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Meromorphic Continuation of Spherical
Cuspidal Data Eisenstein Series

Dedicated to the memory of my father Ramazan Alayont.

Feryâl Alayont

Abstract. Meromorphic continuation of the Eisenstein series induced from spherical, cuspidal data

on parabolic subgroups is achieved via reworking Bernstein’s adaptation of Selberg’s third proof of

meromorphic continuation.

Introduction

Let G be a reductive group defined over a number field k. The spectral decomposition
of the right regular representation on L2(Gk\GA) is accomplished in [L76], which

shows that the regular representation is a direct sum of irreducible cuspidal repre-
sentations and the direct integrals of Eisenstein series induced from proper parabolic
subgroups of G. Meromorphic continuation of Eisenstein series induced from cusp-
forms on proper parabolic subgroups of G was achieved during the process. In this

paper we present a simpler and shorter proof of the meromorphic continuation of
the Eisenstein series induced from spherical cuspidal data. The proof employs the
continuation principle, based on Selberg’s “third proof” of meromorphic continua-
tion of GL2(Z) Eisenstein series (given in [H83]) extended by Bernstein to a general

situation. This principle states that a sufficiently nice holomorphically parametrized
system of equations with a unique solution in some non-empty open set has a unique,
meromorphic solution almost everywhere. A crucial condition on the system is that,
locally, the solutions lie in the image of a finite dimensional space under a weakly

holomorphic map. We include a proof of the continuation principle following a
rewriting [Ga01a] of Bernstein’s proof.

The proof of meromorphic continuation of the Eisenstein series proceeds by in-
duction on the rank of the parabolic subgroup. For a not-self-associate maximal

parabolic subgroup, the continuation principle is applied to the following system:

• vλ is an eigenfunction for certain integral operators;
• all constant terms of vλ are 0 except for those for P and the conjugate of P;

• P-constant term of vλ is λδ
1/2
P f ;

• constant term of vλ with respect to the conjugate of P is a multiple of wλδ
1/2
Q f w.

For other parabolic subgroups, similar systems are used.

The local finiteness of the system is verified using the compact operator criterion.
This criterion assures local finiteness of a system given by a homogeneous equation
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1122 F. Alayont

Tλ(v) = 0 where, for every λ, Tλ is invertible modulo a compact operator. In our
proof we reduce our system to a system consisting of a single integral operator equa-

tion, and we use the fact that the integral operators are compact on the space of
rapidly decaying functions.

The first step in proving uniqueness shows that the difference of two solutions
in the region of convergence of the Eisenstein series is square-integrable, due to the

conditions on the constant terms. Since this difference is also an eigenfunction for
the integral operators, by choosing a self-adjoint integral operator we show that the
difference must be 0 whenever the eigenvalue is non-real.

The notation and background information used in this paper are mostly from

[A78] and [MW95]. The latter is a reworking of [L76] in an adelic setting. The con-
tinuation principle and an application to meromorphic continuation of Eisenstein
series can also be found in Bernstein’s notes.1The set-up in these notes is slightly dif-
ferent from ours. The special case of continuation of Eisenstein series induced from

cuspidal data on maximal parabolic subgroups in GLn is proven in [Ga01c], using
again the continuation principle. Also [W90] proves meromorphic continuation of
Eisenstein series induced from maximal parabolic subgroups in the Fredholm equa-
tions setting. The exposition in this paper differs from the usual proofs by being

shorter and putting the emphasis on integral equations.

1 Notation and Terminology

Let G be a reductive group defined over a number field k. Fix a minimal parabolic
subgroup P0 of G along with a Levi subgroup M0 of P0, both defined over k. Let A0 be
the split component of M0. From now on, all parabolic (respectively, Levi) subgroups
considered will be standard, i.e., will contain P0 (respectively, M0). For a parabolic

subgroup P, let MP denote its (standard) Levi component, NP its unipotent radical
and AP the split component of the center of MP. We shall omit the subscript P when
the parabolic subgroup is understood. Note that MG = G.

Let X(MP) denote the group of rational characters of MP, and let

a
∗
P = X(MP) ⊗Z R and aP = HomZ(X(MP), R).

Then a
∗
P and aP are naturally dual to each other and a

∗
P is isomorphic to X(AP) ⊗Z R.

