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ONE-VARIABLE FRAGMENTS OF FIRST-ORDER LOGICS

PETR CINTULA , GEORGE METCALFE , AND NAOMI TOKUDA

Abstract. The one-variable fragment of a first-order logic may be viewed as an “S5-
like” modal logic, where the universal and existential quantifiers are replaced by box and
diamond modalities, respectively. Axiomatizations of these modal logics have been obtained
for special cases—notably, the modal counterparts S5 and MIPC of the one-variable fragments
of first-order classical logic and first-order intuitionistic logic, respectively—but a general
approach, extending beyond first-order intermediate logics, has been lacking. To this end,
a sufficient criterion is given in this paper for the one-variable fragment of a semantically
defined first-order logic—spanning families of intermediate, substructural, many-valued, and
modal logics—to admit a certain natural axiomatization. More precisely, an axiomatization
is obtained for the one-variable fragment of any first-order logic based on a variety of
algebraic structures with a lattice reduct that has the superamalgamation property, using
a generalized version of a functional representation theorem for monadic Heyting algebras
due to Bezhanishvili and Harding. An alternative proof-theoretic strategy for obtaining such
axiomatization results is also developed for first-order substructural logics that have a cut-free
sequent calculus and admit a certain interpolation property.

§1. Introduction. The one-variable fragment of any standard first-order
logic—intermediate, substructural, many-valued, modal, or otherwise—
consists of consequences in the logic constructed using one distinguished
variable x, unary relation symbols, propositional connectives, and the quan-
tifiers (∀x) and (∃x). Such a fragment may be conveniently reformulated as
a propositional modal logic by replacing occurrences of an atom P(x) with
a propositional variable p, and occurrences of (∀x) and (∃x) with � and
�, respectively. Typically, this modal logic is algebraizable—that is, it enjoys
soundness and completeness with respect to some suitable class of algebraic
structures—and hence, unlike the full first-order logic, can be studied using
the tools of universal algebra.
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Any standard semantics for a first-order logic, where quantifiers range
over domains of models, yields a relational semantics for the one-variable
fragment. On the other hand, a Hilbert-style axiomatization does not (at
least directly) yield an axiomatization for the fragment, since a derivation of a
one-variable formula may involve additional variables. Axiomatizations are
well known for the modal counterparts S5 [16] and MIPC [4, 22] of the one-
variable fragments of first-order classical logic and first-order intuitionistic
logic, respectively, and similar results have been obtained for the modal
counterparts of one-variable fragments of other first-order intermediate
logics [1, 2, 5–7, 24, 27, 28] and many-valued logics [8, 12, 21, 26]. However,
a general approach to the problem of axiomatizing one-variable fragments
of first-order logics has been lacking.1

In this paper, we address this problem for a broad family of semantically
defined first-order logics. In Section 2, we introduce (one-variable) first-
order logics via models defined over classes of L-lattices: structures for
an algebraic signature L with a lattice reduct. In particular, first-order
intermediate logics and first-order substructural logics can be defined over
classes of Heyting algebras and FLe-algebras, respectively. For the sake of
generality (e.g., when L-lattices are just lattices), consequence is defined for
equations between two first-order formulas; however, this often (e.g., for
any intermediate or substructural logic) corresponds to the usual notion of
consequence between formulas.

In Section 3, we introduce potential axiomatizations for consequence in
the modal counterparts of the one-variable fragments of these semantically
defined logics. We define an m-L-lattice to be an L-lattice expanded with
modalities � and � satisfying certain equations familiar from modal logic,
and given any class K of L-lattices, let mK denote the class of m-L-lattices
with an L-lattice reduct in K. For example, if K is a variety of Heyting
algebras, then mK is a variety of monadic Heyting algebras in the sense
of [22]. We then show that m-L-lattices are in one-to-one correspondence
with L-lattices equipped with a subalgebra satisfying a relative completeness
condition, generalizing previous results in the literature (see, e.g., [1, 29]). We
also show that if K is any class of L-lattices closed under taking subalgebras
and direct powers (in particular, any variety), then consequence in the one-
variable fragment of the first-order logic defined over K corresponds to
consequence in the functional members of mK: m-L-lattices consisting of
functions from a set W to an L-lattice A ∈ K.

In Section 4, we close the circle, obtaining an axiomatization of
consequence in the one-variable fragment of any first-order logic defined
over a variety V of L-lattices that has the superamalgamation property: an

1A precursor to this paper, reporting preliminary results restricted to a smaller class of
logics, was published in the proceedings of AiML 2022 [10].
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algebraic property that is equivalent in some settings to the logical Craig
interpolation property. We show that every member of mV is functional—
generalizing a representation theorem of Bezhanishvili and Harding for
monadic Heyting algebras [2]—and hence that the defining equations for
mV provide the desired axiomatization. In particular, we axiomatize the
one-variable fragments of a broad range of first-order logics, including the
seven consistent first-order intermediate logics that have Craig interpolation,
first-order extensions of substructural logics such as FLe, FLew, and FLec, a
first-order lattice logic, and a first-order version of the modal logic K.

In Section 5, we present an alternative proof-theoretic strategy for
establishing completeness of an axiomatization for the one-variable fragment
of a first-order logic, the key idea being to show that additional variables can
be eliminated from derivations of one-variable formulas in a suitable sequent
calculus. As a concrete example, we obtain a new completeness proof for the
one-variable fragment of the first-order version of the substructural logic FLe

by establishing an interpolation property for derivations in a cut-free sequent
calculus. We then explain how the proof generalizes to a family of first-order
substructural logics, including FLew, FLec, and FLewc (intuitionistic logic).
Finally, in Section 6, we discuss the limitations of the methods described in
the paper and potential extensions to broader families of first-order logics.

§2. A family of first-order logics. Let L be any algebraic signature, and let
Ln denote the set of operation symbols of L of arity n ∈ N. We will assume
throughout this paper that L2 contains distinct symbols ∧ and ∨, referring
to such a signature as lattice-oriented.

We call an algebraic structure A = 〈A, {�A | n ∈ N, � ∈ Ln}〉 an L-lattice
if �A is an n-ary operation on A for each � ∈ Ln (n ∈ N), and 〈A,∧A,∨A〉
is a lattice with respect to the induced order x ≤A y :⇐⇒ x ∧A y = x. As
usual, superscripts will be omitted when these are clear from the context.

Example 2.1. Let Ls be the lattice-oriented signature with binary
operation symbols ∧, ∨, ·, and →, and constant symbols f and e. An
FLe-algebra—also referred to as a commutative pointed residuated lattice—
is an Ls -lattice A = 〈A,∧,∨, ·,→, f, e〉 such that 〈A, ·, e〉 is a commutative
monoid and → is the residuum of ·, that is, a · b ≤ c ⇐⇒ a ≤ b → c, for
all a, b, c ∈ A. The class of FLe-algebras forms a variety FLe that provides
algebraic semantics for the full Lambek calculus with exchange FLe—also
known as multiplicative additive intuitionistic linear logic without additive
constants (see, e.g., [13, 20]). Algebraic semantics for other well-known
substructural logics are provided by various subvarieties of FLe; e.g.

• the full Lambek calculus with exchange and weakening FLew, and full
Lambek calculus with exchange and contraction FLec, correspond to
the varieties FLew and FLec of FLe-algebras satisfying the equations
f ≤ x ≤ e, and x ≤ x · x, respectively;
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• intuitionistic logic IL corresponds to the varietyHAof Heyting algebras,
term-equivalent to FLewc = FLew ∩ FLec (just identify · and ∧);

• classical logic CL and Gödel logic G correspond to the varieties BA
of Boolean algebras, and GA of Gödel algebras, axiomatized relative
to HA by the equations (x → f) → f ≈ x and (x → y) ∨ (y → x) ≈ e,
respectively;

• Łukasiewicz logic Ł corresponds to the variety MV of MV-algebras,
term-equivalent to the variety of FLew-algebras satisfying the equation
(x → y) → y ≈ x ∨ y.

Full first-order logics can be defined over an arbitrary predicate language
with formulas built using propositional connectives from the algebraic
signature L (see, e.g., [11, Section 7.1]). However, it suffices here to restrict
our attention to the one-variable setting and a fixed (generic) predicate
language. Let Fm1

∀(L) denote the set of one-variable L-formulas ϕ,�, �, ...
built inductively using a countably infinite set of unary predicates {Pi}i∈N,
a distinguished variable x, connectives in L, and quantifiers ∀, ∃. We call an
ordered pair of one-variable L-formulas ϕ,� ∈ Fm1

∀(L), written ϕ ≈ �, an
Fm1

∀(L)-equation, and write ϕ ≤ � as an abbreviation for ϕ ∧ � ≈ ϕ.2

Now let A be anyL-lattice, let S be a non-empty set, and let I(Pi) be a map
from S to A for each i ∈ N, writing u �→ f(u) to denote a map assigning
to each u ∈ S some f(u) ∈ A. We call the ordered pair S = 〈S, I〉 an
A-structure if the following inductively defined partial map ‖·‖S : Fm1

∀(L) →
AS is total:

∥∥Pi(x)
∥∥S = I(Pi) i ∈ N,

∥∥�(ϕ1, ... , ϕn)
∥∥S = u �→ �A(

‖ϕ1‖S (u), ... , ‖ϕn‖S (u)
)

n ∈ N, � ∈ Ln,
∥∥(∀x)ϕ

∥∥S = u �→
∧{

‖ϕ‖S (v) | v ∈ S
}
,

∥∥(∃x)ϕ
∥∥S = u �→

∨{
‖ϕ‖S (v) | v ∈ S

}
.

