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Langmuir circulations (LCs) arise through the interaction between the Lagrangian drift
of the surface waves and the wind-driven shear layer. Quasi-streamwise vortices (QSVs)
also form in the turbulent shear layer next to a flat surface. Both vortical structures
manifest themselves by inducing wind-aligned streaks on the surface. In this study,
numerical simulations of a stress-driven turbulent shear layer bounded by monochromatic
surface waves are conducted to reveal the vortical structures of LCs and QSVs, and
their interactions. The LC structure is educed from conditional averaging guided by the
signatures of predominant streaks obtained from empirical mode decomposition; the width
of the averaged LC pair is found to be comparable to the most unstable wavelength of
the Craik–Leibovich equation. Coherent vortical structures (CVSs) are identified using
a detection criterion based on local analysis of the velocity-gradient tensor and their
topological geometry; QSVs accumulated beneath the windward surface are found to
dominate the distribution. Employing the variable-interval spatial average to the identified
QSVs further reveals that QSVs tend to form in the edge vicinity of the surface streaks
induced by the LCs. The transport budgets of streamwise enstrophy are examined to
reveal the interaction. It is found that QSVs perturb the streaks resulting in a localized
streamwise gradient of the spanwise velocity, that is, vertical vorticity. The vertical
shear tilts the vertical vorticity, therefore enhancing streamwise enstrophy production and
the formation of QSVs. The results highlight the differences in the CVSs between the
Langmuir turbulence and the wall turbulence.

Key words: wave-turbulence interactions, surface gravity waves, turbulence simulation

† Email address for correspondence: wttsai@ntu.edu.tw
‡ Present address: Department of Naval Architecture and Ocean Engineering, National Kaohsiung

University of Science and Technology, Kaohsiung 81157, Taiwan.

© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 969 A30-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

57
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:wttsai@ntu.edu.tw
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2023.577&domain=pdf
https://doi.org/10.1017/jfm.2023.577


W.-T. Tsai and G.-H. Lu

1. Introduction

Wind generates surface waves and induces a turbulent shear current underneath. The
oscillatory convection of surface waves undulates the turbulent shear layer. The interaction
between the Lagrangian drift of the surface waves and the turbulent shear layer gives rise
to Langmuir circulations (LCs) (see the reviews by Leibovich 1983; Thorpe 2004). For
strong shear, the LCs can further distort the surface waves and the boundary layer (Craik
1982; Phillips 1998). These complex flow processes of wind waves set the rate at which
properties exchange between the water and the air. Laboratory and field measurements
supported by theoretical and numerical results have shown that the turbulence featuring
LCs is significantly different from the classical turbulent boundary layer owing to the
influence of surface waves (D’Asaro 2014).

The coherent circulatory motions of LCs manifest themselves by forming visible streaks,
or windrows, on the water surface roughly aligned with the wind direction and extended
over the wind fetch. It is widely accepted that LCs arise as an instability of the Eulerian
mean flow driven by wind stress and modulated by surface waves (Thorpe 2004). The
equations that govern the transverse instability beneath surface waves in the presence
of weak shear were first derived by Craik & Leibovich (1976), which are known as the
Craik–Leibovich (CL) equations, and generalized to allow for shear of any level by Craik
(1982) and Phillips (1998). The wavelength of the transverse instability is governed by the
primary mean shear and the rectified effect of the wave field exposed as the Lagrangian
drift. Accordingly, the width of the LC cells, i.e. the transverse spacing between the
streaks, is determined by the mean shear imparted by the wind and the dominant surface
waves.

Elongated low-speed streaks can also be observed in the turbulent boundary layer near a
no-slip wall (Kline et al. 1967). When scaled by the viscous length, the transverse spacing
between the streaks exhibits a probability distribution conforming to log-normal behaviour
with a universal mean value of 100 wall units (Kline et al. 1967; Smith & Metzler 1983). It
has been recognized that quasi-streamwise vortices (QSVs) within the buffer region in the
turbulent wall layer form the streaks by advecting the mean velocity gradient (Blackwelder
& Eckelmann 1979). Streaky structures were also observed on sheared turbulence bounded
by a free-slip boundary (Lee & Hunt 1991; Rashidi & Banerjee 1990; Lam & Banerjee
1992). This suggests that the QSVs can form in the shear layer immediately beneath the
wind waves and induce elongated streaks on the wavy surface. These high-speed streaks
formed by QSVs of the turbulent shear layer are geometrically similar to those formed by
LCs attributed to the interaction between surface waves and shear current. However, the
characteristic length scales of these two vortical structures and their corresponding surface
streaky footprints are distinctive.