Restricting a character on G to MP gives an injection a
∗
G →֒ a

∗
P , and a surjection

aP ։ aG, under duality. Let a
G
P be the kernel of this surjection. We obtain two exact

sequences:
0 −→ a

∗
G −→ a

∗
P −→ a

∗
P/a

∗
G −→ 0,

0 −→ a
G
P −→ aP −→ aG −→ 0.

The restriction map from AP to AG induces a canonical surjection and hence,

aP = a
G
P ⊕ aG and a

∗
P = (a

G
P )∗ ⊕ a

∗
G,

where (a
G
P )∗ is the dual of a

G
P .

1Lecture notes for the graduate summer school, IAS/ Park City Summer School, 2002.
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Let ∆0 be the set of simple roots for P0. The roots in ∆0 are canonically embedded
into a

∗
P0

= a
∗
0 and the parabolic subgroups P are in bijection with the subsets ∆

P
0 of

∆0 consisting of the roots which vanish on aP. Let ∆P be the restrictions to aP of
elements in ∆0 − ∆

P
0 . Then ∆P is a basis of (a

G
P )∗. For any root α, let α∨ denote the

corresponding co-root. The co-roots are elements of a0 and form a basis of a
G
0 . We

can obtain a second basis of (a
G
0 )∗ by taking the dual basis ∆̂0 = {̟α : α ∈ ∆0} of

the basis ∆
∨
0 = {α∨ : α ∈ ∆0}. For a general parabolic P, ∆̂P = {̟α : α ∈ ∆P}

defined similarly, is a second basis of (a
G
P )∗.

Let A be the adele ring of k and v denote an arbitrary place of k. At almost all
finite places Kv = G(ov), where ov is the ring of integers of kv, is a maximal compact

subgroup of G(kv). At the remaining finite places we choose a “special” maximal
compact subgroup Kv. At the infinite places we choose a maximal compact subgroup
Kv so that G(kv) = P0(kv)Kv, and for any standard parabolic subgroup P = MN ,

P(kv) ∩ Kv = (M(kv) ∩ Kv)(N(kv) ∩ Kv).

Then K =
∏

Kv is a maximal compact subgroup of GA and for any parabolic sub-

group P, GA = PAK, called the Iwasawa decomposition. We shall refer to the maxi-
mal compact group described above as “the maximal compact subgroup of GA”.

Given a parabolic subgroup P with Levi component M, define HM : MA → aP by

e〈HM (m),χ〉
= |χ(m)| =

∏

v

|χ(mv)|v

for all χ ∈ X(M) and m =
∏

v mv ∈ MA. The kernel of HM is denoted by M1
A. We

then have the Langlands decomposition: any g ∈ GA can be written as g = nmak

where n ∈ NA, m ∈ M1
A, a ∈ AP(R)0 and k ∈ K. Here, by abuse of notation,

AP(R)0 denotes the subgroup of AP,A which is identified with rank of G number of
copies of R×

+ using the diagonal embedding of R into A∞. In the case of k = Q,
this subgroup is indeed AP(R)0, the identity component of AP(R). We shall use ag

to denote the a component in the Langlands decomposition for P = P0. Using the

Langlands decomposition, HM defined above can be extended to HP : GA → aP.

For a parabolic subgroup P, let cP be the constant term operator which is defined
by

cP f (g) =

∫

NP,k\NP,A

f (ng) dn

for a left NP,k-invariant, locally L1 function f . A function f is cuspidal if cP f = 0
almost everywhere, for any proper parabolic subgroup P.

Fix a truncation parameter 0 < T ∈ R. For each parabolic subgroup P, let τ̂P

denote the characteristic function of {H ∈ a0 : β(H) > T for all β ∈ ∆̂P}. Then the

truncation ∧Tϕ of a function ϕ defined on Gk\GA is

∧Tϕ(g) =

∑

P

(−1)dim AP/AG

∑

γ∈Pk\Gk

τ̂P(HP0
(γg))cPϕ(γg),
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where P runs over all parabolic subgroups. For each P, the truncated sum over Pk\Gk

is finite. Also the truncation of a continuous function is of rapid decay over Siegel

sets [A80]. The Siegel sets considered here will be of the form

St = {nmak ∈ GA : n ∈ ω, m ∈ ω1, k ∈ K, a ∈ A0(R)0, α(a) > t, ∀α ∈ ∆0}

for ω a compact subset of N0,A and ω1 of M1
A and t > 0. We assume ω and ω1 are

large enough and t is small enough so that GA = Gk · St .
Let f be an automorphic form on Mk\MA where M is the Levi component of P

and λ ∈ (a
G
P )∗C (for a definition of an automorphic form, see [MW95, I.2.17]). For

