combinatorial problems (see, e.g., [15, 31]). Various
decision problems can be easily encoded as instances of the formula satisfiability
problem (SAT) and efficiently solved [1, 28].

In this article we would like to turn the reader’s attention to the so far
unexploited fact that intuitionistic implicational propositional calculus (IIPC) [18]
is an interesting propositional formalism which is equally natural and simple in its
nature as CPC, yet stronger in its expressive power. Indeed, while SAT and ASP [5]
can express NP-complete problems, the decision problem for IIPC is complete for
Pspace. Thus IIPC can accommodate a larger class of problems that may be encoded
as formulas and solved using automated or interactive proof-search. In particular,
the Sokoban puzzle [6, 11, 14] cannot be solved by means of SAT solving, but could
be encoded in IIPC and examined by an interactive prover.

Of course the Pspace complexity is enormous, but the general case of NP

is infeasible anyway. And not every polynomial space computation requires
exponential time. We may only solve “easy” cases of hard problems, and then
the increased expressiveness of the language can be useful rather than harmful. For
example, since Pspace is closed under complements one can simultaneously attempt
to prove a proposition and to disprove it by proving a dual one [43].

What is also important, this approach to Pspace avoids adding new syntactical
forms such as Boolean quantification of QBF [37]. Moreover, we can syntactically
distinguish subclasses of IIPC for which the decision problem is complete for P, NP,

and co-NP.
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2 ALEKSY SCHUBERT, PAWEŁ URZYCZYN, AND KONRAD ZDANOWSKI

The strength of CPC and SAT-solving is in their conceptual simplicity
—a propositional formula provides a specification of a configuration of interest
while a solution provides a particular configuration that meets the specification.
In the case of IIPC, as illustrated below, we are able to achieve the same goal.
In addition, we obtain one more dimension of expressiveness: the proof we build
represents the process of constructing the solution. For instance, a sequence of
moves in the Sokoban game, or a computation of a machine corresponds to a
sequence of proof steps (in the order of which the proof is being constructed).

Indeed, interestingly enough, IIPC offers not only a formalism to describe
relationships, but also has a procedural view in the form of proof-search process.
Moreover, the proof-search in IIPC does not have to be less convenient than
processing SAT instances or computing in ASP-based paradigm [5]: normal
proof search (Ben–Yelles algorithm) is intuitive and straightforward. While this
observation has already been done in the context of �-Prolog [24], it remained
largely overlooked there that simplification of the formula format to order at most
three does not restrict expressibility.1

The proof-search computational paradigm brings here an interesting, not always
clearly expressed, facet to the Curry–Howard isomorphism. The Curry–Howard
isomorphism states that systems of formal logic and computational calculi are
in direct correspondence. It begun with the discovery of formulas-as-types and
proofs-as-terms paradigm made by Curry [7] and was later expanded by Howard
with the computation-as-normalization paradigm [17]. Later, various authors have
contributed to the wider understanding of the logic-as-computation slogan, adding
new facets to the general paradigm. For example, one very important aspect is the
formulas-as-games, proofs-as-strategies view initiated by Lorenzen [21]. We think
that the broad understanding of Curry–Howard might as well include yet another
analogy: computation-as-proof-search. Virtually any algorithm can be expressed as
a formula of some constructive logic in such a way that every proof of the formula
is but an execution of the algorithm. Yet differently, finding a proof of a formula
(or equivalently an inhabitant of a type) is the same as executing a program. This
way we have a close relationship between proof search in the realm of logic or program
synthesis [19, 30] in the realm of programming.

A simple illustration of the paradigm “proof construction as computation” is
reading a logical consequence Γ � � as a configuration of a machine (a monotonic
automaton). Under this reading the proof goal is the internal state, the assumptions
Γ represent the memory. Variants of such monotonic automata were used in [32, 33];
in the present article we make this automata-theoretic semantics of (I)IPC very
clear-cut.

We begin our presentation with Section 2 where we fix notation and recall some
basic definitions. Then we enter the discussion of expressibility of IIPC, focusing
mainly on the fact that the whole expressive strength is in formulas of order at most
three. In Section 3 we demonstrate the natural equivalence between proof-search
and computation: the monotonic automata directly implement the Wajsberg/Ben–

1A notable exception here is the work of Paul Tarau [38] where an IPC prover is presented that
operates on formulas in form introduced by Mints [26], which is closely related to formulas of order
three.
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BETWEEN PROOF CONSTRUCTION AND SAT-SOLVING 3

Yelles inhabitation algorithm for the full IPC (with all connectives). After showing
that the halting problem for monotonic automata is Pspace-complete, we reduce it
to provability in IIPC. This yields a polynomial translation of the decision problem
for the full IPC to IIPC formulas of order at most three. It follows from Section 4
however, that the translation does not preserve the equivalence of formulas. Still our
reduction plays a similar role as that of the whole SAT to 3-CNF-SAT.

In Section 5 we define two subclasses of low-order IIPC corresponding to the
complexity classes NP and co-NP.

We conclude in Section 6 with a few final comments.

§2. Preliminaries. To make the article self-contained, we introduce here the
necessary definitions and fix the basic notation. This section may be to large extent
skipped and used as a reference. A more detailed account of the relevant notions
can be found for instance in [35].

Propositional formulas. We assume an infinite set X of propositional variables,
usually written as p, q, r, ... , possibly with indices. Propositional variables and the
constant ⊥ are called atoms.

The formulas of the full intuitionistic propositional logic, IPC, are generated by
the grammar:

ϕ,� ::= p | ⊥ | ϕ → � | ϕ ∧ � | ϕ ∨ �,
where p ∈ X . As usual, we use ¬ϕ as a shorthand for ϕ → ⊥.

For clarity we do not include parentheses in the grammar. We adopt standard
conventions that parentheses can be used anywhere to disambiguate understanding
of the formula structure. Additionally, we assume that → is right-associative so that
ϕ1 → ϕ2 → ϕ3 is equivalent to ϕ1 → (ϕ2 → ϕ3).

We use the notation ϕ[p := �] for substitution. If Γ = {ϕ1, ... , ϕn} then we write
Γ → p for the formula ϕ1 → ··· → ϕn → p.

A literal is either a propositional variable or a negated variable. Literals are written
in typewriter font: p, q, r, ... If p is a literal, then p is its dual literal, i.e., p = ¬p and
¬p = p.

Proof terms. According to the Curry–Howard correspondence, formulas can be
seen as types assigned to proof terms. In this view, IIPC is exactly the ordinary simply
typed lambda-calculus. For the full IPC we need an extended calculus and we now
define the syntax of it. We assume an infinite set Υ of proof variables, usually written
as x, y, z, ... with possible annotations. A context is a finite set of pairs x : ϕ, where
x is a proof variable and ϕ is a formula, such that no proof variable occurs twice.
Contexts are traditionally denoted by Γ,Δ, etc. If this does not lead to confusion
we identify contexts with sets of formulas (forgetting the proof variables).