Figure 1 shows two infrared images of non-breaking wind waves taken by Schnieders
(2015) (reproduced from Lu, Tsai & Jähne 2019) and Smith, Handler & Scott (2007) (see
also Handler & Smith 2011), respectively, in two different laboratory experiments. Both
infrared images exhibit wind-aligned streaky signatures of distinct length scales. In the
experiments, the heat flux is upward from the water to the air, so the dark streaks in the
thermal images represent cold surface water attributed to convergence flows. Predominant
streaks extend in the streamwise direction over the entire image. The more intermittent
and shorter streaks are observed between the predominant streaks. Such distinctness
in streaky surface signatures suggests their different underlying coherent motions of
varying formation mechanisms. This study aims to educe these vortical structures beneath
non-breaking wind waves and the possible interaction between the vortical structures of
distinct length scales.
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(a) (b)

x (cm) x (cm)

y 
(c

m
)

35

30

25

20

15

10

5

0

20

15

10

5

05 10 15 20 25 30 35 40 45 5 10 15 20 25

Figure 1. Infrared images of wind waves taken by Schnieders (2015) (a; u∗ = 0.707 cm s−1; reproduced from
Lu et al. 2019) and Smith et al. (2007) (b; u∗ = 0.574 cm s−1; see also Handler & Smith 2011). The wind
direction is indicated by red arrow. The heat flux is from the water to the air. The black-to-white grey scale
represents low-to-high temperature variation. The grey scale is arbitrary and represents temperature where
black is cold and white is warm.

Other experiments also revealed the correlation between the streamwise vortical
structures and the surface streaks in Langmuir turbulence. Melville, Shear & Veron (1998)
conducted laboratory experiments on the generation and evolution of streamwise vortices
of various scales in a wind-driven surface shear layer. They observed that streamwise
vortices are generated shortly after the first appearance of surface waves. Their experiment
also demonstrated the formation and development of surface streaks accompanying that
of the streamwise vortices. The subsequent laboratory experiments by Veron & Melville
(2001) clearly show the strong influence of the streamwise vortices on the growing wave
field. Both experiments of Melville et al. (1998) and Veron & Melville (2001) belong to
the flow condition of a strong shear current (Craik 1982; Phillips 1998). Thus Melville
et al. (1998) and Veron & Melville (2001) called the vortical structures small-scale LCs.

Wave-resolved numerical simulations have also been undertaken to study Langmuir
turbulence with an emphasis on validating the wave-averaged CL equations (Fujiwara,
Yoshikawa & Matsumura 2018; Wang & Özgökmen 2018; Zhou 1999; Fujiwara
& Yoshikawa 2020). Xuan, Deng & Shen (2019) recently conducted wave-resolved
large-eddy simulations (LESs) to study the underlying vortical structures and vorticity
dynamics in Langmuir turbulence. They found that, in addition to the tilting effect induced
by the vertical gradient of wave Lagrangian drift, the phase correlation between the
vorticity fluctuations and the wave orbital straining is also important to the cumulative
vorticity evolution. Such an effect is consistent with the vortex force modelling in the CL
equations. The numerical study of Fujiwara et al. (2018) reached a similar conclusion.

Despite the progress made by these experimental and numerical studies, to our
understanding, the mutual interaction between the vortical structures of various scales in
Langmuir turbulence has yet to be studied and remains intractable (Thorpe 2004). Motived
by the laboratory observations, the objectives of the present numerical study are twofold:
firstly, to educe the underlying vortical structures of various length scales within Langmuir
turbulence. Secondly, to reveal the possible interaction between these vortical structures
of distinct length scales.

Note that the instantaneous flow field knows nothing of LC and QSV; instead, it achieves
equilibrium by distributing energy over a spectrum of length and time scales, some more
energetic than others. Langmuir turbulence is the part of that spectrum resulting from the

969 A30-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

57
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.577


W.-T. Tsai and G.-H. Lu

influence of the surface waves, which act to direct energy into length scales that scale on
the wavelength of the waves and form a discrete spectrum of streamwise-aligned coherent
structures, which we identify as LCs. Accordingly, we identify similar structures with
much shorter length and time scales as QSVs.

To proceed, we consider the most elementary situation producing Langmuir turbulence:
a layer of water of infinite depth with uniform density under the action of wind of unlimited
fetch with constant speed and direction. Specifically, a turbulent shear layer bounded
by monochromatic surface waves and driven by stresses acting at the wavy boundary is
simulated numerically. Such a model problem has previously been studied by Zhou (1999),
Tsai et al. (2013), Guo & Shen (2013, 2014), Wang & Özgökmen (2018), Fujiwara et al.
(2018), Fujiwara, Yoshikawa & Matsumura (2020), Fujiwara & Yoshikawa (2020), Lu
et al. (2021), Xuan et al. (2019) and Xuan, Deng & Shen (2020). In these simulations, the
large-scale surface gravity waves are fully resolved. The main difference is whether the
momentum dissipation process is resolved or modelled. In a direct numerical simulation
(DNS), the momentum equation is solved numerically down to the viscous dissipation
range without employing the subgrid-scale model (Guo & Shen 2013; Tsai et al. 2013;
Guo & Shen 2014; Fujiwara et al. 2018, 2020; Fujiwara & Yoshikawa 2020; Lu et al.
2021). Being restricted by the computation capacity, the characteristic length scale of the
DNS flow is limited to less than O(102) cm. Therefore DNS is mainly used for mechanistic
study of laboratory scale, as in the present work. In an LES, subgrid-scale modelling is
used for the unresolved flow. Zhou (1999) and Xuan et al. (2019, 2020) conducted LESs
of Langmuir turbulence, resolving the surface waves with wavelengths of O(102) m. It
is worth noting that for Langmuir turbulence of the oceanic scale, LESs employing the
CL equations have been successful in replicating features attributed to LCs observed in
the field, particularly in the mixed layer (e.g. Skyllingstad & Denbo 1995; McWilliams,
Sullivan & Moeng 1997; Noh, Min & Raasch 2004; Polton & Belcher 2007; Harcourt &
D’Asaro 2008; Kukulka et al. 2010; Deng et al. 2019, among many others). In comparison
with the wave-resolved LES, in LES solving the CL equations, the accumulative effect of
surface waves on the flow is modelled by the vortex force us × (∇ × 𝔳), where us is the
Stokes drift of the waves and 𝔳 is the wave-averaged rotational velocity field.