λ ∈ (a
G
P )∗C, the continuous character sending m ∈ MA to e〈HM(m),λ〉 will be denoted

by λ(m) or mλ. We define ϕλ on GA, attached to f , λ, by

ϕλ(g) = ϕλ(nmk) = λ(m) f (m)δ
1/2
P (m),

where δP is the modulus function of P. Then the Eisenstein series induced from the
parabolic P with data f is

Eλ(g) =

∑

γ∈Pk\Gk

ϕλ(γg)

whenever the series converges. The Eisenstein series converges for all λ with real part
in a positive open cone in (a

G
P )∗ depending on f , and the resulting Eλ(g) is an auto-

morphic form on Gk\GA [Go67]. In this paper we consider Eisenstein series induced

from spherical cuspforms, which are cuspidal automorphic forms right-invariant un-
der K.

Proposition 1.1 Let P = MN be a standard parabolic subgroup, f a spherical cusp-

form on MA and λ ∈ (a
G
P )∗C. The following properties hold:

(i) Let R = M ′N ′ be a standard parabolic subgroup. Then

cREλ =

∑

w

EM ′∩w−1Pw(M(w)ϕλ),

where the sum is over all w ∈ W such that wα > 0 for α ∈ ∆
R
0 and M ⊂ wM ′w−1.

The operator M(w) is the intertwining operator defined as

M(w) f (g) =

∫

w−1Pkw∩N ′

k
\N ′

A

f (wng) dn.

(ii) For any η ∈ C∞
c (GA)inv, the space of compactly supported smooth K-conjuga-

tion invariant functions on GA, Eλ is an eigenfunction for the integral operator attached

to η. More precisely, for any η there exists µλ, holomorphic as a function of λ such that

ηEλ =

∫

GA

η(g)g · Eλ dg = µλEλ.
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2 Selberg–Bernstein Continuation Principle

In this section we give a simple proof of the continuation principle following the
rewriting of Bernstein’s proof in [Ga01a].

Let V and Wi , i ∈ I be topological vector spaces, and S a complex manifold. An
S-parametrized system of linear equations X = {Xs} on V consists of equations

Xs : Ti,s(v) = wi,s for all i ∈ I,

where Ti,s : V → Wi are continuous linear maps. Such a system is holomorphic in S if

the maps s 7→ Ti,s and s 7→ wi,s are weakly holomorphic, meaning their compositions
with the functionals on the target space are holomorphic C-valued functions. We
take the weak operator topology on Hom(V,W ), so the functionals on Hom(V,W )
are of the form T 7→ λ(T(v)) where λ ∈ W ∗ and v ∈ V . An S-parametrized system

of equations is said to have a locally finite envelope if locally the solutions lie in the
image of a finite dimensional space under a family of weakly holomorphic maps,
i.e., Sol Xs ⊂ fs(V0) with fs : V0 → V weakly holomorphic. If there is a system X ′

defined on V ′ and a family of weakly holomorphic maps hs : V ′ → V such that

Sol Xs ⊂ hs(Sol X ′
s ), then X ′ is said to dominate X. If there is a locally finite system

dominating X, then X is also locally finite.

It can be shown, by adapting the proof of [R91, Theorem 3.31], that weak holo-

morphy of a function f : S → V implies holomorphy of f for a locally convex, quasi-
complete space V . A quasi-complete space is a space where every bounded closed
subset is complete. In particular, all Fréchet and LF-spaces are quasi-complete. Also
Hom(V,W ) with the weak operator topology is quasi-complete if V is an LF-space

and W is a quasi-complete space.

Theorem 2.1 (Continuation Principle) Let V be a locally convex, quasi-complete

topological vector space, Wi , i ∈ I, locally convex topological vector spaces and S a

connected complex manifold. Let X be an S-parametrized, holomorphic system of linear

equations on V with a locally finite envelope. Suppose that on a non-empty open subset

Ω of S, Xs has a unique solution vs. Then vs is meromorphic on Ω and has a meromor-

phic continuation to S which is the unique solution of Xs outside a proper analytic subset

of S.