We define the Church style (raw) terms of intuitionistic propositional logic as
follows:

M,N ::= x |M [ϕ] | �x :ϕ.M |MN | 〈M,N 〉 |M�1 |M�2

| in1M | in2M |M [x1 :ϕ.N1; x2 :�.N2]

where x, x1, x2 ∈ Υ. The set of �-terms generated in this way is written Λp. Again
we do not include parentheses in the grammar, but they can be used anywhere
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4 ALEKSY SCHUBERT, PAWEŁ URZYCZYN, AND KONRAD ZDANOWSKI

to disambiguate parsing. In case this does not lead to confusion, we omit type
annotations from terms and write for example �x.M instead of �x :ϕ.M or
M [x1. N1; x2. N2] forM [x1 :ϕ.N1; x2 :�.N2]. We also use the common convention
that application is left-associative: MNP stands for (MN )P. We often write e.g.,
ME not only for application of N to a term E but also for any elimination: E can
be a projection �1 or �2, or a ∨-eliminator [x :ϕ.P; y :�.Q] or a ⊥-eliminator [ϕ].

The set of free variables in a term is defined as

• FV(x) = {x},
• FV(�x :ϕ.M ) = FV(M )\{x},
• FV(MN ) = FV(〈M,N 〉) = FV(M ) ∪ FV(N ),
• FV(M�i ) = FV(iniM ) = FV(M [ϕ]) = FV(M ) for i = 1, 2,
• FV(M [x :ϕ.N1; y :�.N2]) = FV(M ) ∪ (FV(N1)\{x}) ∪ (FV(N2)\{y}).

As usual the terms are tacitly considered up to α-conversion so that the names of
nonfree variables are not relevant. Closed terms are terms that have no occurrences
of free variables. We use the notationM [x := N ] for capture-free substitution of N
for the free occurrences of x in M.

The natural deduction inference rules of IPC are presented in Figure 1 in the
form of type-assignment system deriving judgements of the form Γ �M : ϕ (read:
“M has type ϕ in Γ” or “M proves ϕ in Γ”), where Γ is a context and M is a proof
term. From time to time we use the simplified notation Γ � � to state that Γ �M : �
holds for some M. If Γ is known, implicit, or irrelevant we can simplify the statement
Γ �M : � toM : � (read “M has type �”).

Reductions. An introduction-elimination pair constitutes a beta-redex, and we
have the following set of beta-reduction rules for all the logical connectives except ⊥:

(�x :�.M )N ⇒	 M [x := N ],
〈M,N 〉�1 ⇒	 M,
〈M,N 〉�2 ⇒	 N,
(in1M )[x :ϕ.N1; y :�.N2] ⇒	 N1[x :=M ],
(in2M )[x :ϕ.N1; y :�.N2] ⇒	 N2[y :=M ].

Other redexes represent elimination steps applied to a conclusion of a ∨- or ⊥-
elimination. The following rules, called permutations (aka commuting conversions),
permute the “bad” elimination upwards. For the disjunction there is the following
general scheme:

M [x :ϕ.N1; y :�.N2]E ⇒p M [x :ϕ.N1E; y :�.N2E],

where E is any eliminator, that means E ∈ Λp, or E ∈ {�1, �2}, E = [ϑ], or
E = [z :ϑ.N ; v :�.Q].

Permutations forM [ϕ] follow the pattern

M [ϕ]E ⇒p M [�],

where � is the type ofM [ϕ]E. For example:

M [ϕ ⇒ �]N ⇒p M [�].

https://doi.org/10.1017/jsl.2025.10090 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2025.10090


BETWEEN PROOF CONSTRUCTION AND SAT-SOLVING 5

Figure 1. Proof assignment in IPC.

The relation → is the contextual closure of rules ⇒	 and ⇒p, and � stands for
the reflexive-transitive closure of →.

The system Λp has a number of important consistency features.

Theorem 1. The system Λp has the following properties:

1. Subject reduction: if Γ �M : � andM � N then Γ � N : �.
2. Church–Rosser property: if M � N and M � P then there is a term Q such

that N � Q and P � Q.
3. Strong normalisation: every reductionM1 →M2 → ··· is finite.

Proof. Part (1) can be easily verified by observing that every reduction rule
preserves typing. Part (2) follows from general results on higher-order rewriting
[39, Chapter 11.6], because the rules are left-linear and nonoverlapping. For part (3),
see [10]. �

A type � is inhabited iff there is a closed term M such that �M : � (an inhabitant).
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6 ALEKSY SCHUBERT, PAWEŁ URZYCZYN, AND KONRAD ZDANOWSKI

Long normal forms. It follows from Theorem 1(3) that every inhabited type has
a normal inhabitant. To organize and narrow proof search it is convenient to use
a stricter notion of long normal form (lnf). In the lambda-calculus (or equivalently:
in natural deduction) long normal forms play a role similar to focusing [20, 25] in
sequent calculus.

We say that a term M such that Γ �M : ϕ is in long normal form when one of the
following cases holds:

• M is a constructor �x.N , 〈N1, N2 〉, in1N , or in2N , where terms N,N1, and
N2 are lnf.

• M = xE1 ... En, whereE1, ... , En are projections or terms in long normal form,
and ϕ is an atom.

• M = xE1 ... EnE, where E1, ... , En are projections or terms in long normal
form, and E is a ∨- or ⊥-eliminator, and ϕ is either an atom or a disjunction.

For example, let

Γ = {x :α → p, y :α, z :α → 	 ∨ �, u1 :	 → p, u2 : � → p},
where p is an atom. In this context �w :α. xw is an lnf of type α → p, and
zy[v1 :	. u1v1; v2 : �. u2v2] is an lnf of type p. Also zy[v1 :	. in1v1; v2 : �. in2v2] is an
lnf of type 	 ∨ �, while the mere application zy is not.

Lemma 2 [42]. If Γ � ϕ, then Γ �M : ϕ, for some long normal form M.

Kripke semantics. A Kripke model is a triple of the form

C = 〈C,≤,� 〉,
where C is a nonempty set, the elements of which are called states,≤ is a partial order
in C and � is a binary relation between elements of C and propositional variables.
The relation �, read as forces, obeys the standard monotonicity condition: if c ≤ c′
and c � p then c′ � p. Without loss of generality we may assume that C is finite,
cf. [34], [8, Section 3].

Kripke semantics for IPC is defined as follows. If C = 〈C,≤,� 〉 is a Kripke model
then

• c � ϕ ∨ � if and only if c � ϕ or c � �,
• c � ϕ ∧ � if and only if c � ϕ and c � �,
• c � ϕ → � if and only if for all c′ ≥ c if c′ � ϕ then c′ � �,
• c � ⊥ does not hold.

We write c � Γ, when c forces all formulas in Γ. And Γ � ϕmeans that c � Γ implies
c � ϕ for each Kripke model 〈C,≤,� 〉 and each c ∈ C .

The following completeness theorem holds (see, e.g., [12]):

Theorem 3. For each Γ and ϕ, it holds that Γ � ϕ if and only if Γ � ϕ.