The paper is structured as follows. In § 2, the DNS employed in this study is introduced;
the computational set-ups and the flow parameters of the simulation scenarios are
described. Surface signatures of the simulation results are analysed using the image
procession technique based on empirical mode decomposition (Lu et al. 2019). The
results are presented in § 3. Guided by the signatures of predominant surface streaks, a
conditional average is employed to educe the vortical structures of LCs in § 4. Linear
instability analysis of the wave-averaged CL equations is then conducted to determine
whether the transverse width of the averaged structure is comparable to the wavelengths
of the unstable transverse modes. In § 5, a detection criterion based on local analysis of
the velocity-gradient tensor, and the topological geometry of the criterion are employed
to extract and classify various coherent vortical structures (CVSs) associated with shear
turbulence, including QSV. The spatial distributions of the QSVs and their correlation
with LCs are then examined. In § 6, a method combining QSV detection and the
variable-interval conditional average is developed to elucidate the preferable distributions
of QSVs in the vicinity of LCs. The transport budgets of streamwise enstrophy are then
examined to explain the enhanced formation of QSVs by LCs.
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Coherent vortical structures in Langmuir turbulence

2. Numerical simulation of turbulent shear flow bounded by surface waves

2.1. Numerical method
We consider the three-dimensional turbulent shear flow beneath non-breaking progressive
surface waves driven by surface stresses. The water density ρ and the kinematic viscosity
ν are constants. The velocity υ = (u, υ,w) and the dynamic pressure p of the flow field
are governed by the solenoidal condition and the Navier–Stokes equations. The nonlinear
boundary conditions of mass and momentum conservation, namely the conditions of
material surface and continuity of tangential and normal stresses, are satisfied on the
wavy surface z = η(x, y, t), where z = 0 is the mean surface. The advection–diffusion
equation governing the evolution of the temperature field θ is also integrated in time with
the flow simulation. The temperature is treated as a passive tracer; the buoyancy effect due
to temperature fluctuations hence does not modify the vertical momentum equation.

The numerical method for solving the governing equations in a time-dependent domain
subject to the fully nonlinear surface conditions was documented in Tsai & Hung (2007)
where details of the numerics and the implementation for simulations of various wavy
flows were reported. The simulation set-up in this study is similar to that of Tsai et al.
(2013). The important features of the numerical method are summarized here.

To accurately track the Lagrangian free-surface boundary and satisfy the boundary
conditions, the time-dependent physical domain in (x, y, z) is mapped to a rectangular
computational domain in (ξ, ψ, ζ ) by the algebraic transformation

ξ = x, ψ = y, ζ = z + h
h + η(x, y, t)

, (2.1a–c)

where h is the constant depth, the x and y axes are in the streamwise and spanwise
directions, respectively. The bottom and surface of the water column, therefore, are at
ζ = 0 and 1, respectively. The governing equations and the boundary conditions are
transformed to, and solved in, the computational domain. Such a computation strategy
employing algebraic mapping has been implemented in Fulgosi et al. (2003), Tsai &
Hung (2007), Tsai et al. (2013), Guo & Shen (2009), Yang & Shen (2011), Xuan & Shen
(2019) and Fujiwara et al. (2020) for simulating the three-dimensional, fully nonlinear
free-surface flow of viscous fluids.

The numerical model employs spectral discretization for horizontal differentials and
finite differencing in the vertical with a mesh fine enough to resolve gravity–capillary
waves down to capillary scale and the viscous sublayer immediately beneath the wavy
surface. Low-storage Runge–Kutta scheme (e.g. Williamson 1980) is adopted for temporal
integration of the Navier–Stokes equations for the velocity υ(x, y, z, t) and the kinematic
free-surface boundary condition for the surface elevation η(x, y, t). Taking the divergence
of the temporally discretized Navier–Stokes equations and applying the solenoidal
constraint to the velocity field at the new time interval results in a Poisson equation for
the pressure. The pressure Poisson equation is solved before integrating the Navier–Stokes
equations to the next time interval. The normal-stress condition is employed as the
Dirichlet condition for the pressure at the free surface in solving the Poisson equation. The
tangential-stress surface conditions are satisfied implicitly in integrating the horizontal
momentum equations at the free surface by rearranging the conditions to evaluate the
vertical derivatives of the horizontal velocities. A given uniform heat flux gives rise to a
Neumann condition for the temperature field.