If A is complete—that is,
∧
X and

∨
X exist in A, for all X ⊆ A—then

S = 〈S, I〉 is always an A-structure; otherwise, whether or not the partial
map ‖·‖S is total depends on I. E.g., for A = 〈N,min,max〉 and S = N,
if I(P0)(n) := n, for all n ∈ N, then

∥∥(∃x)P0(x)
∥∥S is undefined, but if

I(Pi)(n) ≤ K for all i ∈ N and n ∈ S, for some fixed K ∈ N, then S is
an A-structure.

We say that an Fm1
∀(L)-equation ϕ ≈ � is valid in an A-structure S,

and write S |= ϕ ≈ �, if ‖ϕ‖S = ‖�‖S. More generally, consider any class

2Let us emphasize that an Fm1
∀(L)-equation ϕ ≈ � is a primitive syntactic object that

relates two formulas and not terms. In some settings (e.g., first-order substructural logics),
ϕ ≈ � can be replaced by a formula such as ϕ ↔ � and semantical consequence can be
defined between formulas, but this is not always the case.
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of L-lattices K. We say that an Fm1
∀(L)-equation ϕ ≈ � is a (sentential)

semantical consequence of a set of Fm1
∀(L)-equations T in K, and write

T �∀
K ϕ ≈ �, if for any A ∈ K and A-structure S,

S |= ϕ′ ≈ �′, for all ϕ′ ≈ �′ ∈ T =⇒ S |= ϕ ≈ �.

In certain cases, we can restrict our attention to the complete members of
K. Let us say that K admits regular completions if, for any A ∈ K, there exists
an L-lattice embedding h of A into a complete member B of K that preserves
all existing meets and joins, noting that for any A-structure S = 〈S, I〉, the
B-structure Sh = 〈S, Ih〉, with Ih(Pi) := h ◦ I(Pi) for each i ∈ I , satisfies
‖ϕ‖Sh = h ◦ ‖ϕ‖S for all ϕ ∈ Fm1

∀(L). Clearly, semantical consequence in
such a classK coincides with semantical consequence in the class of complete
members of K.

Example 2.2. A sufficient, but by no means necessary, condition for a
class of L-lattices to admit regular completions is closure under MacNeille
completions (see, e.g., [17]). This is the case in particular for BA and HA;
indeed, they are the only non-trivial varieties of Heyting algebras that have
this property [3]. A broad family of varieties of FLe-algebras—including
FLe, FLew, and FLec—are also closed under MacNeille completions, and
for a still broader family—including GA—this is true for the class of their
subdirectly irreducible members [9]. Note, however, that in some cases—
e.g., MV [14]—neither the variety nor the class of its subdirectly irreducible
members admits regular completions.

Let Fm�(L) denote the set of propositional formulas α, �, ... built
inductively using a countably infinite set of propositional variables {pi}i∈N,
connectives in L, and unary connectives � and �, and call an ordered
pair of propositional formulas α, � ∈ Fm�(L), written α ≈ � , an Fm�(L)-
equation. The (standard) translation functions (–)∗ and (–)◦ between
Fm1

∀(L) and Fm�(L) are defined inductively by

(Pi(x))∗ = pi p◦i = Pi(x) i ∈ N,

(�(ϕ1, ... , ϕn))∗ = �(ϕ∗
1 , ... , ϕ

∗
n) (�(α1, ... , αn))◦ = �(α◦1 , ... , α

◦
n) � ∈ Ln,

((∀x)ϕ)∗ = �ϕ∗ (�α)◦ = (∀x)α◦,
((∃x)ϕ)∗ = �ϕ∗ (�α)◦ = (∃x)α◦,

and lift in the obvious way to (sets of) Fm1
∀(L)-equations and Fm�(L)-

equations.
Clearly, (ϕ∗)◦ = ϕ for any ϕ ∈ Fm1

∀(L) and (α◦)∗ = α for any α ∈
Fm�(L), and we may therefore switch between first-order and modal
notations as convenient. To axiomatize consequence in the one-variable
first-order logic based on a class of L-lattices K, it therefore suffices to find
a (natural) axiomatization of a class C of algebras in the signature of L
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expanded with �,� such that �∀
K corresponds to equational consequence

in C. More precisely, let us call a homomorphism from the formula algebra
with universe Fm�(L) to some A ∈ C an A-evaluation, and define for any
set Σ ∪ {α ≈ �} of Fm�(L)-equations,

Σ �C α ≈ � :⇐⇒ for every A ∈ C and A-evaluation f,
f(α′) = f(� ′) for all α′ ≈ � ′ ∈ Σ =⇒ f(α) = f(�).

Our goal in this paper is to provide a (natural) axiomatization of a variety
V such that for any set of Fm1

∀(L)-equations T ∪ {ϕ ≈ �},

T �∀
K ϕ ≈ � ⇐⇒ T ∗ �V ϕ

∗ ≈ �∗.

Example 2.3. If K is BA, then �∀
K is consequence in the one-variable

fragment of first-order classical logic, corresponding to S5, and V is the
variety of monadic Boolean algebras defined in [16]. If K is HA, then �∀

K
is consequence in the one-variable fragment of first-order intuitionistic
logic, corresponding to MIPC, and V is the variety of monadic Heyting
algebras defined in [22]. Analogous results have been obtained for first-
order intermediate logics in [1, 2, 5–7, 24, 27, 28]. In particular, if K is
GA, then �∀

K is consequence in the one-variable fragment of the first-order
logic of linear frames, and V is the variety of monadic Heyting algebras
satisfying the prelinearity axiom (x → y) ∨ (y → x) ≈ e [6]. However, if K
is the class of totally ordered members of GA, then �∀

K is consequence in
the one-variable fragment of first-order Gödel logic, the first-order logic of
linear frames with a constant domain, andV is the variety of monadic Gödel
algebras, i.e., monadic Heyting algebras satisfying the prelinearity axiom
and the constant domain axiom �(�x ∨ y) ≈ �x ∨�y [7]. Similarly, if K
is the class of totally ordered MV-algebras, then �∀

K is consequence in the
one-variable fragment of first-order Łukasiewicz logic, and V is the variety
of monadic MV-algebras [26].

§3. An algebraic approach. As our basic modal structures, let us define
an m-lattice to be any algebraic structure 〈L,∧,∨,�,�〉 with lattice reduct
〈L,∧,∨〉 that satisfies the following equations:

(L1�) �x ∧ x ≈ �x, (L1�) �x ∨ x ≈ �x,
(L2�) �(x ∧ y) ≈ �x ∧�y, (L2�) �(x ∨ y) ≈ �x ∨�y,
(L3�) ��x ≈ �x, (L3�) ��x ≈ �x.

Let α ≤ � stand for α ∧ � ≈ α. It is easily shown that every m-lattice also
satisfies the following equations and quasi-equations:

(L4�) ��x ≈ �x, (L4�) ��x ≈ �x,
(L5�) x ≤ y =⇒ �x ≤ �y, (L5�) x ≤ y =⇒ �x ≤ �y.
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Now let L be any fixed lattice-oriented signature. We define an m-L-
lattice to be any algebraic structure 〈A,�,�〉 such that A is an L-lattice,
〈A,∧,∨,�,�〉 is an m-lattice, and the following equation is satisfied for
each n ∈ N and � ∈ Ln:

(��) �(�(�x1, ... ,�xn)) ≈ �(�x1, ... ,�xn).

Using (��), (L3�), and (L3�), it follows that 〈A,�,�〉 also satisfies for each
n ∈ N and � ∈ Ln, the equation

(��) �(�(�x1, ... ,�xn)) ≈ �(�x1, ... ,�xn).

Given a class K of L-lattices, let mK denote the class of m-L-lattices with an
L-lattice reduct in K. Note that if K is a variety, then so is mK.