The implicational fragment. In this article we are mostly interested in the
implicational fragment IIPC of IPC. The formulas of IIPC (also known as simple
types) are defined by the grammar

�, � ::= p | � → �,
where p ∈ X .
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BETWEEN PROOF CONSTRUCTION AND SAT-SOLVING 7

Any formula in IIPC can be written as � = �1 → ··· → �n → p, where n ≥ 0, and
p is a type atom. Types �1, ... , �n are the arguments, and the atom p is called the
target of �, written p = tg(�).

The order r(�) of an implicational formula is defined as follows: an atom is of
order 0, and the order of � → � is the maximum of r(�) and r(�) + 1. In other
words, if p is an atom, then

r(�1 → ··· → �k → p) = 1 + max
i
r(�i).

The restricted set Λ→ of IIPC proof-terms is defined by the pseudo-grammar:

M,N ::= x | �x :�.M |MN.
The relevant rules in Figure 1 are (var), (→ I ), and (→ E), i.e., the type-assignment
rules of the ordinary simply typed lambda-calculus.

§3. Automata for logic. It follows from Lemma 2 that every provable formula has
a long normal proof. This yields a simple proof-search algorithm, which is essentially
implicit in [44], and hence called the Wajsberg algorithm (WA).2

To present the algorithm we first define the set TG(ϕ) of targets of ϕ. Targets are
always atoms or disjunctions.

• TG(a) = {a}, when a is an atom (a propositional variable or ⊥).
• TG(� → �) = TG(�).
• TG(� ∨ �) = {� ∨ �}.
• TG(� ∧ �) = TG(�) ∪ TG(�).

Clearly, TG(ϕ) = {tg(ϕ)}, when ϕ is an implicational formula.
We define the family tr(α,ϕ) of traces to α in ϕ. Each trace is a set of formulas.
• tr(α,ϕ) = ∅ if α �∈ TG(ϕ).
• tr(α, α) = {∅}.
• tr(α, � → �) = {{�} ∪ T | T ∈ tr(α, �)}.
• tr(α, � ∧ �) = tr(α, �) ∪ tr(α, �).
For example, tr(p, r → (p ∧ (q → p) ∧ (s → p ∨ q)) = {{r}, {r, q}}.

Lemma 4. Let (x :�) ∈ Γ and T ∈ tr(α,�). If Γ � 
, for all 
 ∈ T , then
Γ � xE1 ... En : α, where n ≥ 0 and E1, ... , En are some terms or projections.

Proof. Induction with respect to �. For example, assume � = �1 ∧ �2, and
let T ∈ tr(α,�1). Given that, we apply the induction hypothesis so that we obtain
Γ, y :�1 � yE1 ... En : α, where n ≥ 0, so Γ � x�1E1 ... En : α. �

Lemma 5. Assume that (x :�) ∈ Γ and Γ � xE1 ... Em : ϕ, where E1, ... , Em are
terms or projections and ϕ is an atom or a disjunction. Let J = {j | Ej is a term}
and let Γ � Ej : �j , for all j ∈ J . Define T = {�j | j ∈ J}. Then ϕ ∈ TG(�), and
T ∈ tr(ϕ,�).

Proof. Induction with respect to m. For example, if � = �1 → �2, then we
apply the induction hypothesis to Γ, y :�1 � yE2 ... Em : ϕ. Consequently we obtain
T ′ = {�j | j ∈ J ∧ j > 1} ∈ tr(ϕ,�2), and T = T ′ ∪ {�1} ∈ tr(ϕ,�). �

2See [3] for a correction of the proof in [44].
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8 ALEKSY SCHUBERT, PAWEŁ URZYCZYN, AND KONRAD ZDANOWSKI

For a given judgement Γ � ϕ, the WA attempts (implicitly) to construct a long
normal proof term. It proceeds as follows:

1. If ϕ = � ∧ �, call Γ � � and Γ � �.
2. If ϕ = � → �, call Γ, � � �.
3. If ϕ is an atom or a disjunction, choose� ∈ Γ and α ∈ TG(�) such that either
α is a disjunction, or α = ⊥, or α is a propositional variable and α = ϕ. Then
choose T ∈ tr(α,�), and:
• Call Γ � 
, for every 
 ∈ T ;
• If α = 	 ∨ �, call Γ, 	 � ϕ and Γ, � � ϕ in addition.

The procedure accepts in case (3), when ϕ is an atom in Γ, as there is nothing to
call.

With respect to IIPC case (1) disappears and case (3) simplifies to

3’. If ϕ is an atom then choose 
1 → ··· → 
n → ϕ ∈ Γ and call Γ � 
i , for all
i = 1, ... , n.

We thus obtain the algorithm for inhabitation in the simply typed lambda-calculus
known as the Ben–Yelles algorithm [2].

The most important properties of WA are the following.

Lemma 6.

1. The algorithm WA accepts an IPC judgement if and only if it is provable.
2. All formulas occurring in any run of the algorithm are subformulas of the formulas

occurring in the initial judgement.

Proof. (1) We prove that a judgement Γ � ϕ is accepted if and only if there
exists a long normal form of type ϕ in Γ. From left to right we proceed by
induction with respect to the definition of the algorithm, using Lemma 4. In cases
(1) and (2) the term M is a constructor, in case (3) it is an eliminator with a head
variable x of type �. For example, if ϕ = � ∨ � and � = �1 → �2 → α ∨ 	 then
M = xN1N2[z :α.P; v :	.Q], where N1, N2, P,Q are long normal forms obtained
in the four recursive (or parallel) calls.

From right to left we work by induction with respect to the size of the lnf using
Lemma 5. For example, in the case of the term xE1 ... Em[u :α.P; v :	.Q], types of
E1, ... , Em make a trace T toα ∨ 	 in�, and we can use induction for Γ, u :α � P : ϕ
and Γ, v :α � Q : ϕ.

(2) In each of the steps of WA each new formula must be a subformula of either
the present proof goal or one of the assumptions. �

Monotonic automata. We define here a natural notion of automaton used as
operational semantics of IPC. This notion is a simplification of the automata
introduced by Barendregt, Dekkers, and Schubert [32] and of those used in [33]
(but differs significantly from the notion introduced by Tzevelekos [41]).

The idea is simple. If we read a proof task Γ � ϕ as a configuration of a machine,
then any action taken by WA results in expanding the memory Γ and proceeding
to a new internal state, yielding a new task (or a new configuration) Γ′ � ϕ′. For
example, if an assumption of the form (p → q) → r ∈ Γ is used to derive Γ � r, then
the next task Γ, p � q is a result of executing an instruction that can be written as
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BETWEEN PROOF CONSTRUCTION AND SAT-SOLVING 9

r : check (p → q) → r; set p; jmp q (“in state r check the presence of (p → q) → r
in memory, add p to the storage and go to state q”).