The validity and effectiveness of the numerical method have been demonstrated in the
previous studies of wave–turbulence interaction (Tsai, Chen & Lu 2015; Tsai et al. 2017)
and the turbulent boundary layer beneath wind waves (Tsai et al. 2013; Lu et al. 2021).
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2.2. Simulation set-up
The simulations are initiated by superimposing an ambient fluctuation velocity field
onto the velocity field of progressive, monochromatic surface waves from the nonlinear
Stokes-wave solution. The surface wave is characterized by the wavelength λ and steepness
ak, where a is half the wave height and k = 2π/λ is the wavenumber. The fluctuation
velocity field is solenoidal and homogeneous in both the along- and cross-wind directions.
Therefore, the only flow structure of the initial velocity field is the two-dimensional wavy
motion in the along-wind vertical plane associated with the surface waves. The initial
surface wave is imposed to shorten the spin-up time for the wave and flow fields to reach
quasi-steady states (discussed in § 2.4). The simulations are carried out for at least 20
surface wave periods before the flow fields are used for analyses.

Tangential and normal surface stresses are applied at the water surface to maintain the
propagation of the surface waves and the evolution of the underlying turbulent shear
flow. The stress distributions are guided by the measurements of Banner & Peirson
(1998) and Peirson (1997), and the analyses of Fedorov & Melville (1998). Despite the
idealizations imposed in the numerical simulation, the computed surface elevation and
surface-tangential velocity compared well with the measurements of Banner & Peirson
(1998) as reported in Tsai et al. (2013).

The length Lx, width Ly and depth h of the computational domain are 4, 2 and 0.8
times the wavelength λ of the surface waves and discretized by 512, 256 and 128 grids.
A stretched grid system is employed such that the discretization grids cluster when
approaching the surface to allow proper resolution of the viscous sublayer adjacent to
the upper surface. For the simulations considered (see § 2.3), there are at least ten grids in
the near-surface region |z+| < 10, where z+ = h(1 − ζ )u∗/ν is the distance from the free
surface in wall unit and u∗ is the mean friction velocity of water at the wavy surface.

2.3. Simulation parameters
In Lu et al. (2021), simulations employing the above-mentioned numerical model were
conducted with various initial surface-wave steepness ak and mean surface shear stress
τ0 = ρu2∗. These simulations are guided by a series of experiments conducted in the
annular wind-wave facility Aeolotron at Heidelberg University (Schnieders et al. 2013;
Schnieders 2015). The measurement set-ups of the experiments were summarized in
Lu et al. (2021). Thermal images at various wind-wave conditions were taken in these
experiments with u∗ ranging from 0.1 to 1.4 cm s−1 as indicated by the black solid and
open symbols in figure 2. (Figure 2 is reproduced from the results of figures 4 and 8 in
Lu et al. (2021) showing the mean surface streak spacings obtained from experiments
and numerical simulations at various wind speeds. These comparisons will be further
discussed in § 3.) In the experiments, non-breaking gravity–capillary waves were observed
for 0.4 cm s−1 � u∗ <� 0.74 cm s−1. Based on the observations, five scenarios of
non-breaking wind-wave flows at u∗ = 0.25, 0.4, 0.5, 0.707 and 1 cm s−1 are considered
in the simulations of Lu et al. (2021), as indicated by the solid red circles in figure 2. The
simulation of u∗ = 1 cm s−1, was conducted to demonstrate the impact of non-breaking
periodic waves in the high shear condition under which the surface waves observed in the
wind–wave flume break. The analyses of surface thermal images by Lu et al. (2021) further
reveal that, when u∗ � 0.5 cm s−1, wind shear is not strong enough to maintain turbulence
production.

Accordingly, in the following analyses, we focus on the case of u∗ = 0.707 cm s−1

in which both the non-breaking surface waves and the shear turbulence are pronounced,
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5 Schnieders et al. (2013) – Aeolotron 2011

Schnieders et al. (2013) – Aeolotron 2011(sur)

Schnieders et al. (2013) – Aeolotron 2012

Aeolotron 2014

Aeolotron 2012

Numerical simulations
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Figure 2. Variations of the dimensional mean streak spacing d̄ with the friction velocity u∗ obtained from
experiments and numerical simulations. The comparisons are reproduced from figures 4 and 8 in Lu et al.
(2021), and will be further discussed in § 3. The red solid circles denote the results obtained from the thermal
surface images of the numerical simulations. The black solid symbols denote the results obtained from the
infrared images taken in the experiments of Schnieders (2015) and analysed by Lu et al. (2021). The open
symbols are the results reported in Schnieders et al. (2013). The dashed line depicts the scaling d̄u∗/ν = d+ =
100.