Example 3.1. It is straightforward to show that the notion of an m-Ls -
lattice encompasses other algebraic structures considered in the literature.
In particular, mHA and mBA are the varieties of monadic Heyting algebras
[22] and monadic Boolean algebras [16], respectively. Moreover, if A is an
FLe-algebra, then every m-Ls -lattice 〈A,�,�〉 satisfies the equations

(L6�) �(x → �y) ≈ �x → �y, (L6�) �(�x → y) ≈ �x → �y,

andmFLe is therefore the variety of monadic FLe-algebras introduced in [29].
Let us just check (L6�), the proof for (L6�) being very similar. Consider
any a, b ∈ A. Since a ≤ �a, by (L1�), also �a → �b ≤ a → �b. Hence,
using (L3�), (→�), and (L5�),

�a→�b=��a→�b=�(��a → �b) = �(�a → �b) ≤ �(a → �b).

Conversely, since�(a → �b) ≤ a → �b, by (L1�), it follows by residuation
that a ≤ �(a → �b) → �b and hence, using (L5�), (L3�), and (→�),

�a ≤ �(�(a → �b) → �b) = �(a → �b) → �b.

By residuation again, �(a → �b) ≤ �a → �b.

Example 3.2. The variety mGA corresponds to the one-variable fragment
of Corsi’s first-order logic of linear frames [6], whereas the variety of
monadic Gödel algebras—axiomatized relative to mGA by the constant
domain axiom—corresponds to the one-variable fragment of first-order
Gödel logic, the first-order logic of linear frames with a constant domain [7].
Note, however, that the variety axiomatized relative to mMV by the constant
domain axiom does not satisfy �x ·�x ≈ �(x · x) and therefore properly
contains the variety of monadic MV-algebras studied in [8, 12, 26]. Consider,
for example, the MV-algebra Ł3 = 〈{0, 1

2 , 1},∧,∨, ·,→, 0, 1〉 (in the language
of FLe-algebras) with the usual order, where a · b := max(0, a + b – 1)
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and a → b := min(1, 1 – a + b). Let �0 = � 1
2 = �0 = 0 and �1 = � 1

2 =
�1 = 1. Then 〈Ł3,�,�〉 ∈ mMV satisfies the constant domain axiom, but
� 1

2 ·� 1
2 = 1 · 1 = 1 �= 0 = �0 = �( 1

2 · 1
2 ).

We now provide a useful description of m-L-lattices that generalizes results
in the literature for varieties such as monadic Heyting algebras [1] and
monadic FLe-algebras [29].

Lemma 3.3. Let 〈A,�,�〉 be any m-L-lattice. Then �A := {�a | a ∈ A}
forms a subalgebra �A of A, where �A = �A := {�a | a ∈ A} and,

�a = max{b ∈ �A | b ≤ a} and �a = min{b ∈ �A | a ≤ b}.
Proof. The fact that �A forms a subalgebra of A follows directly

using (��) for each operation symbol � of L, and �A = �A follows
from (L3�) and (L3�). Now consider any a ∈ A. If b ∈ �A satisfies
b ≤ a, then b = �b ≤ �a, by (L4�) and (L5�). But �a ≤ a, by (L1�), so
�a = max{b ∈ �A | b ≤ a}. Analogous reasoning establishes that �a =
min{b ∈ �A | a ≤ b}. �

Let us call a sublattice L0 of a lattice L relatively complete if for any a ∈ L,
the set {b ∈ L0 | b ≤ a} contains a maximum and the set {b ∈ L0 | a ≤ b}
contains a minimum. Equivalently, L0 is relatively complete if the inclusion
map f0 from 〈L0,≤〉 to 〈L,≤〉 has left and right adjoints, that is, if there
exist order-preserving maps � : L→ L0 and � : L→ L0 such that for all
a ∈ L and b ∈ L0,

f0(b) ≤ a ⇐⇒ b ≤ �a and a ≤ f0(b) ⇐⇒ �a ≤ b.
Let us also say that a subalgebra A0 of an L-lattice A is relatively complete
if this property holds with respect to their lattice reducts. In particular, by
Lemma 3.3, the subalgebra�A of A is relatively complete for any m-L-lattice
〈A,�,�〉. The following result establishes a converse.

Lemma 3.4. Let A0 be a relatively complete subalgebra of an L-lattice A,
and define �0a := max{b ∈ A0 | b ≤ a} and �0a := min{b ∈ A0 | a ≤ b}
for each a ∈ A. Then 〈A,�0,�0〉 is an m-L-lattice and �0A = �0A = A0.

Proof. It is straightforward to check that 〈A,∧,∨,�0,�0〉 is an m-lattice;
for example, it satisfies (L2�), since for any a1, a2 ∈ A,

�0(a1 ∧ a2) = max{b ∈ A0 | b ≤ a1 ∧ a2}
= max{b ∈ A0 | b ≤ a1 and b ≤ a2}
= max{b ∈ A0 | b ≤ a1} ∧ max{b ∈ A0 | b ≤ a2}
= �0a1 ∧�0a2.

Since A0 is a subalgebra of A, clearly 〈A,�0,�0〉 also satisfies (��). Hence
〈A,�0,�0〉 is an m-L-lattice and �0A = �0A = A0. �
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Combining Lemmas 3.3 and 3.4 yields the following representation
theorem for m-L-lattices.

Theorem 3.5. Let K be any class of L-lattices. Then there exists a one-
to-one correspondence between the members of mK and ordered pairs 〈A,A0〉
such that A ∈ K and A0 is a relatively complete subalgebra of A, implemented
by the maps 〈A,�,�〉 �→ 〈A,�A〉 and 〈A,A0〉 �→ 〈A,�0,�0〉.

Next, given anyL-lattice A and set W, let AW be theL-lattice with universe
AW , where the operations are defined pointwise.

Proposition 3.6. Let A be an L-lattice, W a set, and B a subalgebra of AW

such that for each f ∈ B , the elements
∧
v∈W f(v) and

∨
v∈W f(v) exist in

A and the following constant functions belong to B:

�f : W → A; u �→
∧

v∈W
f(v) and �f : W → A; u �→

∨

v∈W
f(v).

Then 〈B,�,�〉 is an m-L-lattice, and if A belongs to a class K of
L-lattices closed under taking subalgebras and direct powers, 〈B,�,�〉 ∈ mK.

Proof. It is straightforward to check that 〈B,∧,∨,�,�〉 satisfies (L1�),
(L2�), (L1�), and (L2�). To confirm that 〈B,�,�〉 is an m-L-lattice—
and therefore, if A belongs to a class K of L-lattices closed under taking
subalgebras and direct powers, a member of mK—observe that �f and �f
are, by definition, constant functions for any f ∈ B . Hence 〈B,∧,∨,�,�〉
clearly also satisfies (L3�) and (L3�). Moreover, for any n ∈ N, � ∈ Ln,
and f1, ... , fn ∈ B , the function �(�f1, ... ,�fn) is constant and therefore
equal to �(�(�f1, ... ,�fn)), so 〈B,∧,∨,�,�〉 satisfies (��). �

Let us call an m-L-lattice 〈B,�,�〉 〈A,W 〉-functional if it is constructed
as described in Proposition 3.6 for some L-lattice A and set W. Given any
class of L-lattices K, we call an m-L-lattice K-functional if it is isomorphic to
an 〈A,W 〉-functional m-L-lattice for some A ∈ K and set W, omitting the
prefix K- if the class is clear from the context.

The following result identifies the semantics of one-variable first-order
logics with evaluations into functional m-L-lattices.

Proposition 3.7. Let A be any L-lattice.

(a) Let S = 〈S, I〉 be any A-structure. Then B := {‖ϕ‖S | ϕ ∈ Fm1
∀(L)}

forms an 〈A, S〉-functional m-L-lattice B and the B-evaluation gS,
defined by setting gS(pi) := I(Pi) for each i ∈ N, satisfies for all
ϕ,� ∈ Fm1

∀(L),

gS(ϕ∗) = ‖ϕ‖S and S |= ϕ ≈ � ⇐⇒ gS(ϕ∗) = gS(�∗).
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(b) Let B be any 〈A,W 〉-functional m-L-lattice for some set W, and let
g be any B-evaluation. Then W = 〈W,J 〉, where J (Pi) := g(pi) for
each i ∈ N, is an A-structure satisfying for all ϕ,� ∈ Fm1

∀(L),

g(ϕ∗) = ‖ϕ‖W and W |= ϕ ≈ � ⇐⇒ g(ϕ∗) = g(�∗).