A monotonic automaton is therefore defined as M = 〈Q,R,f, I 〉, where

• Q is a finite set of states, with f ∈ Q as the final state;
• R is a finite set of registers;
• I is a finite set of instructions of the form:

(1) q : check S1; set S2; jmp p, or
(2) q : jmp p1 and p2,
where q, p, p1, p2 ∈ Q and S1, S2 ⊆ R.

We define a configuration of M as a pair 〈 q, S 〉, where q ∈ Q and S ⊆ R. Let I ∈ I.
The transition relation 〈 q, S 〉 →I 〈p, S ′ 〉 holds

• for I of type (1), when S1 ⊆ S, S ′ = S ∪ S2;
• for I of type (2), when S = S ′, and p = p1 or p = p2.

A configuration 〈 q, S 〉 is accepting when either q = f, or

• 〈 q, S 〉 →I 〈p, S ′ 〉, where I is of type (1), and 〈p, S ′ 〉 is accepting, or
• 〈 q, S 〉 →I 〈p1, S 〉 and 〈 q, S 〉 →I 〈p2, S 〉, where I is of type (2), and both
〈p1, S 〉 and 〈p2, S 〉 are accepting.

Observe that a monotonic automaton is an alternating machine. Instructions of
type (2) introduce universal branching, and nondeterminism occurs when more than
one instruction is applicable in a state.3 The name “monotonic” is justified by the
memory usage: registers are write-once devices, once raised (set to 1) they cannot
be reset to zero. Note also that all tests are positive: the machine cannot see that
a register is off. A nondeterministic automaton is one without universal branching
(cf. Section 5.2).

It should be clear that our definition is motivated by proof search. Indeed, the
algorithm WA is almost immediately implemented as an automaton.

Proposition 7. Given a formula Φ in IPC, one can construct (in logspace)
a monotonic automaton MΦ and state q so that � Φ if and only if the configuration
〈 q,∅ 〉 of MΦ is accepting.

Proof (Sketch). Let S be the set of all subformulas of Φ. Define automaton
M = 〈Q,R,f, I 〉, where

• R = S is the set of registers.
• The set of states Q contains S and some auxiliary states.

Under this definition, a judgement Γ � ϕ corresponds directly to a configuration
〈ϕ,Γ 〉 of M. The instructions of the automaton now implement cases (1–3) of WA.
Of course the following instructions are in I:

1. ϕ : jmp � and �, for each ϕ = � ∧ � ∈ S;
2. ϕ : check ∅; set �; jmp �, for each ϕ = � → � ∈ S.

Case (3) of WA splits into three subcases handled with help of auxiliary states, and
depending on a choice of a formula � ∈ S.

3But states themselves are not classified as existential or universal.
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10 ALEKSY SCHUBERT, PAWEŁ URZYCZYN, AND KONRAD ZDANOWSKI

If ϕ is an atom, ϕ ∈ TG(�), for some � ∈ S, and {
1, ... , 
m} ∈ tr(ϕ,�), then I
contains a sequence of instructions (using m – 2 brand new states) abbreviated as:

3a. ϕ : check �; set ∅; jmp 
1, ... , 
m .
If ϕ is an atom or a disjunction, and ⊥ ∈ TG(�), for some � ∈ S, and

{
1, ... , 
m} ∈ tr(⊥, �), then I also contains similar instructions:

3b. ϕ : check �; set ∅; jmp 
1, ... , 
m .
If ϕ is an atom or a disjunction, α ∨ 	 ∈ TG(�), for some � ∈ S, and

{
1, ... , 
m} ∈ tr(α ∨ 	,�), then I contains instructions (using m auxiliary states
including s1 and s2):

3c. ϕ : check �; set ∅; jmp 
1, ... , 
m, s1, s2;
s1 : check ∅; set α; jmp ϕ;
s2 : check ∅; set 	 ; jmp ϕ.
For example, if � = α → 	 ∨ � ∈ Γ, and ϕ ∈ S is an atom, then the following

instructions are in I (where p1, p2, p3, p4 are fresh auxiliary states):

ϕ : check �; set ∅; jmp p1 ;

p1 : jmp α and p2 ;

p2 : jmp p3 and p4 ;

p3 : check ∅; set 	 ; jmp ϕ ;

p4 : check ∅; set �; jmp ϕ .

By straightforward induction one proves that a configuration of the form 〈ϕ,Γ 〉 is
accepting if and only if Γ �M : ϕ for some lnf M. It remains to define q as Φ, and
observe that by Lemma 6(2) the automaton can be computed in logspace. �

Complexity. The halting problem for monotonic automata is

“Given M, q, S, is 〈 q, S 〉 an accepting configuration of M?”

In the remainder of this section we show that this problem is Pspace-complete.
The upper bound is routine.

Lemma 8. It is decidable in polynomial space if a given configuration of a monotone
automaton is accepting. For nondeterministic automata (with no universal branching)
the problem is in NP.

Proof. An accepting computation of an alternating automaton can be
seen as a tree. Every branch of the tree is a (finite or infinite) sequence
〈 q0, S0 〉, 〈 q1, S1 〉, 〈 q2, S2 〉, ... of configurations, such that S0 ⊆ S1 ⊆ S2 ⊆ ··· .
If the number of states and the number of registers are bounded by n then
a configuration must necessarily be repeated after at most n2 steps. An alternating
Turing Machine working in time n3 can therefore verify if a given configuration is
accepting, and our halting problem is in APtime ⊆ Pspace, cf. [27, Chapter 19]. In
case of no universal branching, a nondeterministic Turing Machine suffices. �

The next example hints on the technique used to show the lower bound.

https://doi.org/10.1017/jsl.2025.10090 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2025.10090


BETWEEN PROOF CONSTRUCTION AND SAT-SOLVING 11

Example 9. Consider a finite automaton A, with states {0, ... , k}, the initial
state 0, and the final state k. Given a string w = a1 ... an, we define a monotonic
M such that A accepts w if and only if the initial configuration 〈 q0, r00 〉 of M is
accepting.4

States of M are q0, q1, ... , qn, f, where q0 is initial and f is final. Registers are rti ,
for t ≤ n and i ≤ k. For all t = 0, ... , n – 1, we have an instruction

qt : check rti ; set r
t+1
j ; jmp qt+1,

whenever A, reading at+1 in state i, can enter state j. For t = n, we take at last

qn : check rnk ; set ∅; jmp f.

Then an accepting computation of the automaton A, consisting of
states 0, i1, i2, ... , in = k, is represented by a computation of M, ending in
〈f, r00 , r1i1 , ... , r

n
in
〉. Note that the instructions of M are all of type (1), i.e., there is

no alternation.
Correctness: By induction with respect to n – t one shows that a configuration of

the form 〈 qt, r00 , ... , rtit 〉 is accepting if and only if A accepts the suffix at+1 ... an of
w from state it .