and their mutual interactions are significant. The final steepness of the surface waves
ak ∼= 0.22. The friction Reynolds number Reτ = u∗λ/ν ∼= 530, where λ is the wavelength
of the surface wave. The ratio of the friction velocity to wave linear phase velocity
u∗/c0 ∼= 0.02, which is of O((ak)2). Surface waves with and without surface tension are
considered to assess the impact of capillary waves. These simulations are denoted by I1
and I0, meaning intermediate-amplitude waves (denoted by I) with and without surface
tension (denoted by 1 and 0, respectively). To examine the effect of carrier-wave steepness,
the initial wave amplitude is reduced such that the final ak ∼= 0.135. This simulation is
referred to as L0, meaning low-amplitude wave (denoted by L) without surface tension.
The simulation of turbulent flow bounded by a flat surface and driven by the same shear
stress is also conducted for comparison with the shear turbulence beneath a wavy surface.
This special case is called NW, which stands for simulation with no surface waves.

The flow parameters considered in the present simulations realize the condition in the
laboratory experiments. The turbulent Langmuir numbers, Lat = (u∗/Us)

1/2 (McWilliams
et al. 1997), are approximately 0.65 and 1 for cases I0 and L0, respectively, where Us =
(ak)2c0, corresponding to the condition of weak wave forcing considered in the typical
LESs of oceanic Langmuir turbulence solving the CL equations. However, as shown in the
simulation and analysis results of the following sections, the surface waves of cases I0 and
L0 are strong enough to generate the large-scale vortical structures of LCs.

2.4. Decomposition and averaging of the flow field
The mobile water surface poses the difficulty of evaluating statistical properties in the fixed
coordinate system of the physical domain. As such, analyses of the flow field are carried
out in the wave-following coordinate defined by (2.1a–c). Since the simulated flow consists
of a turbulent shear layer undulated by the oscillatory motions of the surface waves, a
flow property of the instantaneous flow field, f (x, y, ζ, t), is then decomposed into mean,
wave-correlated, and fluctuation components (e.g. Sullivan, McWilliams & Moeng 2000;
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Tsai et al. 2013; Xuan et al. 2020)

f (x, y, ζ, t) = f̄ (ζ, t)+ f̃ (x, ζ, t)+ f ′(x, y, ζ, t), (2.2)

where f ′(x, y, ζ, t) is the fluctuation component. The mean component f̄ (ζ, t) is obtained
by taking the spatial average of f over the wave-following constant ζ plane

f̄ (ζ, t) = 1
NλλLy

Nλ∑
m=1

∫ Ly

0

∫ λ
0

f (x + mλ, y, ζ, t) dx dy, (2.3)

where Nλ is the number of surface waves in the computation domain. The wave-correlated
component

f̃ (x, ζ, t) = 〈 f 〉y (x, ζ, t)− f̄ (ζ, t), (2.4)

where

〈 f 〉y (x, ζ, t) = 1
NλLy

Nλ∑
m=1

∫ Ly

0
f (x + mλ, y, ζ, t) dy, (2.5)

is the phase average of f . In some analyses, the ensemble average in time is also employed.
They will be noted in the following discussions.

Despite the wind forcings, the wave-correlated velocities of the simulated flow field
resemble closely that of a nonlinear Stokes wave, indicating the effectiveness of (2.4)
in decomposing the wave-correlated components, ũ and w̃. The same finding was also
reported in the wave-phase-resolved LES of Xuan et al. (2019). For the simulated waves,
the wave-correlated velocities decrease to 10 % of their surface values at the depth z+ ∼=
200. This depth gives a vertical length scale of the penetration depth of the LCs.

Figure 3 presents the vertical variations of the root-mean-square (r.m.s.) velocities,
σu, συ and σw, and the r.m.s. fluctuation velocities, σu′ , συ ′ and σw′ , of case I0 at
various time instances from t = 25T0 to 30T0, where the r.m.s. of quantity f is defined
as σf = (f 2)1/2. The profiles of the r.m.s. velocities exhibit strong anisotropy, with σu >
σw > συ . In contrast, the fluctuation intensities, σu′ , συ ′ and σw′ , are compatible with one
another; this is distinct from that in turbulent wall flow, in which σu′ > συ ′ > σw′ . For
Langmuir turbulence considered in the present simulation, the circulatory motion of LCs
contributes to the decomposed spanwise and vertical fluctuation components employing
decomposition (2.2), resulting in comparable fluctuation velocity partitions σu′ ∼ συ ′ ∼
σw′ . The notable fluctuating velocities, attributed to both shear turbulence and LCs, are
confined within the surface layer z+ � 200 where the wave motions dominate the flow.
The vertical distributions of these averaged fluctuation velocities change insignificantly
in time, indicating the Langmuir turbulence reaches the stationary state. In the following
discussions, simulated flows within this time interval are analysed.