Proof Since the statement is local, we can assume X has a finite envelope, i.e., there
exists V0 with dim V0 = n and a weakly holomorphic family of operators fs : V0 → V

so that Sol Xs ⊂ fs(V0) for all s ∈ S.

Let K+
s = f −1

s (Sol Xs). Then Xs has a unique solution if and only if dim ker( fs) =

dim K+
s . Subspaces ker( fs) and K+

s can be described by systems of linear equations

as follows. Let A and Bi be separating families of linear functionals on V and Wi ,
respectively, and fix a basis {e1, . . . , en} of V0. A system of linear equations for ker( fs)
is of the form

ker( fs) = {x1e1 + · · · + xnen ∈ V0 :
∑

j

aα jx j = 0 for all α ∈ A},
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where (suppressing the dependence on s) aα j = α( fs(e j)) depends on s holomorphi-
cally, by definition of the weak holomorphy of fs. Similarly,

K+
s = {x1e1 + · · · + xnen ∈ V0 :

∑

j

bβ jx j = cβ , for all β ∈ B =
⋃
i

Bi},

where cβ = β(wi,s) and bβ j = β(Ti,s fs)(e j ) depend on s holomorphically. This fol-
lows from weak holomorphy of wi,s and of Ti,s fs. Let Y = {Ys} denote this system.

Define the holomorphic matrices Ms, Ns and Qs by

Ms(α, j) = aα j α ∈ A, j = 1, . . . , n,

Ns(β, j) = bβ j β ∈ B, j = 1, . . . , n,

Qs(β, j) =

{
bβ j if 1 ≤ j ≤ n, β ∈ B,

cβ if j = n + 1, β ∈ B.

Then ker( fs) is the nullspace of the matrix Ms, hence dim ker( fs) = n − rank Ms and
K+

s is the inverse image of (cβ)β∈B under Ns, so dim K+
s = n − rank Ns if there is a

solution. A solution exists if and only if rank Ns = rank Qs. Therefore, the condition

dim ker( fs) = dim K+
s can be rewritten as rank Ms = rank Ns = rank Qs. Each

matrix assumes maximal rank in an open dense subset which is the complement of
a proper analytic subset. Let S0 be the intersection of these sets. Since Ω ∩ S0 is not
empty and the ranks are equal on Ω, the maximal ranks of the three matrices are

equal to some number r. Hence, on S0, Xs has a solution and the solution is unique.

To finish the proof, we show that the solution is meromorphic. It is enough to
show that the system Y has a meromorphic solution, since the solution of the sys-
tem X will then be a weakly holomorphic image of this meromorphic solution, and
hence will be weakly meromorphic. Since V is quasi-complete, this solution is then

meromorphic.

Choose an r × r-minor Ds0
of Ns0

of full rank for some s0 ∈ S0. Suppose that
its entries bβ j are indexed by β ∈ {β1, . . . , βr} and j ∈ { j1, . . . , jr}. Let Ds be the
corresponding r × r-minor of Ns and S1 the set of s ∈ S0 where Ds assumes full rank.
Consider the system Z defined on the span of e j1

, . . . e jr
consisting of the equations

∑

j∈{ j1,..., jr}

bβ jx j = cβ for all β ∈ {β1, . . . , βr}.

By Cramer’s rule, the system Z has a unique solution. Further this solution is mero-

morphic since the coefficients of the matrix are holomorphic. Extend this solution to
V0 by letting x j = 0 for all j /∈ { j1, . . . , jr}. The extension is a solution of Y because
the r equations defining Z span the set of equations defining Y for all s ∈ S0.

The compact operator criterion assuring the local finiteness of a homogeneous
system is as follows.
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Proposition 2.2 Let V , W be Banach spaces. Suppose X is the system given by Ts(v) =

0 with Ts : V → W continuous linear, and the map s 7→ Ts holomorphic for the operator

norm topology on Hom(V,W ). Suppose that for some s0 ∈ S, Ts0
has a left inverse

modulo compact operators, i.e., there exists an A : W → V and a compact K : V → V

such that A ◦ Ts0
= K + idV . Then X is of finite type in some neighborhood of s0.

Proof Since K is compact, V0 = ker(K + idV ) is of finite dimension and V1 =

im(K + idV ) is closed and of finite co-dimension. Let prV0
and prV1

be projections
from V to V0 and V1, respectively. Consider a new system X ′ on V defined by the
equation T ′

s (v) = 0, where

T ′
s = prV1

◦ A ◦ Ts : V → V1.