In order to simplify the proof of Pspace-hardness, let us begin with the
following observation. Every language L ∈ Pspace reduces in logarithmic space
to some context-sensitive language L′, recognizable by a linear bounded automaton
(LBA), cf. [16, Chapter 9.3]. Indeed, for any L ∈ Dspace(nk), take the language
L′ = {w$n

k | w ∈ L ∧ |w| = n}, where |w| denotes the length of the word w. Hence
it suffices to reduce the halting problem for LBA (aka In-place Acceptance problem,
cf. [27, Chapter 19]) to the halting problem of monotonic automata. This retains
the essence of Pspace but reduces the amount of bookkeeping.

Given a linear bounded automaton A and an input string w = x1 ... xn, we
construct a monotonic automaton M and an initial configuration C0 such that

A accepts w if and only if C0 is an accepting configuration of M.

Let p be a polynomial such that A works in time 2p(n). The alternating automaton
M simulates A by splitting the 2p(n) steps of computation recursively into halves
and executing the obtained fractions concurrently. The “history” of each branch of
the computation tree of M is recorded in its registers. For every d = 0, ... , p(n),
there are three groups of registers (marked B,E,H ) representing A’s configurations
at the beginning (B) and at the end (E) of a computation segment of up to 2d steps,
and halfway (H) through that segment. That is, for any i = 1, ... , n, d = 0, ... , p(n),
for any state q of A, and for any tape symbol a of A, the automaton M has the
following registers:

• s(B, d, q), s(H, d, q), s(E, d, q) – “the current state of A is q”;
• c(B, d, i, a), c(H, d, i, a), c(E, d, i, a) – “the symbol at position i is a”;
• h(B, d, i), h(H, d, i), h(E, d, i) – “the machine head scans position i”.
By Bd , Hd , Ed we denote the sets of all registers indexed by d and, respectively,

by B,H,E. A set of registers S ⊆ Xd is an X, d -code of a configuration of A, when

4We write sets without { } whenever it is convenient.
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12 ALEKSY SCHUBERT, PAWEŁ URZYCZYN, AND KONRAD ZDANOWSKI

S contains exactly one register of the form s(X, d, q), exactly one h(X, d, j), and,
for every i, exactly one c(X, d, i, a).

The initial configuration of M is C0 = 〈 0, S0 〉, where S0 is the B, p(n)-code of
the initial configuration of A, that is,

– S = {s(B, p(n), q0), c(B, p(n), 1, x1), ... , c(B, p(n), n, xn), h(B, p(n), 1)}.

The machine M works as follows.
In the initial phase (commencing in state 0) it guesses the final configuration of

A, and sets the appropriate registers in Ep(n) to obtain the E, p(n)-code of that final
configuration. Then M enters state Qp(n).

Assume now that the machine is in configuration 〈Qd , S 〉, where d > 0, and S
contains:

– a B, d -code of some configuration Cb of A;
– an E, d -code of some configuration Ce of A.

The following steps are now executed.
(1) An intermediate configuration Ch is guessed, i.e., registers in Hd are

nondeterministically set to obtain an H, d -code of Ch . The machine selects an
adequate sequence of instructions from the set below (where q′, a, and j are
arbitrary):

Qd : check ∅; set s(H, d, q′); jmp Q1
d ;

Qid : check ∅; set c(H, d, i, a); jmp Qi+1
d , for i = 1, ... , n;

Qn+1
d : check ∅; set h(H, d, j); jmp Q′

d .

(2) The machine makes a universal split into states QBd and QEd .
(3) In state QBd registers in S ∩ Bd are copied to corresponding registers in Bd–1.

This has to be done nondeterministically, by guessing which registers in S ∩ Bd are
set. The relevant instructions are:

QBd : check s(B, d, q); set s(B, d – 1, q); jmp QB,1d ;

QB,id : check c(B, d, i, a); set c(B, d – 1, i, a); jmp QB,i+1
d , for i = 1, ... , n;

QB,n+1
d : check h(B, d, j); set h(B, d – 1, j); jmp QBEd .

Then registers in S ∩Hd are copied to Ed–1 in a similar way. In short, this can be
informally written as Bd–1 := Bd ;Ed–1 := Hd . Then the machine enters state Qd–1.

(4) In state QEd , the operations follow a similar scheme, that can be written in
short as

Bd–1 := Hd ;Ed–1 := Ed ; jmp Qd–1.

The above iteration splits the computation of M into 2p(n) branches, each
eventually entering stateQ0. At this point we verify the correctness. The sets S ∩ B0

andS ∩ E0 should now encode some configurationsCb andCe ofA such that either
Cb = Ce , or Ce is obtained from Cb in one step. This can be nondeterministically
verified, and afterwards M enters its final state.
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This last phase uses, in case Cb = Ce , the supply of instructions below (the other
variant can be handled similarly).

Q0 : check s(B, d, q); set ∅; jmp Qsd (q);

Qsd (q) : check s(E, d, q); set ∅; jmp Qc,1d ;

Qc,id : check c(B, d, i, a); set ∅; jmp Qc,id (a);

Qc,i+1
d (a) : check c(E, d, i, a); set ∅; jmp Qc,i+1

d ;

Qc,n+1
d : check h(B, d, j); set ∅; jmp Qhd (j);

Qhd (j) : check h(E, d, j); set ∅; jmp f.

The main property of the above construction is the following.

Lemma 10. Let S be a set of registers such that:

– S ∩ Bd is a B, d -code of some configuration Cb of A;
– S ∩ Ed is an E, d -code of some configuration Ce of A.

In addition, assume that S ∩Hd = ∅, as well as S ∩ (Be ∪He ∪ Ee) = ∅, for all
e < d . Then the following are equivalent:

1. 〈Qd , S 〉 is an accepting configuration of M;
2. Ce is reachable from Cb in at most 2d steps of A.

Proof. (1) ⇒ (2): Induction with respect to the definition of acceptance.
(2) ⇒ (1): Induction with respect to d. �
Theorem 11. The halting problem for monotonic automata is Pspace-complete.

Proof. Lemma 8 implies that the problem belongs to Pspace. The hardness
part is a consequence of Lemma 10 applied for d = p(n) with Cb and Ce being,
respectively, the initial and final configuration of A. �

Automata to formulas. In order to finish our reduction of provability in IPC to
provability in IIPC we need to prove a specific converse of Proposition 7. Consider
a monotonic automaton M = 〈Q,R,f, I 〉, and an ID of the form C0 = 〈 q0, S0 〉.
Without loss of generality we can assume thatQ ∩R = ∅. Using states and registers
of M as propositional atoms, we define a set of axioms Γ so that Γ � q0 if and only if
C0 is accepting. The set Γ contains the atoms S0 ∪ {f}; other axioms in Γ represent
instructions of M.

An axiom representing q : check S1; set S2; jmp p, where S1 = {s1
1 , ... , s

k
1 } and

S2 = {s1
2 , ... , s

�
2}, is:

s1
1 → ··· → sk1 → (s1

2 → ··· → s�2 → p) → q. (1)

And for every instruction q : jmp p1 and p2, there is an axiom

p1 → p2 → q. (2)

Observe that all the above axioms are of order at most two, hence the formula
Γ → q0 has order at most three.