Proof. (a) To show that B is 〈A, S〉-functional, it suffices to observe that
for any ‖ϕ‖S ∈ B , since S is an A-structure, the elements

∧
{‖ϕ‖S (v) |

v ∈ S} and
∨
{‖ϕ‖S (v) | v ∈ S} exist in A and correspond to the constant

functions
∥∥(∀x)ϕ

∥∥S ∈ B and
∥∥(∃x)ϕ

∥∥S ∈ B , respectively. The fact that
gS(ϕ∗) = ‖ϕ‖S for all ϕ ∈ Fm1

∀(L), follows by an easy induction on the
definition of ϕ, from which it follows also that S |= ϕ ≈ � ⇐⇒ gS(ϕ∗) =
gS(�∗), for all ϕ,� ∈ Fm1

∀(L).
(b) Since B is 〈A,W 〉-functional, the elements

∧
v∈W f(v) and∨

v∈W f(v) exist in A for every f ∈ B . We prove that g(ϕ∗) = ‖ϕ‖W,
by induction on the definition of ϕ, from which it follows immediately that
W = 〈W,J 〉 is an A-structure and W |= ϕ ≈ � ⇐⇒ g(ϕ∗) = g(�∗), for
all ϕ,� ∈ Fm1

∀(L). In particular, for the case where ϕ = (∀x)�, using the
induction hypothesis for the second line,

∥∥(∀x)�
∥∥W (u) =

∧
{‖�‖W (v) | v ∈W }

=
∧

{g(�∗)(v) | v ∈W }
= �g(�∗)(u)
= g(((∀x)�)∗)(u).

The case where ϕ = (∃x)� is very similar. �

Let K be any class of L-lattices and denote by fK the class of all K-
functional m-L-lattices. Then, as a direct consequence of Proposition 3.7,
for any set of Fm1

∀(L)-equations T ∪ {ϕ ≈ �},

T ∗ �fK ϕ
∗ ≈ �∗ ⇐⇒ T �∀

K ϕ ≈ �.

If K is closed under taking subalgebras and direct powers, then fK ⊆ mK,
by Proposition 3.6, and we obtain the following relationship between
consequence in the first-order logic defined over K and consequence in the
variety mK.

Corollary 3.8. Let K be a class of L-lattices closed under taking
subalgebras and direct powers. Then for any set of Fm1

∀(L)-equations
T ∪ {ϕ ≈ �},

T ∗ �mK ϕ
∗ ≈ �∗ =⇒ T �∀

K ϕ ≈ �.
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Moreover, if every member of mK is K-functional (i.e., fK = mK), then

T ∗ �mK ϕ
∗ ≈ �∗ ⇐⇒ T �∀

K ϕ ≈ �.
Let us remark that a stricter notion of a functional algebra for a class K

of L-lattices is considered in [2, 10] that coincides in our setting with the
notion of being Kc-functional, where Kc is the class of complete members
of K. That is, an m-L-lattice 〈B,�,�〉 is Kc-functional if it is isomorphic to
a subalgebra of 〈AW ,�,�〉 for some complete L-lattice A ∈ K and set W,
where � and � are defined as described in Proposition 3.6.

§4. A functional representation theorem. Adapting the proof of a similar
result for Heyting Algebras [2, Theorem 3.6], we prove in this section that
if a variety V of L-lattices has the superamalgamation property, then every
member of mV is V-functional, and hence, by Corollary 3.8, consequence in
the one-variable first-order logic defined over V corresponds to consequence
in mV.

We first recall the necessary algebraic notions. Let K be a class of
L-lattices. A V-formation in K is a 5-tuple 〈A,B1,B2, f1, f2〉 consisting of
A,B1,B2 ∈ K and embeddings f1 : A → B1, f2 : A → B2. An amalgam in
K of a V-formation 〈A,B1,B2, f1, f2〉 in K is a triple 〈C, g1, g2〉 consisting
of C ∈ K and embeddings g1 : B1 → C, g2 : B2 → C such that g1 ◦ f1 =
g2 ◦ f2; it is called a superamalgam if also for any b1 ∈ B1, b2 ∈ B2 and
distinct i, j ∈ {1, 2},

gi (bi ) ≤ gj(bj) =⇒ gi (bi ) ≤ gi ◦ fi (a) = gj ◦ fj(a) ≤ gj(bj) for some a ∈ A.

The class K is said to have the superamalgamation property if every
V-formation in K has a superamalgam in K.

Theorem 4.1. LetK be a class ofL-lattices that is closed under taking direct
limits and subalgebras, and has the superamalgamation property. Then every
member of mK is functional.

Proof. Consider any 〈A,�,�〉 ∈ mK. Then A ∈ K and, since K is closed
under taking subalgebras, also �A ∈ K. We let W := N

>0 and define
inductively a sequence of L-lattices 〈Ai〉i∈W in K and sequences of L-lattice
embeddings 〈fi : �A → Ai〉i∈W , 〈gi : A → Ai〉i∈W , 〈si : Ai–1 → Ai〉i∈W .

Let A0 := A and let f0 : �A → A be the inclusion map. For each i ∈W ,
there exists inductively, by assumption, a superamalgam 〈Ai , si , gi〉 of the
V-formation 〈�A,Ai–1,A, fi–1, f0〉, and we define alsofi := si ◦ fi–1 = gi ◦
f0 = gi |�A.

Now let L be the direct limit of the system 〈〈Ai , si〉〉i∈W with an associated
sequence of L-lattice embeddings 〈li : Ai → L〉i∈W . Since K is closed under
taking direct limits, L belongs to K. The first two superamalgamation steps
of this construction are depicted in the following diagram:

https://doi.org/10.1017/bsl.2024.22 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2024.22


264 PETR CINTULA, GEORGE METCALFE, AND NAOMI TOKUDA

�A A

A A1 A2 A3

L

···

f0

f0

f1
g3g2

g1

s1 s2 s3

l1
l2

l3

Since the operations of LW are defined pointwise, B := {〈li ◦ gi(a)〉i∈W |
a ∈ A} is the universe of a subalgebra B of LW . We can also show that for
each a ∈ A, the elements

∧

j∈W
lj ◦ gj(a) and

∨

j∈W
lj ◦ gj(a)

exist in L and hence that 〈B,�,�〉, with� and�defined in Proposition 3.6, is
an 〈L,W 〉-functional m-L-lattice. Let a ∈ A and fix some i ∈W . It suffices
to show that li ◦ gi(�a) and li ◦ gi(�a) are the greatest lower bound and
the least upper bound, respectively, of S := {lj ◦ gj(a) | j ∈W }. Observe
first that for any k ∈W ,

lk ◦ gk(�a) = lk ◦ fk(�a) = lk+1 ◦ sk+1 ◦ fk(�a) = lk+1 ◦ gk+1(�a),

where the first and last equations follow from the definition of fk and the
second follows from the fact that L is a direct limit. Hence for each j ∈W ,

li ◦ gi(�a) = lj ◦ gj(�a) ≤ lj ◦ gj(a).

So li ◦ gi(�a) is a lower bound of S. Now suppose that c ∈ L is another
lower bound of S. Since L is a direct limit, there exist k ∈W and d ∈ Ak
such that

lk+1 ◦ sk+1(d ) = lk(d ) = c ≤ lk+1 ◦ gk+1(a).

Since lk+1 is an embedding, sk+1(d ) ≤ gk+1(a). Hence, since
〈Ak+1, sk+1, gk+1〉 is a superamalgam of 〈�A,Ak,A, fk, f0〉, there exists
b ∈ �A such that

sk+1(d ) ≤ sk+1 ◦ fk(b) = gk+1 ◦ f0(b) ≤ gk+1(a).

But sk+1 and gk+1 are embeddings andf0 is the inclusion map, so d ≤ fk(b)
and b ≤ a. The latter inequality together with b ∈ �A, yields b = �b ≤ �a.
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Hence also fk(b) ≤ fk(�a) = gk(�a), and, using the first inequality,

c = lk(d ) ≤ lk ◦ fk(b) ≤ lk ◦ gk(�a) = li ◦ gi(�a).

So
∧
j∈W lj ◦ gj(a) = li ◦ gi(�a) exists in L and the constant function

〈li ◦ gi(�a)〉i∈W belongs to B. Also, symmetrically,
∨
j∈W lj ◦ gj(a) =

li ◦ gi(�a) exists in L and the constant function 〈li ◦ gi(�a)〉i∈W belongs
to B.

To show that 〈A,�,�〉 is functional, it remains to prove that the following
map is an isomorphism:

f : 〈A,�,�〉 → 〈B,�,�〉; a �→ 〈li ◦ gi(a)〉i∈W .

Since the operations of LW are defined pointwise and li and gi are L-
lattice embeddings for each i ∈W , also f is an L-lattice embedding. Clearly,
it is onto, by the definition of B. Moreover, recalling that li ◦ gi(�a) =∧
j∈W li ◦ gi(a) for each a ∈ A, it follows that

f(�a) = 〈li ◦ gi (�a)〉i∈W = 〈
∧

j∈W
lj ◦ gj(a)〉i∈W = �〈li ◦ gi (a)〉i∈W = �f(a),

and, similarly, f(�a) = �f(a). �

Combining Theorem 4.1 with Corollary 3.8 yields the following result.