3. Characteristics of surface signatures

Before proceeding to the eduction of underlying vortical structures, the characteristic
surface signatures on the wavy surfaces of the simulated flows are examined following
the analyses of Lu et al. (2021). In particular, the deviation of the scaling of streak spacing
on wind waves from that in wall turbulence is highlighted.

Figure 4(a) shows the temperature distributions θ at the wavy surface from the
numerical simulation of case I1. The imagery is dominated by wind-aligned elongated
signatures with visible small-scale fine structures appearing among the larger-scale
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Figure 3. Vertical distributions of the r.m.s. velocities, σu, συ and σw (a–c), and the r.m.s. turbulent velocities,
σu′ , συ ′ and σw′ (d– f ), of case I0 at six equal-spanning time instances from t = 25T0 to 30T0. The profiles at
t = 30T0 are shown in black; the rest are in grey.

elongated streaks. These streaks undulate in the streamwise direction. Viewing the
consecutive image sequences reveals that the undulation is associated with the cyclic
streamwise compression/expansion as the surface waves propagate.

Lu et al. (2019) developed an image processing method to decompose the characteristic
surface imageries induced by flow processes of different length scales and directionalities.
The method utilizes the two-dimensional empirical mode decomposition algorithm of Wu,
Huang & Chen (2009) and implements a new combination strategy based on the distinct
length scales and directionalities of the signatures. This image processing method is an
improvement of that in Tsai et al. (2013) which does not consider the spanwise variation
of the surface waves. A brief summary of the method is given in Appendix A. Accordingly,
the surface temperature distribution θ of a wind wave is represented as

θ(x, y) = θWG(x, y)+ θWC(x, y)+ θVLC(x, y)+ θVT (x, y), (3.1)

where θWG , θWC , θVLC and θVT are the decomposed components predominantly associated
with the long gravity waves, the short capillary waves, the wind-aligned streaks attributed
to LCs and the quasi-streamwise streaks associated with turbulent QSVs, respectively.

The decomposed components, θWG , θWC , θVLC and θVT , of the simulated thermal
images figure 4(a) are depicted in figures 4(b)–4(e). The results reveal distinct length
scales between the decomposed gravity- and capillary-wave components, θWG and θWC
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Figure 4. (a) Surface thermal image of case I1. Decomposed images: θWG (b), θWC (c), θVLC (d) and θVT (e).

(figure 4b,c), as well as the components of surface streaks attributed to LC and shear
turbulence, θVLC , and θVT (figure 4d,e). In particular, the large-scale surface streaks extend
over the entire streamwise domain (four wavelengths); in contrast, the fine-scale streak
footprints are shorter in streamwise length, transverse width and spacing between streaks.

The formation of the elongated streaks on the wind-sheared water surface is
geometrically similar to the low-speed streaks observed in the turbulent wall layers (Kline
et al. 1967). In the wall layers, the spacings between the low-speed streaks d, when scaled
by the viscous length ν/u∗, exhibit a probability distribution conforming to log-normal
behaviour with a mean value d+ = d̄u∗/ν = 100 ± 20 for a wide range of friction
velocities (e.g. Smith & Metzler 1983), where d̄ is the mean spacing. Accordingly, further
quantitative comparison between the measured and simulated results can be made by
examining the transverse spacing between the elongated streaks in the decomposed image
θVT . The streak footprints in the decomposed image θVT can be segmented objectively
using the data-driven thresholding scheme of Otsu (1979). The transverse spacings d
between the segmented streaks can then be measured. Details of the procedure are reported
in Lu et al. (2021).

Figure 2 summarizes the mean spacings d̄ at various u∗ obtained from analysing the
surface temperature distributions of numerical simulations and the infrared images of
wave-flume experiments reported in Lu et al. (2021). The results show that the mean
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Figure 5. Probability density histograms (red vertical bars) of the cross-wind streak spacing and the fitted
log-normal distributions (black lines) with the corresponding mean value for the flows of (a) case I0 with
ak ∼= 0.22, (b) case L0 with ak ∼= 0.135 and (c) flat surface without waves. The mean friction velocity on the
surface u∗ = 0.707 cm s−1 for the three flows. The results of flow bounded by a stress-driven flat surface are
reproduced from Lu et al. (2021).

streak spacings d̄ on simulated wavy surfaces compare well with those on laboratory wind
waves; albeit both are smaller than the canonical value 100ν/u∗ for streaks next to the wall
boundary. The quantitatively comparable streak spacings on the simulated wavy surfaces
and laboratory wind waves suggests similar underlying flow processes inducing streaky
surface signatures.