Since Sol Xs ⊂ Sol X ′
s , X ′ dominates X, and hence it is enough to show that X ′ has a

finite envelope in a neighborhood of s0.

Consider the family of operators ϕs = prV0
⊕ T ′

s : V → V0 ⊕ V1. The holo-
morphy of s 7→ Ts implies the holomorphy, and hence the continuity, of s 7→ ϕs.

By definition, ϕs0
is a bijection and hence, by the open mapping theorem, an iso-

morphism. The subset of invertible maps is open in the operator norm topology of
Hom(V,V0 ⊕V1), which then implies that ϕs is an isomorphism in a neighborhood
of s0.

Observe that Sol X ′
s = ϕ−1

s (V0 ⊕ {0}). The proof of the finite envelope prop-
erty will be finished if we show ϕ−1

s is weakly holomorphic. This follows because

the inversion map (restricted to the invertible elements) from Hom(V,V0 ⊕ V1) to
Hom(V0 ⊕V1,V ) is differentiable in the operator norm topology.

3 Meromorphic Continuation of Eisenstein Series

Theorem 3.1 Let P = MN be a parabolic subgroup and f a cuspform on Mk\MA

which is right-invariant under the maximal compact subgroup of MA. The Eisenstein

series Eλ induced from data f on P has a meromorphic continuation to (a
G
P )∗C with

singularities only on a proper analytic subset.

Proof The proof proceeds by induction on dim(AP/AG) = r.

First assume P is a maximal proper parabolic subgroup which is not self-associate,
i.e., the only Weyl group element which conjugates M to itself is the identity element.

Let Q be the unique parabolic subgroup such that MQ is conjugated to M by a non-
trivial Weyl group element and w the shortest such element: wMQw−1

= MP.

We shall prove meromorphic continuation of the Eisenstein series to open sets
S ⊂ (a

G
P )∗C intersecting the region of convergence of the Eisenstein series with Re S ⊂

(a
G
P )∗ bounded. Choose Λ ∈ (a

G
P )∗ in the fundamental Weyl chamber so that Λ/2

dominates all Weyl group translates of Re S.

Without loss of generality, we can assume that f has a central character which is
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trivial on AG(A). For a Siegel set St , define the space VΛ,t by

VΛ,t =

{
h ∈ L1

loc(GA) : h(γg) = h(g) ∀γ ∈ Gk, h(zg) = h(g) ∀z ∈ AG,A,

h is right K-invariant and

∫

AG(R)◦\St

|h(g)|2a−Λ

g dg < ∞
}

and a norm on VΛ,t by

‖h‖t =

(∫

AG(R)◦\St

|h(g)|2a−Λ

g dg
) 1/2

.

During the proof we fix ω and ω1 in the definition of St so that St covers Gk\GA for t

small enough.

Claim 3.2 For t and u small enough, VΛ,t = VΛ,u and the norms ‖ · ‖t and ‖ · ‖u are

equivalent.

Proof Without loss of generality, assume t > u, so that St ⊂ Su. Then VΛ,u ⊂ VΛ,t

and for h ∈ VΛ,u we have ‖h‖t ≤ ‖h‖u.

Suppose now h ∈ VΛ,t . From reduction theory, there exist a compact subset C of
St and finitely many γ ∈ Gk such that Su − St can be covered by the union of γC . For

each such γ ∈ Gk there exists c ∈ R such that for all g ∈ C , we have a−Λ
γg ≤ ca−Λ

g ,
and so

∫

AG(R)◦\γC

|h(g)|2a−Λ

g dg ≤ c

∫

AG(R)◦\C

|h(g)|2a−Λ

g dg = c‖h‖2
t .

Hence ‖h‖u is bounded by a multiple of ‖h‖t . This proves the reverse inclusion

VΛ,t ⊂ VΛ,u, and the equivalence of the norms.