Corollary 4.2. If V is a variety of L-lattices that has the superamalgama-
tion property, then for any set T ∪ {ϕ ≈ �} of Fm1

∀(L)-equations,

T �∀
V ϕ ≈ � ⇐⇒ T ∗ �mV ϕ

∗ ≈ �∗.

Example 4.3. The variety of lattices has the superamalgamation property
[15]. Hence, by Theorem 4.1, every m-lattice is functional, and consequence
in the one-variable first-order lattice logic corresponds to consequence in
m-lattices.

Example 4.4. FLe, FLew, and FLec, and many other varieties of FLe-
algebras have the superamalgamation property, which is equivalent in this
setting to the Craig interpolation property for the associated substructural
logic (see, e.g., [13]). Hence, for any such variety V—notably, for V ∈
{FLe,FLew,FLec}—every member of mV is functional, and consequence in
the one-variable first-order substructural logic defined over V corresponds
to consequence in mV.

Example 4.5. A normal modal logic has the Craig interpolation property
if and only if the associated variety of modal algebras—Boolean algebras
with an operator—has the superamalgamation property [19]. Moreover,
there exist infinitely many such logics [25], including well-known cases such
as K, KT, K4, and S4. Hence our results yield axiomatizations for the one-
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variable fragments of infinitely many first-order logics defined over varieties
of modal algebras.

Suppose finally that K is a class of L-lattices that is not only closed
under taking direct limits and subalgebras and has the superamalgamation
property, but also admits regular completions. In this case, we can adapt
the proof of Theorem 4.1 to show that every member of K is Kc-functional,
which—as noted at the end of Section 3—corresponds to the stricter notion
of a functional algebra considered in [2, 10]. Just observe that, given some
〈A,�,�〉 ∈ mK, the direct limit L ∈ K constructed in the proof embeds into
some L̄ ∈ Kc and hence, reasoning as before, 〈A,�,�〉 is isomorphic to a
subalgebra of 〈L̄W ,�,�〉.

§5. A proof-theoretic strategy. In this section, we describe an alternative
proof-theoretic strategy for establishing completeness of axiomatizations
for one-variable fragments of first-order logics. The key step is to prove that
a derivation of a one-variable formula in a sequent calculus for the first-
order logic can be transformed into a derivation that uses just one variable.
To illustrate, we consider the first-order version of the full Lambek calculus
with exchange FLe, then extend the method to a broader family of first-order
substructural logics.

The crucial feature of the first-order version of FLe needed for our
approach is the fact that it can be presented as a cut-free sequent calculus
with the standard rules for quantifiers. Any derivation of a one-variable
formula ϕ in this calculus will therefore consist of sequents containing only
subformulas of ϕ with some free occurrences of the variable x replaced
by other variables. In particular, the derivation will not introduce any
new occurrences of quantifiers or bound variables, but may introduce free
variables not occurring in ϕ via the rules for the universal quantifier on
the right and the existential quantifier on the left. Hence, to reason about
derivations of one-variable formulas, we may consider a fragment of the
sequent calculus restricted to formulas that contain only unary predicates
and one bound variable, but may contain further free variables.

More formally, let Fm1+
∀ (Ls) be the set of first-order formulas built induc-

tively using unary predicates {Pi}i∈N, variables {x} ∪ {xi}i∈N, connectives
in Ls , and quantifiers (∀x) and (∃x). Clearly, Fm1

∀(Ls) ⊆ Fm1+
∀ (Ls). We

write ϕ(w̄) to denote that the free variables of ϕ ∈ Fm1+
∀ (Ls) belong to a

set w̄, and indicate by ϕ(w̄, y) that y is not among the variables in w̄.
For the purposes of this paper, we define a sequent to be an ordered

pair of finite multisets of formulas Γ,Δ in Fm1+
∀ (Ls), denoted by Γ ⇒ Δ,

such that Δ contains at most one Ls -formula.3 As usual, we denote the

3The full Lambek calculus with exchange is typically presented using sequents consisting
of finite sequences of formulas and an “exchange rule” to permute formulas (see, e.g., [20]).
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multiset sum of two finite multisets of formulas Γ1 and Γ2 by Γ1,Γ2, and
the empty multiset by an empty space. We also define, for n ∈ N

>0 and
ϕ1, ... , ϕn, � ∈ Fm1+

∀ (Ls),
∏

(ϕ1, ... , ϕn) := ϕ1 ···ϕn,
∏

() := e,
∑

(�) := �,
∑

() := f.

We write Γ(w̄) to denote that the free variables occurring in a finite multiset
of formulas Γ belong to a set w̄.

The sequent calculus ∀1FLe is displayed in Figure 1, where the quantifier
rules are subject to the following side-conditions:

(i) If the conclusion of an application of (∀⇒) or (⇒∃) contains at least
one free occurrence of a variable, then the variable u occurring in its
premise also occurs freely in its conclusion.

(ii) The variable y occurring in the premise of an application of (⇒∀) or
(∃⇒) does not occur freely in its conclusion.

If there exists a derivation d of a sequent Γ ⇒ Δ in a sequent calculus S, we
write d �S Γ ⇒ Δ or simply �S Γ ⇒ Δ.

The following relationship between derivability of sequents in ∀1FLe and
(first-order) validity of equations in FLe is a direct consequence of the
completeness of a cut-free sequent calculus for the first-order version of
FLe.

Proposition 5.1 (cf. [18, 23]). For any sequent Γ ⇒ Δ containing formulas
from Fm1

∀(Ls),

�∀1FLe
Γ ⇒ Δ ⇐⇒ �∀

FLe

∏
Γ ≤

∑
Δ.

We now establish an interpolation property for the calculus ∀1FLe. For
any derivation d of a sequent in ∀1FLe, let md(d ) denote the maximum
number of applications of the rules (⇒∀) and (∃⇒) that occur on a branch
of d. Note that the assumption in the following lemma that no variable in
w̄ ∪ {y, z} lies in the scope of a quantifier is required for the proof to ensure
that any formula (∀x)ϕ(x) or (∃x)ϕ(x) occurring in d contains no free
variables; however, in order to deal with the cases of (⇒∀) and (∃⇒), the
formula �(w̄) ∈ Fm1+

∀ (Ls) is not required to satisfy this condition.

Lemma 5.2. Let Γ(w̄, y),Π(w̄, z) ⇒ Δ(w̄, z) be any sequent such that
y �= z, x �∈ w̄ ∪ {y, z}, and no variable in w̄ ∪ {y, z} lies in the
scope of a quantifier. If d �∀1FLe

Γ(w̄, y),Π(w̄, z) ⇒ Δ(w̄, z), then there
exist �(w̄) ∈ Fm1+

∀ (Ls) and derivations d1, d2 in ∀1FLe such that
md(d1),md(d2) ≤ md(d ) and

d1 �∀1FLe
Γ(w̄, y) ⇒ �(w̄), d2 �∀1FLe

Π(w̄, z), �(w̄) ⇒ Δ(w̄, z).
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Figure 1. The sequent calculus ∀1FLe.

Proof. By a straightforward inspection of the rules of ∀1FLe, no variable
in w̄ ∪ {y, z} can lie in the scope of a quantifier in a sequent occurring in a
derivation in ∀1FLe of Γ(w̄, y),Π(w̄, z) ⇒ Δ(w̄, z). We prove the claim by
induction on the height of d, considering in turn the last rule applied in the
derivation.

Observe first that if y does not occur in Γ, we can define �(w̄) :=
∏

Γ, and
obtain a derivation d1 of Γ(w̄, y) ⇒ �(w̄), ending with repeated applications
of (⇒·), (⇒ e), and (id), and a derivation d2 of Π(w̄, z), �(w̄) ⇒ Δ(w̄, z)
that extends d with repeated applications of (·⇒) and (e⇒), such
that md(d1) = 0 and md(d2) = md(d ). Similarly, if z does not occur in
Π,Δ, we can define �(w̄) :=

∏
Π →

∑
Δ, and obtain a derivation d1

of Γ(w̄, y) ⇒ �(w̄) that extends d with repeated applications of (·⇒),
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(e⇒), and (⇒ f), followed by an application of (⇒ →), and a derivation
d2 of Π(w̄, z), �(w̄) ⇒ Δ(w̄, z) ending with repeated applications of (id),
(⇒·), (⇒ e), and (f ⇒), followed by an application of (→ ⇒), such that
md(d1) = md(d ) and md(d2) = 0.

For the base cases where d ends with (id), (⇒ e), or (f ⇒), either y does
not occur in Γ or z does not occur in Π,Δ. For the remainder of the proof,
let us assume that y occurs in Γ and z occurs in Π,Δ. The cases where d
ends with an operational rule for one of the propositional connectives are
all straightforward, so let us just consider (→ ⇒) as an example.