Figure 5 presents the probability density histograms of the streak spacing from analysing
the simulation results of I0 (ak ∼= 0.22), L0 (ak ∼= 0.135) and the simulated flow beneath
a stress-driven flat surface (Tsai, Chen & Moeng 2005; Lu et al. 2021). The mean friction
velocity on the surface u∗ = 0.707 cm s−1 for the three simulated flows. The solid curve
in figure 5 is the fitted log-normal probability density function determined from the mean
spacing d+ and the standard deviation σ+

d in the form

P(d+) = 1√
2πd+ψ0

exp

⎡⎣−1
2

(
1
ψ0

ln
d+

d+
0

)2
⎤⎦ , (3.2)

where d+
0 = d+(1 + ψ2

d )
−1/2 is the median value of d+, ψ0 = [ln(1 + ψ2

d )]
1/2 is the

coefficient of variation of ln d+ and ψd = σ+
d /d

+. For the flow bounded by a flat surface
with no surface waves, the shear layer is homogeneous in the spanwise direction; the scaled
streak spacing d+ exhibits a probability distribution conforming closely to log-normal
behaviour with a mean value d+ ∼= 104.7 approaching the canonical value 100 of turbulent
wall layer. When surface waves are present, the scaled streak spacings deviate from the
log-normal distribution and the distribution skews toward the lower value; the mean value
becomes smaller than 100. Such a deviation becomes more significant as the steepness of
the surface wave increases; the non-dimensional mean spacing d+ decreases to 85.4 in the
low-amplitude waves (case L0 with ak ∼= 0.135), and to 76.1 in the intermediate-amplitude
waves (case I0 with ak ∼= 0.22).

Specifically, the population of the finest streak spacings (d+ � 40) increases
considerably as the steepness of surface waves increases. This indicates that the presence
of surface waves changes the distribution of underlying QSVs that induce surface streaks.
One possible scenario is that the LCs, which arise from the interaction between the
surface waves and the shear layer, affect the formation of QSVs and, subsequently, the
distribution of surface fine-scale streaks. To validate the proposition, the characteristic
vortical structures associated with the LCs and the turbulent vortices are educed by various
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Figure 6. Perspective view of temperature distributions on the water surface, and representative along-wind
and cross-wind vertical planes from the numerical simulations of cases (a) I1 and (b) I0. The waves propagate
from the upper left to the lower right. The decomposed thermal images of large- and small-scale streaks
are superimposed above the wavy surface. The streamwise-averaged temperature distribution is shown on the
vertical plane in the lower right. The predominant cold streaks are marked by vertical arrows.

eduction schemes in the subsequent two sections. The spatial correlation between these
two vortical structures generated by different mechanisms is then examined to explore
their possible interaction.

4. Large-scale structure of LCs

To delineate the characteristic features of the surface and flow fields, temperature
distributions of cases I1 and I0 (intermediate waves with and without the surface tension,
respectively) are shown in figure 6. The figure depicts the perspective view of the flow
domains at t = 30T0. The temperature distributions are rendered on the wavy surface,
the front and side vertical boundaries. The decomposed images of large- and small-scale
streaks (θVLC and θVT ) are superimposed above the wavy surface.

The footprints of θVLC and θVT are characterized by the predominant and fine-scale
streaks, respectively. The sub-surface flow structure associated with the predominant
streaks can be elucidated by taking the streamwise average of the temperature field as
shown in the vertical plane on the front. Despite meandering and bifurcation of the
predominant streaks, the streamwise-averaged temperature distribution exhibits localized
cold areas immediately beneath the water surface with spanwise locations roughly
coinciding with the predominant surface cold streaks (marked by vertical arrows in
figure 6). This supports that the predominant streaks are formed by the counter-rotating
circulatory flows of the Langmuir cells. Since the streamwise length scales of the LCs are
much larger than those of the QSVs of shear turbulence, taking the streamwise average of
the flow field would filter out the intermittent vortices and retain only the flow structures
associated with the LCs.

Comparing the temperature distributions of cases I1 and I0 shown in figure 6 reveals
the insignificant difference between the simulated waves with and without surface tension.
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Figure 7. (a) Surface temperature distribution θ of case I0 and (b) the decomposed distribution characterized
by predominant streaks θVLC . The identified skeleton of the predominant streaks is marked by black dots.

We have conducted all quantitative analyses to be present in the following sections for the
flow of case I1. The results also show the minimum effect of capillary waves, consistent
with the qualitative observation from figure 6. Therefore, we will focus upon the impact
of gravity surface waves on the formation and distribution of vortical structures and only
discuss the results of cases I0, L0 and NW in the following sections.