Let V be equal to VΛ,t with t small as above and define a system Xλ on V by

(η − µλ)vλ = 0 for all η ∈ C∞
c (GA)inv,

cR(vλ) = 0 for any maximal R not equal to P or Q,

cP(vλ) = ϕλ,

(z − wλδ
1/2
Q (z))cQ(vλ) = 0 where z ∈ AQ,A,

cR(vλ) = 0 for any R properly contained in Q,

(η ′ − νλ)(wλδ
1/2
Q )−1cQ(vλ) = 0 for all η ′ ∈ C∞

c (MQ,A)inv,

where µλ is the eigenvalue of η acting on ϕλ, and νλ is that of η ′ acting on the cusp-

form f w
= (wλδ

1/2
Q )−1M(w)ϕλ. Here wλ is the character wλ(x) = λ(wxw−1). The
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last three equations say that cQ(vλ) lies in a finite dimensional space consisting of the
cuspforms of the same type as f w.

The image spaces for the maps in the system are chosen as follows. Integral oper-
ators η map V to itself and the constant term operators cR map to

VR =

{
h ∈ L1

loc(MR,A) : h is left MR,k, right K ∩ MR,A and AG,A-invariant and

∫

AG(R)◦\(St∩MR,A)

|h(m)|2a−Λ−2ρ
m dm < ∞ for all t > 0

}
,

where the factor a−2ρ
m is equal to δ−1

R .

Being a Hilbert space, the space V is quasi-complete and locally convex. The
spaces VR are locally convex because their topologies are given by seminorms.

Claim 3.3 Integral operator η is continuous from V to itself.

Proof Let t be small enough that V = VΛ,t . It is enough to show that η is con-
tinuous from VΛ,u to VΛ,t with u such that the Siegel set Su covers St · supp η and

V = VΛ,u.

‖η f ‖2
t =

∫

AG(R)◦\St

|η f (x)|2a−Λ

x dx ≤

∫

AG(R)◦\St

∫

G

|η(g) f (xg)|2a−Λ

x dgdx.

Interchanging the order of integration along with a change of variable x 7→ xg gives

‖η f ‖2
t ≤

∫

G

|η(g)|2
∫

AG(R)◦\St g

| f (x)|2a−Λ

xg−1 dxdg.

There exists a constant c such that a−Λ

xg−1 ≤ ca−Λ
x for all g ∈ supp η. Hence,

‖η f ‖2
t ≤ c

∫

G

|η(g)|2
∫

AG(R)◦\St g

| f (x)|2a−Λ

x dxdg.

Since for all g ∈ supp η, St g ⊂ Su, the inner integral is less than ‖ f ‖2
u, consequently

‖η f ‖2
t ≤ c vol(supp η)| sup η(g)|2‖ f ‖2

u.

We have shown before that the norms ‖ · ‖t and ‖ · ‖u are comparable if both t and u

are small enough, hence the continuity of η from VΛ,u = VΛ to VΛ,t = VΛ follows.

Continuity of the constant term operators follows from a Fubini argument. Let
R be a parabolic subgroup. Constant term maps are continuous if they are bounded
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with respect to each seminorm on VR and with respect to the norm ‖ · ‖t on V . This
condition holds because for any u > 0,

∫

AG(R)◦\(Su∩MR,A)

|cRh(m)|2a−Λ−2ρ
m dm

≤

∫

AG(R)◦\(Su∩MR,A)

∫

NR,k\NR,A

|h(nm)|2a−Λ−2ρ
m dndm

≤ c ·

∫

AG(R)◦\Su

|h(g)|2a−Λ

g dg = c ‖h‖2
u,

and the norms with respect to u and t on V are comparable for u, t small enough.

The equations in X involve only λ, ϕλ and µλ, all of which are holomorphic, so
the system X is a holomorphic S-parametrized system.

Claim 3.4 X has a locally finite envelope.

Proof To prove the claim, we use the compact operator criterion. The compact op-
erator will be one of the integral operators restricted to the space of rapidly decreasing
functions.

From the properties of Eλ, only two of the constant terms are non-zero: cPEλ = ϕλ

and cQEλ = M(w)ϕλ. Hence the truncation is

∧TEλ = Eλ − EP(τ̂Pϕλ) − EQ(τ̂QM(w)ϕλ).

Let V1 be the space of cuspforms of MQ of the same type as f w and let V ′
=

C ⊕V1 ⊕V0 where V0 = ∧TV . Define Tλ on V ′ by

Tλ(a, f1, h) = aEP(τ̂Pϕλ) + EQ(τ̂Qwλδ
1/2
Q f1) + h,

and let X ′ be the system on V ′ given by the homogeneous equation

T ′
λ(vλ) = (η − µλ)Tλ(vλ) = 0.