Suppose for the first subcase that Γ(w̄, y) is Γ1(w̄, y),Γ2(w̄, y), ϕ(w̄, y) →
�(w̄, y) and Π(w̄, z) is Π1(w̄, z),Π2(w̄, z), and

d ′1 �∀1FLe
Γ1(w̄, y),Π1(w̄, z) ⇒ ϕ(w̄, y),

d ′2 �∀1FLe
Γ2(w̄, y), �(w̄, y),Π2(w̄, z) ⇒ Δ(w̄, z),

where md(d ′1),md(d ′2) ≤ md(d ). Two applications of the induction hypoth-
esis produce �1(w̄), �2(w̄) ∈ Fm1+

∀ (Ls) and derivations d ′11, d
′
12, d

′
21, d

′
22 such

that md(d ′11),md(d ′12) ≤ md(d ′1), md(d ′21),md(d ′22) ≤ md(d ′2), and

d ′11 �∀1FLe
Γ1(w̄, y), �1(w̄) ⇒ ϕ(w̄, y), d ′12 �∀1FLe

Π1(w̄, z) ⇒ �1(w̄),

d ′21 �∀1FLe
Γ2(w̄, y), �(w̄, y) ⇒ �2(w̄), d ′22 �∀1FLe

Π2(w̄, z), �2(w̄) ⇒ Δ(w̄, z).

Let�(w̄) := �1(w̄) → �2(w̄). Then d ′11 and d ′21, together with applications of
(→ ⇒) and (⇒ →), and d ′12 and d ′22, together with an application of (→ ⇒),
yield derivations d1 and d2, respectively, such that md(d1),md(d2) ≤ md(d )
and

d1 �∀1FLe
Γ1(w̄, y),Γ2(w̄, y), ϕ(w̄, y) → �(w̄, y) ⇒ �(w̄),

d2 �∀1FLe
Π1(w̄, z),Π2(w̄, z), �(w̄) ⇒ Δ(w̄, z).

For the second subcase, suppose that Γ(w̄, y) is Γ1(w̄, y),Γ2(w̄, y) and
Π(w̄, z) is Π1(w̄, z),Π2(w̄, z), ϕ(w̄, z) → �(w̄, z), and

d ′1 �∀1FLe
Γ1(w̄, y),Π1(w̄, z) ⇒ ϕ(w̄, z),

d ′2 �∀1FLe
Γ2(w̄, y),Π2(w̄, z), �(w̄, z) ⇒ Δ(w̄, z),

where md(d ′1),md(d ′2) ≤ md(d ). Two applications of the induction hypoth-
esis produce �1(w̄), �2(w̄) ∈ Fm1+

∀ (Ls) and derivations d ′11, d
′
12, d

′
21, d

′
22 such

that md(d ′11),md(d ′12) ≤ md(d ′1), md(d ′21),md(d ′22) ≤ md(d ′2), and

d ′11 �∀1FLe
Γ1(w̄, y) ⇒ �1(w̄), d ′12 �∀1FLe

Π1(w̄, z), �1(w̄) ⇒ ϕ(w̄, z),

d ′21 �∀1FLe
Γ2(w̄, y) ⇒ �2(w̄), d ′22 �∀1FLe

Π2(w̄, z), �(w̄, z), �2(w̄) ⇒ Δ(w̄, z).

Let �(w̄) := �1(w̄) · �2(w̄). Then d ′11 and d ′21, together with an application
of (⇒·), and d ′12 and d ′22, together with applications of (→ ⇒) and (·⇒),
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yield derivations d1 and d2, respectively, such that md(d1),md(d2) ≤ md(d )
and

d1 �∀1FLe
Γ1(w̄, y),Γ2(w̄, y) ⇒ �(w̄),

d2 �∀1FLe
Π1(w̄, z),Π2(w̄, z), ϕ(w̄, z) → �(w̄, z), �(w̄) ⇒ Δ(w̄, z).

Next, we consider all the cases where d ends with an application of one of
the quantifier rules.

• (∀⇒): Suppose first that Γ(w̄, y) is Γ′(w̄, y), (∀x)ϕ(x) and

d ′ �∀1FLe
Γ′(w̄, y), ϕ(u),Π(w̄, z) ⇒ Δ(w̄, z),

where md(d ′) = md(d ) and, using the assumption that no other
variable lies in the scope of a quantifier, x is the only variable
occurring in ϕ. Since y occurs in Γ and z occurs in Π,Δ, it follows
from side-condition (i) for (∀⇒) that u ∈ w̄ ∪ {y, z}. For the first
subcase, suppose that u ∈ w̄ ∪ {y}. An application of the induction
hypothesis produces �(w̄) ∈ Fm1+

∀ (Ls) and derivations d ′1, d2 such that
md(d ′1),md(d2) ≤ md(d ′) and

d ′1 �∀1FLe
Γ′(w̄, y), ϕ(u) ⇒ �(w̄), d2 �∀1FLe

Π(w̄, z), �(w̄) ⇒ Δ(w̄, z).

If u occurs in Γ′(w̄, y), �(w̄), then extending d ′1 with an application of
(∀⇒) yields a derivation d1 such that md(d1) = md(d ′1) ≤ md(d ′) =
md(d ) and

d1 �∀1FLe
Γ′(w̄, y), (∀x)ϕ(x) ⇒ �(w̄).

Otherwise, by substituting u uniformly with y in d ′1, we obtain
a derivation of Γ′(w̄, y), ϕ(y) ⇒ �(w̄) and obtain d1 as described
previously.

For the second subcase, consider u = z. An application of the
induction hypothesis produces �′(w̄) ∈ Fm1+

∀ (Ls) and derivations
d ′1, d

′
2 such that md(d ′1),md(d ′2) ≤ md(d ′) and

d ′1 �∀1FLe
Γ′(w̄, y) ⇒ �′(w̄), d ′2 �∀1FLe

ϕ(z),Π(w̄, z), �′(w̄) ⇒ Δ(w̄, z).

Let �(w̄) := �′(w̄) · (∀x)ϕ(x). Combining an instance (∀x)ϕ(x) ⇒
(∀x)ϕ(x) of (id) with d ′1 and an application of (⇒·) yields a derivation
d1 such that md(d1) = md(d ′1) ≤ md(d ′) = md(d ) and

d1 �∀1FLe
Γ′(w̄, y), (∀x)ϕ(x) ⇒ �(w̄).

Also, d ′2 extended with applications of (∀⇒) and (·⇒) yields a
derivation d2 such that md(d2) = md(d ′2) ≤ md(d ′) = md(d ) and

d2 �∀1FLe
Π(w̄, z), �(w̄) ⇒ Δ(w̄, z).
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Suppose next that Π(w̄, z) is Π′(w̄, z), (∀x)ϕ(x) and

d ′ �∀1FLe
Γ(w̄, y),Π′(w̄, z), ϕ(u) ⇒ Δ(w̄, z),

where md(d ′) = md(d ) and x is the only variable occurring in ϕ. Since
y occurs in Γ and z occurs in Π,Δ, it follows from side-condition (i) for
(∀⇒) that u ∈ w̄ ∪ {y, z}. The case of u ∈ w̄ ∪ {z} is very similar to the
first subcase above, so consider u = y. An application of the induction
hypothesis produces �′(w̄) ∈ Fm1+

∀ (Ls) and derivations d ′1, d
′
2 such

that md(d ′1),md(d ′2) ≤ md(d ′) and

d ′1 �∀1FLe
Γ(w̄, y), ϕ(y) ⇒ �′(w̄), d ′2 �∀1FLe

Π′(w̄, z), �′(w̄) ⇒ Δ(w̄, z).

Let �(w̄) := (∀x)ϕ(x) → �′(w̄). Extending d ′1 with applications of
(∀⇒) and (⇒ →) yields a derivation d1 such that md(d1) = md(d ′1) ≤
md(d ′) = md(d ) and

d1 �∀1FLe
Γ(w̄, y) ⇒ �(w̄).

Also, d ′2 and an instance (∀x)ϕ(x) ⇒ (∀x)ϕ(x) of (id) combined with
an application of (→ ⇒) yield a derivation d2 such that md(d2) =
md(d ′2) ≤ md(d ′) = md(d ) and

d2 �∀1FLe
Π′(w̄, z), (∀x)ϕ(x), �(w̄) ⇒ Δ(w̄, z).

• (⇒∀): Suppose that Δ(w̄, z) is (∀x)ϕ(x) and for some variable u that
does not occur freely in Γ(w̄, y),Π(w̄, z) ⇒ (∀x)ϕ(x),

d ′ �∀1FLe
Γ(w̄, y),Π(w̄, z) ⇒ ϕ(u),

where md(d ′) = md(d ) – 1 and x is the only variable occurring inϕ. An
application of the induction hypothesis produces �′(w̄, u) ∈ Fm1+

∀ (Ls)
and derivations d ′1, d

′
2 such that md(d ′1),md(d ′2) ≤ md(d ′) and

d ′1 �∀1FLe
Γ(w̄, y) ⇒ �′(w̄, u), d ′2 �∀1FLe

Π(w̄, z), �′(w̄, u) ⇒ ϕ(u).