Lemma 12. Given the above definitions, the configuration 〈 q0, S0 〉 is accepting if
and only if Γ � q0 holds.
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Proof. For every S ⊆ R and q ∈ Q, we prove that Γ, S � q if and only if
C = 〈 q, S ∪ S0 〉 is accepting. We think of Γ as of a type environment where each
axiom is a declaration of a variable.

(⇐) Induction with respect to long normal proofs. With→ as the only connective,
any normal proof T of an atom q must be a variable or an application, say
T = xN1 ... Nm, The case of x :f (i.e., q = f) is obvious; otherwise the type of x
corresponds to an instruction. There are two possibilities:

(1) If x : s1
1 → ··· → sk1 → (s1

2 → ··· → s�2 → p) → q,
then actually we obtain that T = xD1 ... Dk(�u1 : s1

2 ... �u� : s�2 . P). TermsD1, ... , Dk
are, respectively, of types s1

1 , ... , s
k
1 , and they must be variables declared in S,

as there are no other assumptions with targets s1
1 , ... , s

k
1 . Hence the instruction

corresponding to x is applicable at C = 〈 q, S 〉 and yields C ′ = 〈p, S ∪ S ′ 〉, where
S ′ = S ∪ {s1

2 , ... , s
�
2}. In addition we have Γ, S ∪ S ′ � P : p, whenceC ′ is accepting

by the induction hypothesis.
(2) If x has type p1 → p2 → q, where p1, p2 ∈ Q,

then T = xT1T2. The appropriate universal instruction leads to two IDs:
C1 = 〈p1, S 〉 and C2 = 〈p2, S 〉. The judgements Γ, S � T1 : p1 and Γ, S � T2 : p2

obey the induction hypothesis. Thus C1, C2 are accepting and so is C.
(⇒) Induction with respect to the definition of acceptance. �
Proposition 13. The halting problem for monotonic automata reduces to the

provability problem for formulas in IIPC of order at most three.

Putting together Propositions 7 and 13 and Theorem 11 we obtain a number of
consequences.

Theorem 14. Provability in IPC, IIPC and IIPC restricted to formulas of order 3
are Pspace-complete.

While the statement of Theorem 14 is well-known [36], even for similarly restricted
IIPC formulas [26, Theorem 1], the present automata-theoretic proof directly
demonstrates that the computational content of proof-search is exactly the same
in the full IPC and in the implicational fragment of order 3. Monotonic automata
serve here as the natural computational device to illustrate this, and furthermore,
they are computationally equivalent to polynomial-space Turing Machines.

Without loss of generality we can interpret problems in Pspace as reachability
questions concerning some objects or configurations of polynomial size. The
construction used in the proof of Theorem 11 (the simulation of LBA) reflects
a natural, possibly interactive, approach to solve such questions: split the reachability
task into two, by choosing some intermediate configuration. An example that comes
to mind is the Sokoban game: the set of winning positions is a context-sensitive
language and one can try to solve the puzzle by determining some milestone states.

Another consequence of our development is that the computational power of IPC
is fully contained in IIPC, and in an apparently small fragment.

Theorem 15. For every formula ϕ of full IPC one can construct (in logspace) an
implicational formula � of order at most three such that � is provable iff so is ϕ.

§4. An intuitionistic order hierarchy. In Section 3, we observed that provability
in the whole IPC is faithfully reflected by provability for formulas of IIPC of that
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BETWEEN PROOF CONSTRUCTION AND SAT-SOLVING 15

have order at most three. Proving any formula is therefore at most as difficult as
proving some formula of order three. But is every formula equivalent to one of order
three? The answer is negative: in the case of IPC we have a strict order hierarchy of
formulas. Define by induction ϕ1 = p1 and ϕk+1 = ϕk → pk+1. That is,

ϕk = (··· ((p1 → p2) → p3) → ··· → pk–1) → pk.

Lemma 16. Every proof of ϕk → ϕk is 	�-convertible to the identity combinator
�x.x.

Proof. We prove the following generalized statement by induction with respect
to the number k. Let tg(�) �∈ {p1, ... , pk}, for all � ∈ Γ, and let Γ, X :ϕk �M : ϕk ,
where M is in normal form. Then M =	� X . Indeed, first note that X is the only
assumption with targetpk , hence for k = 1 the claim follows immediately. Otherwise
eitherM = X orM = �Y.M ′ with a derivation Γ, X :ϕk,Y :ϕk–1 �M ′ : pk . This
is only possible when M ′ = XM ′′, where Γ, X :ϕk,Y :ϕk–1 �M ′′ : ϕk–1. By the
induction hypothesis for Γ′ = Γ ∪ {x : ϕk} andY : ϕk–1, we haveM ′′ =	� Y , hence
M = �Y.XM ′′ =	� �Y.XY =	� X . �

Theorem 17. For every k, no implicational formula of order less than k is
intuitionistically equivalent to ϕk .

Proof. If � ϕk ↔ α then there are closed terms T : ϕk → α and N : ϕk → α.
The composition �x.N (Tx) is a combinator of type ϕk → ϕk , and by Lemma 16 it
must be 	�-equivalent to identity. That is, ϕk is a retract of α, in the sense of [29].
It thus follows from [29, Proposition 4.5] that α must be of order at least k. �

Interestingly enough, Theorem 17 stays in contrast with the situation in
classical logic. Every propositional formula is classically equivalent to a formula
in conjunctive normal form (CNF). If implication is the only connective then we
have a similar property.

Proposition 18. Every implicational formula is classically equivalent to a formula
of order at most three.

Proof. Given a formula of the form ϕ = α1 → ··· → αn → p, we first translate
the conjunction α1 ∧ ··· ∧ αn into a conjuntive normal form 	1 ∧ ··· ∧ 	m, so that
ϕ is equivalent to a formula � = 	1 → ··· → 	m → p. Each 	i is a disjunction of
literals. For every i, there are two possibilities.

Case 1: At least one component of 	i is a variable, say

	i = ¬q1 ∨ ··· ∨ ¬qr ∨ r1 ∨ ··· ∨ rk ∨ s.

We replace 	i in � by the formula

	 ′i = q1 → ··· → qr → (r1 → p) → ··· → (rk → p) → s.

Case 2: All components of the formula 	i are negated variables, that means
	i = ¬q1 ∨ ··· ∨ ¬qr . Then we replace such 	i by the formula q1 → ··· → qr → p.

For example, if � = (s ∨ q ∨ ¬r) → (¬q ∨ ¬r ∨ ¬s) → p then we rewrite � as
the formula (r → (q → p) → s) → (q → r → s → p) → p. It is a routine exercise
to see that the final result is a formula of rank at most 3 which is classically equivalent
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to the initial formula ϕ (note that if a Boolean valuation falsifies p then it satisfies
p ↔ ⊥). �

Example 19. The formula ϕ5 = (((p1 → p2) → p3) → p4) → p5 is classically
equivalent to this “normal form”:

(p1 → (p2 → p5) → p4) → (p3 → p4) → p5.