The system X ′ is holomorphic since the sums involved in the Tλ are locally finite.

Note also that X ′ dominates X. To see this, given vλ ∈ Sol Xλ, let h = ∧Tvλ,

f1 = (wλ)−1δ
−1/2
Q cQ(vλ). Then by definition of X, f1 ∈ V1, Tλ(1, f1, h) = vλ and

(1, f1, h) ∈ Sol X ′
λ.

Therefore it is enough to show finiteness of X ′. The map λ 7→ Tλ is holomorphic
with respect to the operator norm topology because of the sums being locally finite
sums of holomorphic functions. If we show that every T ′

λ has an inverse modulo
a compact operator, locally finiteness follows from the compact operator criterion.

Define A : V → V ′ by A(v) = (0, 0,− 1
µλ

∧T v). On the subspace V0 ⊂ V ′, A ◦ T ′
λ is

given by

A ◦ T ′
λ(0, 0, h) = (0, 0,− 1

µλ
∧T (η − µλ)h),
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so it differs from the identity by −1/µλ ∧T η. As V0 lies inside the space of rapidly
decreasing functions and the operator η is compact on the space of rapidly decreasing

functions, the operator −1/µλ ∧T η is compact on V0. The complement of V0 in V ′

is finite-dimensional, hence A ◦ T ′
λ differs from the identity by a compact operator

on the whole V ′.

Claim 3.5 X has a unique solution in a non-empty open subset of the region of con-

vergence of the Eisenstein series.

Proof The Eisenstein series in the region of convergence is a solution of the sys-

tem X. Suppose that v ′ is another solution. Then the difference v = v ′ − Eλ is
an eigenfunction for the integral operators, and all constant terms of v are 0 except
cQ(v). Hence v − cQ(v) is a rapidly decreasing function ( [Ga01b] provides an ele-
mentary proof for a special case; a more general statement is I.2.12, [MW95]), and

in particular is bounded. The term cQ(v) is of the form

cQ(v)(g) = cQ(v)(nmk) = wλ(m)δ
1/2
Q (m)h(m),

where g = nmk is the Iwasawa decomposition with respect to Q and h is a cuspform
on MQ,A. In the direction of any α ∈ ∆

Q
0 , the cuspform is of rapid decay and the

characters have moderate growth, so the product is of rapid decay. In the direction
of αQ, the only root in ∆Q, wλ has a sufficiently large negative order in the region of

convergence, δ
1/2
Q has a small positive order, and h is bounded. Combining all, cQ(v)

is bounded in that direction. Therefore v is bounded on the Siegel set and hence is
square-integrable on AG(R)◦Gk\GA.

Pick an integral operator η ∈ C∞
c (GA)inv such that the eigenvalue µλ is non-

constant, and consider the open subset of the region of convergence of the Eisenstein
series where µλ is non-real. Assume without loss of generality that the integral oper-

ator η on L2(AG(R)◦Gk\GA) is self-adjoint. We then have

µλ · 〈vλ, vλ〉 = 〈ηvλ, vλ〉 = 〈vλ, ηvλ〉 = µλ · 〈vλ, vλ〉.

Since µλ is not real, this implies vλ = 0, proving uniqueness for λ in this open set.

Now we can apply the continuation principle to conclude the meromorphic con-
tinuation of the Eisenstein series to (a

G
P )∗C with singularities only on a proper analytic

set. This finishes the proof in the first case.

Consider the second case: P a self-associate maximal parabolic subgroup. The

above proof applies to this case with minor changes. We note the differences. Let
w be the shortest non-trivial Weyl group element which conjugates M to itself. The
only non-zero constant term of Eλ is cPEλ = ϕλ + M(w)ϕλ and the truncation of Eλ

is ∧TEλ = Eλ − EP(τ̂P(ϕλ + M(w)ϕλ)). The system of equations Xλ consists of the
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equations

(η − µλ)vλ = 0 for all η ∈ C∞
c (GA)inv,

cR(vλ) = 0 for any maximal R not equal to P,

(z − wλδ
1/2
P (z))(cP(vλ) − ϕλ) = 0 where z ∈ AP,A,

cR(cP(vλ) − ϕλ) = 0 for any R properly contained in P,

(η ′ − νλ)(wλδ
1/2
P )−1(cP(vλ) − ϕλ) = 0 for all η ′ ∈ C∞

c (MP,A)inv,

where µλ and νλ are as before. Let V ′ be defined as in the first case, and define Tλ

on V ′ by Tλ(a, f1, h) = EP(τ̂P(aϕλ + wλδ
1/2
P f1)) + h. If X ′ is the system consisting of

the single homogeneous equation (η−µλ)Tλ(vλ) = 0, then X ′ dominates X and the
compact operator criterion, applied in the same way as in the first case, shows that
X ′, and hence X, has a locally finite envelope.