Let �(w̄) := (∀x)�′(w̄, x). Extending d ′1 with an application of (⇒∀)
yields a derivation d1 such that md(d1) = md(d ′1) + 1 ≤ md(d ′) + 1 =
md(d ) and

d1 �∀1FLe
Γ(w̄, y) ⇒ �(w̄).

Also, extending d ′2 with applications of (∀⇒) and (⇒∀) yield a
derivation d2 such that md(d2) = md(d ′2) + 1 ≤ md(d ′) + 1 = md(d )
and

d2 �∀1FLe
Π(w̄, z), �(w̄) ⇒ (∀x)ϕ(x).

• (⇒∃): Suppose that Δ(w̄, z) is (∃x)ϕ(x) and

d ′ �∀1FLe
Γ(w̄, y),Π(w̄, z) ⇒ ϕ(u),
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where md(d ′) = md(d ) and x is the only variable occurring in ϕ. Since
y occurs in Γ and z occurs in Π,Δ, it follows from side-condition (i)
for (⇒∃) that u ∈ w̄ ∪ {y, z}. For the first subcase, suppose that u ∈
w̄ ∪ {z}. An application of the induction hypothesis produces �(w̄) ∈
Fm1+

∀ (Ls) and derivations d1, d
′
2 such that md(d1),md(d ′2) ≤ md(d ′)

and

d1 �∀1FLe
Γ(w̄, y) ⇒ �(w̄), d ′2 �∀1FLe

Π(w̄, z), �(w̄) ⇒ ϕ(u).

If u occurs in Π(w̄, z), �(w̄), then extending d ′2 with an application of
(⇒∃) yields a derivation d2 such that md(d2) = md(d ′2) ≤ md(d ′) and

d2 �∀1FLe
Π(w̄, z), �(w̄) ⇒ (∃x)ϕ(x).

Otherwise, by substituting u uniformly with z in d ′2, we obtain
a derivation of Π(w̄, z), �(w̄) ⇒ ϕ(z) and obtain d2 as described
previously.

For the second subcase, consider u = y. An application of the
induction hypothesis produces �′(w̄) ∈ Fm1+

∀ (Ls) and derivations
d ′1, d

′
2 such that md(d ′1),md(d ′2) ≤ md(d ′) and

d ′1 �∀1FLe
Π(w̄, z) ⇒ �′(w̄), d ′2 �∀1FLe

Γ(w̄, y), �′(w̄) ⇒ ϕ(y).

Let �(w̄) := �′(w̄) → (∃x)ϕ(x). Combining d ′2 with applications of
(⇒∃) and (⇒ →) yields a derivation d1 such that md(d1) = md(d ′2) ≤
md(d ′) = md(d ) and

d1 �∀1FLe
Γ(w̄, y) ⇒ �(w̄).

Also, combining the instance (∃x)ϕ(x) ⇒ (∃x)ϕ(x) of (id) andd ′1 with
(→ ⇒) yields a derivation d2 such that md(d2) = md(d ′1) ≤ md(d ′) =
md(d ) and

d2 �∀1FLe
Π(w̄, z), �(w̄) ⇒ (∃x)ϕ(x).

• (∃⇒): Suppose first that Γ(w̄, y) is Γ′(w̄, y), (∃x)ϕ(x) and for some
variable u that does not occur freely in Γ(w̄, y),Π(w̄, z) ⇒ Δ(w̄, z),

d ′ �∀1FLe
Γ′(w̄, y), ϕ(u),Π(w̄, z) ⇒ Δ(w̄, z),

where md(d ′) = md(d ) – 1 and x is the only variable occurring inϕ. An
application of the induction hypothesis produces �′(w̄, u) ∈ Fm1+

∀ (Ls)
and derivations d ′1, d

′
2 such that md(d ′1),md(d ′2) ≤ md(d ′) and

d ′1 
∀1FLe
Γ′(w̄, y), ϕ(u) ⇒ �′(w̄, u), d ′2 
∀1FLe

Π(w̄, z), �′(w̄, u) ⇒ Δ(w̄, z).

Let �(w̄) := (∃x)�′(w̄, x). Combining d ′1 with applications of (⇒∃)
and (∃⇒) yields a derivation d1 such that md(d1) = md(d ′1) + 1 ≤
md(d ′) + 1 = md(d ) and
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d1 �∀1FLe
Γ′(w̄, y), (∃x)ϕ(x) ⇒ �(w̄).

Also, extending d ′2 with an application of (∃⇒) yields a derivation d2
such that md(d2) = md(d ′2) + 1 ≤ md(d ′) + 1 = md(d ) and

d2 �∀1FLe
Π(w̄, z), �(w̄) ⇒ Δ(w̄, z).

Now suppose that Π(w̄, z) is Π′(w̄, z), (∃x)ϕ(x) and for some variable
u that does not occur freely in Γ(w̄, y),Π(w̄, z) ⇒ Δ(w̄, z),

d ′ �∀1FLe
Γ(w̄, y),Π′(w̄, z), ϕ(u) ⇒ Δ(w̄, z),

where md(d ′) = md(d ) – 1 and x is the only variable occurring inϕ. An
application of the induction hypothesis produces �′(w̄, u) ∈ Fm1+

∀ (Ls)
and derivations d ′1, d

′
2 such that md(d ′1),md(d ′2) ≤ md(d ′) and

d ′1 
∀1FLe
Γ(w̄, y) ⇒ �′(w̄, u), d ′2 
∀1FLe

Π′(w̄, z), ϕ(u), �′(w̄, u) ⇒ Δ(w̄, z).

Let �(w̄) := (∀x)�′(w̄, x). The derivation d ′1 together with an applica-
tion of (⇒∀) yields a derivation d1 such that md(d1) = md(d ′1) + 1 ≤
md(d ′) + 1 = md(d ) and

d1 �∀1FLe
Γ(w̄, y) ⇒ �(w̄).

Also, d ′2 together with applications of (∀⇒) and (∃⇒) yields a
derivation d2 such that md(d2) = md(d ′2) + 1 ≤ md(d ′) + 1 = md(d )
and

d2 �∀1FLe
Π(w̄, y), (∃x)ϕ(x), �(w̄) ⇒ Δ(w̄, z). �

Using this lemma we can now reprove, by proof-theoretic means, the
special case of Corollary 4.2 for the variety FLe.

Theorem 5.3. For any set T ∪ {ϕ ≈ �} of Fm1
∀(Ls)-equations,

T �∀
FLe
ϕ ≈ � ⇐⇒ T ∗ �mFLe ϕ

∗ ≈ �∗.

Proof. The right-to-left direction follows directly from Corollary 3.8.
For the converse, note first that due to compactness and the local deduction
theorem for �∀

V (see [11, Sections 4.6 and 4.8]), we can restrict to the case
where T = ∅. Hence, by Proposition 5.1, it suffices to prove that for any
sequent Γ ⇒ Δ consisting only of formulas from Fm1

∀(Ls),

d �∀1FLe
Γ ⇒ Δ =⇒ �mFLe (

∏
Γ)∗ ≤ (

∑
Δ)∗.

We proceed by induction on the lexicographically ordered pair
〈md(d ), ht(d )〉, where ht(d ) is the height of the derivation d. The base
cases are clear and the cases for the last application of a rule in d except
(⇒∀) and (∃⇒) all follow by applying the induction hypothesis and the
equations defining mFLe. Just note that for each such application, the
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premises contain only formulas from Fm1
∀(Ls) with at least one fewer

symbol. In particular, for (∀⇒) and (⇒∃), it can be assumed that the
variable u occurring in the premise is x and the result follows using (L1�)
or (L1�).

Suppose now that the last rule applied in d is (⇒∀), where Δ is
(∀x)�(x) and x may occur freely in Γ. Then d ′ �∀1FLe

Γ ⇒ �(z) with
md(d ′) = md(d ) – 1, where z is a variable distinct from x. We write Γ(y)
and d ′(y) to denote Γ and d ′ with all free occurrences of x replaced by y.
Clearly, d ′(y) �∀1FLe

Γ(y) ⇒ �(z) with md(d ′(y)) = md(d ′). Note also that
no occurrence of y or z lies in the scope of a quantifier in Γ(y) ⇒ �(z).
Hence, by Lemma 5.2, there exist a sentence � and derivations d1, d2 such
that md(d1),md(d2) ≤ md(d ′) and

d1 �∀1FLe
Γ(y) ⇒ �, d2 �∀1FLe

� ⇒ �(z).