Remark 20. Despite the contrast between the classical CNF collapse and order
hierarchy in intuitionistic logic, there is still a strong analogy between CNF and order
three fragment of IIPC. The CNF formulas do indeed exhaust the whole expressive
power of classical propositional logic, but for a heavy price. The value-preserving
translation of a formula to CNF is exponential, hence useless with respect to
NP-completeness of CNF-SAT. However, there is a polynomial time translation of
SAT to CNF-SAT that preserves satisfiability (probably first formulated by Tseitin
about 1966 [40], in its modern formulation available in [16, Theorem 13.2]).

§5. Below order three. In this section we identify fragments of IIPC corresponding
to the complexity classes P, NP, and co-NP.

5.1. Formulas of order two: deterministic polynomial time. Implicational formulas
of rank 1 are the same as propositional clauses in logic programming. Therefore
decision problem for rank 2 formulas (no matter, classical or intuitionistic) amounts
to standard propositional logic programming based on Horn clauses, which is known
to be P-complete [9] with respect to logspace reductions.

5.2. Order three minus: class NP. We define here a subclass of IIPC for which the
provability problem is NP-complete.

We split the set X of propositional variables into two disjoint infinite subsets
X0,X1 ⊆ X , called, respectively, data and control variables. The role of control
variables is to occur as targets, the data variables only occur as arguments. The set
of formulas T3– is defined by the grammar:

T3– ::= X1 | T2– → T3– |X0 → T3–

T2– ::= X1 | X0 → T2– | T1– → T1–

T1– ::= X1 | X0 → T1–.

Formulas in T1– are of the form p1 → ··· → pn → q, where pi ∈ X0 and q ∈ X1.
The set T2– consists of formulas of order at most two, with an X1 target, and
with at most one argument in T1–, and all other arguments being variables in X0.
Finally the T3– formulas are of shape �1 → �2 → ··· → �n → q, where q ∈ X1 and
�i ∈ T2– ∪ X0, for i = 1, ... , n.

Lemma 21. Proof search for formulas in T3– is in NP.

Proof. Proving an implicational formula amounts to proving its target in the
context consisting of all its arguments. In the case of T3– we are interested
in contexts built from atoms in X0 and formulas in T2– (some of those can
be atoms in X1). Such contexts are called NP-contexts. If Γ is an NP-context,
and Γ �M : q, with M an lnf, then M is either a variable or it has the form
M = XY1Y2 ... Yk(�V1 ... Vm.N )Z1 ... Z� , where:
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– the type of X is a T2– formula of the form

p1 → p2 → ··· → pk → α → p′1 → ··· → p′� → q;

– Y1 :p1, Y2 :p2, ... , Yk :pk,Z1 :p′1, ... , Z� :p′� are declared in Γ;
– the term �V1 ... Vm.N has a T1– type α = s1 → ··· → sm → q′.

We then have Γ, V1 : s1, ... , Vm : sm � N : q′, with s1, ... , sm ∈ X0 and q′ ∈ X1, and
the context Γ, V1 : s1, ... , Vm : sm is an NP-context.

In terms of a monotonic automaton this proof construction step amounts to
executing this instruction:

q : check p1, ... , pk, p
′
1, ... , p

′
� ; set s1, ... , sm; jmp q′.

No other actions need to be performed by the automaton except a final step,
which takes up the form q : check q; set ∅; jmp f, where f is a final state (this
corresponds to the case ofM = X ).

It follows that T3– proof search can be handled by a nondeterministic automaton
(with no universal branching). By Lemma 8 provability in T3– belongs to NP. �

Remark 22. To exclude universal branching, only one argument in a T2– formula
can be nonatomic. Note however that formulas used in the proof of Proposition 13
satisfy a similar restriction. Hence the separation between “data atoms” X0 and
“control atoms” in X1 is essential too.

Similarly, sole separation between “data atoms” and “control atoms” does not
reduce the complexity either, as it directly corresponds to separation between
registers and states of automata.

Lemma 23. Provability in T3– is NP-hard.

Proof. We reduce the 3-CNF-SAT problem to provability in T3–. For every
3-CNF formula

Ψ = (r11 ∨ r12 ∨ r13) ∧ ··· ∧ (rk1 ∨ rk2 ∨ rk3), (∗)

where rij are literals, we construct a T3– formula� so that Ψ is classically satisfiable
if and only if � has a proof. Assume that {p1, ... , pn} are all propositional variables
occurring in Ψ, and that p1, ... , pn, p

′
1, ... , p

′
n ∈ X0. Other atoms of the formula �

are q1, ... , qn, c1, ... , ck ∈ X1.
Define 
ij = p� when rij = p� , and 
ij = p′� when rij = ¬p� . The formula � has

the form Γ → q1, where Γ consists of the following axioms:

1. (pi → qi+1) → qi and (p′i → qi+1) → qi , for i = 1, ... , n – 1;
2. (pn → c1) → qn and (p′n → c1) → qn;
3. 
i1 → ci+1 → ci , 
i2 → ci+1 → ci , and 
i3 → ci+1 → ci , for i = 1, ... , k – 1;
4. 
k1 → ck , 
k2 → ck , and 
k3 → ck .

For a binary valuation v, let Δv be such that pi ∈ Δv when v(pi) = 1 and p′i ∈ Δv
otherwise. Suppose that Ψ is satisfied by some v. Then, for every i there is j with

ij ∈ Δv and one can readily see that Γ,Δv � c1 using axioms (4) and (3).

Let Δiv = Δv ∩ ({pj | j < i} ∪ {p′j | j < i}). Since Γ,Δv � c1 we obtain Γ,Δnv � qn
using (2), and then we use (1) to prove Γ,Δiv � qi by induction, for n – 1 ≥ i ≥ 1.
Since Δ1

v = ∅, we eventually get Γ � q1.
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For the converse, a proof of Γ � q1 in long normal form must begin with a head
variable of type (p1 → q2) → q1 or (p′1 → q2) → q1 applied to an abstraction �x.N
with N of type q2. The shape of N is also determined by axioms (1–2), and it must
inevitably contain a proof of Γ,Δv � c1 for some v. Such a proof is only possible if
each of the k clauses is satisfied by v. The fun of checking the details is left to the
reader. �

We can put together Lemmas 21 and 23 to obtain the conclusion of this section:
a very limited fragment of IIPC is of the same expressive power as SAT.

Theorem 24. Proof search for T3– formulas is NP-complete.

5.3. Order two plus. We distinguish another natural class of formulas of low order
for which the provability problem is co-NP-complete. We consider here implicational
formulas built from literals, and we restrict attention to formulas of order two, where
all literals are counted as of order zero. We call this fragment order two plus. Note
that if we use the standard definition of order, these formulas are of order three.

It is convenient and illustrative to work with literals (using negation), but formulas
of order two plus make in fact a fragment of IIPC. Indeed, ¬p = p → ⊥ by
definition, and in all our proofs below the constant ⊥ can be understood merely as
a distinguished atom with no particular meaning. In other words, the ex falso rule,
i.e., ⊥-elimination is not involved.