The proof of uniqueness proceeds as before. The only non-zero constant term of
the difference of two solutions of the system is the P-constant term, which is of the

form wλ(m)δ
1/2
P (m)h(m), and it is bounded in the region of convergence. Hence the

proof of continuation in the second case follows.
The continuation of the Eisenstein series induced from all maximal parabolic sub-

groups implies in particular that the constant terms of these Eisenstein series have

continuations. These constant terms are either M(w)ϕλ or ϕλ + M(w)ϕλ, hence
each M(w)ϕλ has a continuation when w is a reflection sα corresponding to a simple
root α. For a general Weyl group element w, there exists a sequence of simple roots
α1, . . . , α j such that w = sα j

· · · sα1
and M(w)ϕλ = M(wα j

) · · ·M(wα1
)ϕλ, where

each intertwining operator M(wαi
) comes from a maximal parabolic subgroup case

(IV.4.1, [MW95]). Therefore the continuation of M(w)ϕλ for an arbitrary w is ob-
tained using the maximal parabolic case iteratively.

Assume now that the continuation is achieved for all Eisenstein series made from

spherical cuspidal data on parabolic subgroups of rank at most r − 1, and we shall
prove meromorphic continuation of the Eisenstein series induced from a parabolic
subgroup P of rank r.

Let the system of equations X be given by

(η − µλ)vλ = 0 for all η ∈ C∞
c (GA)inv,

cQ(vλ) =

∑

w

EMQ∩w−1Pw(M(w)ϕλ) for any maximal Q.

All the Eisenstein series appearing in the constant term equations are made from
spherical cuspidal data M(w)ϕλ induced from smaller rank parabolic subgroups. We

showed above that each M(w)ϕλ has a continuation, and by induction on the rank,
the Eisenstein series made from M(w)ϕ has a continuation. Therefore the system X

is holomorphically parametrized.
Let V0 = ∧TV and define Tλ on V ′

= C ⊕V0 by

Tλ(a, h) = h − a
∑

Q6=G

(−1)dim AQ/AG EQ
( ∑

w

τ̂QEMQ∩w−1Pw(M(w)ϕλ)
)
.
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Consider the system X ′ consisting of the equation T ′
λ(vλ) = (η − µλ)Tλ(vλ) = 0

on V ′. A similar argument as in the maximal proper parabolic subgroup case proves

the finiteness of X ′ and hence that of X.

The Eisenstein series in the region of convergence is a solution of this system.
Moreover, since the constant terms are specified explicitly in the system, the differ-
ence between any solution and the Eisenstein series is of rapid decay. Therefore,
proceeding as before, one shows uniqueness in an open subset in the region of con-

vergence. Hence the Eisenstein series meromorphically continues to (a
G
P )∗C, using

once again the continuation principle.

We have meromorphically continued the Eisenstein series as a function in a
weighted L2-space. However, we would like the continuation to be an automor-

phic form as well, i.e., we want representatives Eλ in the L2-equivalence class of the
continuation such that Eλ is smooth, left Gk-invariant, right K-finite, z-finite and
of moderate growth. The smoothness follows from the fact that the solution is an
eigenfunction for a smoothing operator, any of the integral operators. In particu-

lar, for any solution vλ of the system Xλ, the smooth representative can be chosen
as 1

µλ
η · vλ for an integral operator η. The left Gk-invariance is proved by realizing

that for any γ ∈ Gk, vλ(γ · ) is also a meromorphic continuation of the Eisenstein
series, hence it must be equal to vλ everywhere. To prove K-finiteness, we observe

that the Eisenstein series is right K-invariant, so for any k ∈ K, we consider vλ( · k)
and realize again that this is a meromorphic continuation of the Eisenstein series.
The z-finiteness also follows similarly, since the Eisenstein series are eigenfunctions
for the actions of the elements of z. The moderate growth property is checked using

L2-ness along with the smoothness property.
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