Since � is a sentence and x does not occur freely in Γ(y) or �(z), we can
assume that d1 and d2 do not contain any free occurrences of x, and, by
substituting all occurrences of y in d1, and z in d2, with x, obtain derivations
d ′1 of Γ ⇒ � and d ′2 of � ⇒ �(x) with md(d ′1) = md(d1) and md(d ′2) =
md(d2). Hence, by the induction hypothesis twice, �mFLe (

∏
Γ)∗ ≤ �∗ and

�mFLe �
∗ ≤ �(x)∗. Since ((∀x)�)∗ = ��∗ and � is a sentence, �mFLe �

∗ ≈
((∀x)�)∗, and hence the equations defining mFLe yield also �mFLe �

∗ ≤
((∀x)�(x))∗. So �mFLe (

∏
Γ)∗ ≤ ((∀x)�(x))∗.

Suppose finally that the last rule applied in d is (∃⇒), where Γ
is Γ′, (∃x)�(x) and x may occur freely in Γ′ and Δ. Then d ′ �∀1FLe

Γ′, �(y) ⇒ Δ with md(d ′) = md(d ) – 1, where y is a variable distinct
from x. We write Γ′(z), Δ(z), and d ′(z) to denote Γ′, Δ, and d ′ with all
free occurrences of x replaced by z. Clearly, d ′(z) �∀1FLe

Γ′(z), �(y) ⇒ Δ(z)
with md(d ′(z)) = md(d ′). By Lemma 5.2, there exist a sentence � and
derivations d1, d2 such that md(d1),md(d2) ≤ md(d ′) and

d1 �∀1FLe
�(y) ⇒ �, d2 �∀1FLe

Γ′(z), � ⇒ Δ(z).

Since � is a sentence and x does not occur freely in �(y), Γ′(z), or Δ(z),
we can assume that d1 and d2 do not contain any free occurrences of x,
and, by substituting all occurrences of y in d1, and z in d2, with x, obtain
derivations d ′1 of �(x) ⇒ � and d ′2 of Γ′, � ⇒ Δ with md(d ′1) = md(d1) and
md(d ′2) = md(d2). Hence, by the induction hypothesis, �mFLe �(x)∗ ≤ �∗
and�mFLe (

∏
(Γ′, �))∗ ≤ (

∑
Δ)∗. Since ((∃x)�)∗ = ��∗ and � is a sentence,

�mFLe �
∗ ≈ ((∃x)�)∗, and hence the equations defining mFLe yield also

�mFLe ((∃x)�(x))∗ ≤ �∗. So �mFLe (
∏

(Γ′, (∃x)�(x)))∗ ≤ (
∑

Δ)∗. �
The proof-theoretic strategy described above extends easily to varieties of

FLe-algebras axiomatized relative to FLe by equations of a certain simple
form. Given a variable x, let x0 := e and xk+1 := x · xk , for each k ∈ N, and
given a multiset Π and k ∈ N, let Πk denote the multiset union of k copies
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of Π. Now let S be the set of equations {x ≤ xk | k ∈ N} ∪ {f ≤ x}, and
define sequent rules

r(x ≤ xk) :=
Γ,Πk ⇒ Δ
Γ,Π ⇒ Δ

and r(f ≤ x) :=
Γ ⇒

Γ ⇒ Δ
.

Given any S ′ ⊆ S, denote by FLe + S ′ the variety of FLe-algebras axioma-
tized relative to FLe by the equations inS ′, and by ∀1FLe + r(S ′) the sequent
calculus ∀1FLe extended with the rules r(ε) for each equation ε in S ′. Then
for any sequent Γ ⇒ Δ containing formulas from Fm1

∀ (see, e.g., [18, 23]),

�∀1FLe+r(S′)
Γ ⇒ Δ ⇐⇒ �∀

FLe+S′

∏
Γ ≤

∑
Δ.

Moreover, the additional cases required to adapt the proof of Lemma 5.2
to ∀1FLe + r(S ′) are straightforward, since each application of a rule r(ε)
for ε ∈ S ′ has just one premise. Hence, following the proof of Theorem 5.3
yields the following more general result.

Theorem 5.4. For any S ′ ⊆ S and set T ∪ {ϕ ≈ �} of Fm1
∀(L)-equations,

T �∀
FLe+S′ ϕ ≈ � ⇐⇒ T ∗ �mFLe+S′ ϕ∗ ≈ �∗.

In particular, we obtain alternative proof-theoretic proofs of completeness
for the axiomatizations of the one-variable fragments of the first-order
extensions of FLew, FLec, and FLewc (intuitionistic logic).

§6. Concluding remarks. Let us conclude this paper by mentioning some
interesting directions for further research. The most general challenge
for a class K of L-lattices may be stated as follows: provide a (natural)
axiomatization of the equational consequence relation �∀

K, or, equivalently,
in algebraic terms, provide a (natural) axiomatization of the generalized
quasivariety generated by the class of all 〈A,W 〉-functional m-L-lattices
where A ∈ K and W is any set. In this paper, we have shown that when K is a
variety of L-lattices that has the superamalgamation property, the required
generalized quasivariety is the variety mK of m-L-lattices (Corollary 4.2),
axiomatized relative to K by a set of axioms familiar from modal logic.
However, if K lacks the superamalgamation property or is not a variety,
further axioms may be required.

One potential generalization is to consider varieties of L-lattices that have
the weaker super generalized amalgamation property, which corresponds
for substructural logics (even those without exchange) to the Craig
interpolation property [13]. In particular, such a result would yield an
axiomatization for the one-variable fragment of the first-order version of
the full Lambek Calculus FL, although we conjecture that completeness
would hold only for valid equations and not consequences. Alternatively,
such a generalization might be established proof-theoretically for first-order
versions of substructural logics like FL that have a cut-free sequent calculus,
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by lifting the proof-theoretic strategy presented in Section 5 to sequents
based on sequences of formulas.

A further interesting line of inquiry concerns the case where K consists
of the totally ordered members of a variety of L-lattices, and hence forms
a positive universal class. First, let V be any variety of semilinear FLe-
algebras: Ls -lattices that are isomorphic to a subdirect product of totally
ordered FLe-algebras. It is not hard to show that in this case, �∀

V (∃x)ϕ ·
(∃x)ϕ ≈ (∃x)(ϕ · ϕ). However, if Ł3 ∈ V (e.g., if V is MV or the variety
of all semilinear FLe-algebras), then ��mV �x ·�x ≈ �(x · x), as proved in
Example 3.2, so mV does not correspond to the one-variable fragment of
the first-order logic based on V.

Now let Vto be the class of totally ordered members of V. Then not only
�∀
Vto

(∃x)ϕ · (∃x)ϕ ≈ (∃x)(ϕ · ϕ), but also �∀
Vto

(∀x)(ϕ ∨ �) ≈ (∀x)ϕ ∨ �,
where x does not occur in �. Although a general approach to obtaining
axiomatizations of the one-variable fragments of the first-order logics based
on V and Vto is lacking, success for specific cases indicate a possible way
forward. Most notably, the one-variable fragment of first-order Łukasiewicz
logic can be defined over the class MVto of totally ordered MV-algebras
and corresponds to the variety of monadic MV-algebras, defined relative to
mMV by�x ·�x ≈ �(x · x) and�(�x ∨ y) ≈ �x ∨�y [26]. Interestingly,
a proof of this latter result is given in [8] using the fact that MVto has the
amalgamation property (see also [21, 29] for related results), suggesting
that the approach developed in this paper might be adapted to one-variable
fragments of first-order logics based on classes of totally ordered algebras
that have the amalgamation property.
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[16] P. R. Halmos, Algebraic logic, I. Monadic Boolean algebras. Compositio Mathematica,

vol. 12 (1955), pp. 217–249.
[17] J. Harding, A regular completion for the variety generated by the three-element Heyting

algebra. Houston Journal of Mathematics, vol. 34 (2008), no. 3, pp. 649–660.
[18] Y. Komori, Predicate logics without the structural rules. Studia Logica, vol. 45 (1986),

no. 4, pp. 393–404.
[19] L. L. Maksimova, Modal logics and varieties of modal algebras: The Beth properties,

interpolation, and amalgamation. Algebra i Logika, vol. 31 (1992), no. 2, pp. 145–166.
[20] G. Metcalfe, F. Paoli, and C. Tsinakis, Residuated Structures in Algebra and

Logic, Mathematical Surveys and Monographs, vol. 277, American Mathematical Society,
Providence, 2023.

[21] G. Metcalfe and O. Tuyt, A monadic logic of ordered abelian groups. Proceedings
of AiML 2020 (N. Olivetti, S. Negri, G. Sandu, and R. Verbrugge, editors), Advances in
Modal Logic, vol. 13, College Publications, 2020, pp. 441–457.

[22] A. Monteiro and O. Varsavsky, Algebras de Heyting monádicas, Actas de las X
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