Lemma 25. Formulas of order two plus have the linear size model property: if �ϕ
then there is a Kripke model of depth at most 2 and of cardinality not exceeding the
length of ϕ.

Proof. Let ϕ = �1 → ··· → �n → p, where �i = q1
i → ··· → q

ni
i → ri . Without

loss of generality we may assume that literals p, r1, ... , rn are all either propositional
variables or ⊥. Suppose that � ϕ. Then there exists a finite Kripke model C and
a state c0 of C such that C, c0 � ϕ. That is, C, c0 � �i , for all i = 1, ... , n, and
C, c0 � p. For every i = 1, ... , n we now select a final state ci of C as follows. Since
C, c0 � �i , there are two possibilities: eitherC, c0 � ri , orC, c0 � q

j
i , for some j. The

important case is when C, c0 � qj and qj = ¬s , for some propositional variable s.
Then there is a successor state c′ of c0 with C, c′ � s , hence there also exists a final
state forcing s. We define ci as one of such final states. In other cases the choice of
ci is irrelevant and we can choose any final state.

Now define a new model C ′ with the set of states {c0} ∪ {c1, ... , cn} and the
relation � inherited from C, i.e., C ′, c � s iff C, c � s , for any state c of C ′ and any
propositional variable s. Note that so defined C ′ has depth at most 2.

We claim that C ′, c0 � ϕ. Clearly C ′, c0 � p, so we should prove that all states
in C ′ force all formulas �i . Forcing in any state only depends on its successor states,
hence if we had C, ci � �i then we still have C ′, ci � �i , for all i = 1, ... , n, because
nothing has changed at the final states. But also nothing has changed at c0 with
respect to �i . Indeed, if C, c0 � ri then C ′, c0 � ri , and if C, c0 � q

j
i for some j,

where q
j
i is a propositional variable, then C ′, c0 � q

j
i as well. Otherwise, for some

s, j, we have ¬s = q
j
i and C ′, ci � s , so C ′, c0 � q

j
i . �
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Example 26. Lemma 25 cannot be improved to 2-state models: the formula

(¬p → q) → (¬r → q) → (p → ¬r) → q

requires a countermodel with at least 3 states.

Theorem 27. Order two plus fragment of IPC is co-NP-complete.

Proof. That the problem is in co-NP follows from Lemma 25: the small
countermodel can be guessed and verified in polynomial time.

The co-NP-hardness of order two plus is shown by a reduction from non-3-CNF-
SAT. Let us begin with a formula in 3-CNF:

Ψ = (r11 ∨ r12 ∨ r13) ∧ ··· ∧ (rk1 ∨ rk2 ∨ rk3),

where rij are literals. Assume that {p1, ... , pn} are all propositional variables in Ψ.
We define a set ΓΨ of formulas using propositional variables p1, ... , pn, p

′
1 ... , p

′
n.

For any literal rjm occurring in Ψ we write r′jm to denote:
– the variable p′i , when rjm = pi ;
– the variable pi , when rjm = ¬pi .

Members of ΓΨ are as follows (for all i = 1, ... , n and j = 1, ... , k):
– Xi :¬pi → ¬p′i → ⊥;
– Yj :r′j1 → r′j2 → r′j3 → ⊥.

For example, if the first component of the formula Ψ was (p ∨ ¬q ∨ ¬s) then we
obtain Y1 : p′ → q → s → ⊥. We shall prove that:

Ψ is classically unsatisfiable if and only if ΓΨ � ⊥.

(⇒) Let m ≤ n and let v be a Boolean valuation of variables p1, ... , pm. Define
an environment Γv = ΓΨ ∪ {x1 :pv1 , ... xm :pvm}, where

pvi =
{
pi , if v(pi) = 1;
p′i , otherwise.

By a reverse induction with respect to m we prove that Γv � ⊥, for every such v.
We begin withm = n. Then v is defined on all variables in Ψ and does not satisfy Ψ.
Therefore the value under v of at least one clause rj1 ∨ rj2 ∨ rj3 is zero, in which
case we have r′j1, r

′
j2, r

′
j3 ∈ Γv , hence ⊥ is derivable using the assumption Yj . (For

example, if the unsatisfied component of Ψ were (p ∨ ¬q ∨ ¬s) then we would have
pv = p′, qv = q, sv = s .)

For the induction step assume the claim holds for some m ≤ n, and let v be
a valuation of p1, ... , pm–1. For b = 0, 1, define vb as v extended by vb(pm) = b. By
the induction hypothesis there are proofs Γv0 �M0 : ⊥ and Γv1 �M1 : ⊥. Then one
proves ⊥ from Γv using the assumption Xm; the lambda term in question has the
form Xm(�xm :pm.M1)(�xm :p′m.M0).

(⇐) By contraposition suppose that v satisfies Ψ. We extend it to primed
propositional variables by letting v(p′) = 1 – v(p). Since v satisfies all the clauses
r11 ∨ r12 ∨ r13 of Ψ, it satisfies all the formulas in ΓΨ. Consequently, Γ �� ⊥ even in
classical logic.

For any given Boolean valuation v ofp1, ... , pn, we prove that v does not satisfy Ψ.
Let again Γv = ΓΨ ∪ {x1 :pv1 , ... , xn :pvn}. Since ΓΨ � ⊥, also Γv � ⊥, so let M
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be the shortest possible normal lambda-term such that Γv �M : ⊥. The proof
must begin with either some Xi or some Yj . In the first of the two cases it must
be of the form M = Xi(�yi :pi .M1)(�yi :p′i .M0), where Γv, yi : , pi �M1 : ⊥ and
Γv, yi :p′i �M0 : ⊥. But in the context Γv we have either xi :pi or xi :p′i . Thus either
M1[yi := xi ] orM0[yi := xi ] makes a proof of ⊥ shorter than M.

It follows that the shortest proof of ⊥ is of the form M = YjN1N2N3, where
Γv � N1 : r′j1, Γv � N2 : r′j2, and Γv � N3 : r′j3. Then N1, N2, N3 must be variables
declared in Γv which is only possible when the literals rj1, rj2, rj3 are zero-valued
under v. �

§6. Conclusions and further research. We have demonstrated the strength of
implicational intuitionistic propositional logic (IIPC) as a reasonable language to
express problems solvable in Pspace. Moreover, some natural subclasses of IIPC,
called order three minus and order two plus, correspond, respectively, to complexity
classes NP and co-NP (Section 5).

The situation in IIPC can be related to the one in modal logic S4 through the
standard embedding [23] (see [4] for a modern account of the embedding). Each
subsequent order corresponds through this embedding to one application of the
modal operator. In particular, formulas of order three in IIPC translate to formulas
of modal depth four. Interestingly enough, satisfiability for S4 formulas already of
modal depth k ≥ 2 is Pspace-complete [13, Theorem 4.2].
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