4.1. Conditional averaging of LCs
As shown in figure 4(d), the predominant streaks meander, and so do the axes of the
large-scale vortical cells that accompany these streaks. Accordingly, streamwise averaging
to educe the large-scale vortical structures can be improved by utilizing the decomposed
image characterized by predominant streaks, θVLC . In the decomposed image θVLC , the
local temperature minima along various cross-wind transects are searched for as shown
in figure 7(b); their horizontal coordinates are denoted by (xi, yi). Connecting these
coordinates forms the skeleton of the streaks. Skeletons with non-dimensional lengths
less than 300 wall units are discarded. A conditional average of a physical quantity q is
then obtained by shifting the detected yi to the cross-wind origin of a new coordinate
Υ = y − yi and taking the streamwise average

[
q
]
(Υ, ζ ) = 1

NtNs

Nt∑
n=1

Ns∑
i=1

q(xi, y − yi, ζ, tn), (4.1)

where Ns is the total number of detected sections, and Nt is the total number of
ensemble time instances. Here, Υ = 0 therefore becomes the symmetric plane of the
counter-rotating pair of averaged LCs.

The averaged distributions of the fluctuation velocities on the cross-wind vertical plane
([υ ′], [w′]), and the corresponding streamwise vorticity [ω′

x] of the simulations I0 and L0
are shown in figure 8. The result reveals a more orderly cellular structure, consistent with
the counter-rotating circulatory flow of LCs: the averaged flow converges near the surface
and diverges in the submerged water, resulting in a downwelling beneath the surface streak
(Υ = 0) and upwellings on both sides of the structure. The surface converging velocities
are more significant than the submerged diverging velocities; the downwelling is stronger
than the upwellings, and both decay rapidly with depth.

The averaged structure depicted in figure 8 also reveals the characteristic cross-wind
length scale of the predominant LCs. The transverse span of a pair of Langmuir cells,
ds, can be estimated as the width between the two zero spanwise velocity contours at

969 A30-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

57
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.577


W.-T. Tsai and G.-H. Lu

0
(a) (b) (c)

(d ) (e) ( f )

50

100z+

z+

150

200
–0.2 –0.1 0 0.1 0.2 –0.2 –0.1 0 0.1 0.2 –0.2 –0.1 0 0.1 0.2

–0.2 –0.1 0

Υ/λ Υ/λ Υ/λ
0.1 0.2 –0.2 –0.1 0 0.1 0.2 –0.2 –0.1 0 0.1 0.2

0

[v′]
0.018–0.018 0

[w′]
0.012–0.012 0

[ω′
x]

0.12–0.12 0

50

100

150

200

0

50

100

150

200

0

50

100

150

200

0

50

100

150

200

0

50

100

150

200

Figure 8. The averaged distributions of the fluctuation velocities on the cross-wind vertical plane ([υ ′], [w′]),
and the corresponding streamwise vorticity [ω′

x] of cases I0 (a–c) and L0 (d– f ). The ensemble averaging is
taken from t = 25T0 to 30T0 for case I0 and from t = 30T0 to 35T0 for case L0.
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Figure 9. The streamwise averages of the spectral density distributions of the fluctuation velocities, 〈|û′|〉x,
〈|υ̂ ′|〉x and 〈|ŵ′|〉x, and the turbulent kinetic energy, 〈(|û′|2 + |υ̂ ′|2 + |ŵ′|2)1/2〉x, of cases I0 (a), L0 (b) and
NW (c).

the water surface. For both cases I0 and L0, the estimated width of an averaged LC pair
ds ∼= 0.34λ (see figure 8a,d), resulting in a non-dimensional wavenumber �s = λ/ds ∼=
2.9. Despite the comparable transverse length scales, the maximum velocities and the core
vorticity of the averaged LCs of I0 are stronger than those of L0; the maximum [υ ′] and
downwelling [w′] of I0 are approximately 1.3 times those of L0, the maximum [ω′

x] of I0
is approximately 1.5 times that of L0.

The transverse length scale of the large-scale vortical structure can also be revealed from
the velocity spectrum of the flow field. Figure 9 presents the streamwise averages of the
spectral density distributions of the fluctuation velocities, 〈|û′|〉x, 〈|υ̂ ′|〉x and 〈|ŵ′|〉x, and
the turbulent kinetic energy, 〈(|û′|2 + |υ̂ ′|2 + |ŵ′|2)1/2〉x, at the surface, where 〈·〉x is the
streamwise average, υ̂ ′(x, ky) is the Fourier transform of υ ′ and ky is the non-dimensional
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spanwise angular wavenumber. The distributions clearly show peaks at ky/2π = 3 for
cases I0 and L0, which is very close to the transverse wavenumber �s ∼= 2.9 of the averaged
vortical structure depicted in figure 8. The amplitudes of the υ ′ and w′ spectra of case I0
are higher than those of case L0, consistent with the averaged structure. In contrast, the
velocity spectra are broad-banded for case NW with no surface waves; no peak spectra of
velocities are observed.

4.2. Stability analysis of the CL equations
The results presented so far clearly reveal the possible formation of Langmuir cells beneath
the surface waves. It is widely accepted that LC arises through the interaction of the
Lagrangian drift of the surface waves with the shear current. Perturbations to the shear
current result in distortion of the vortex lines initially comprising spanwise vorticity ω̄y(z).
Despite the distortion, each vortex line advects at its original velocity plus Stokes drift Us.
Since dUs/dz /= 0, the distorted vortex lines are then exposed to different values of Us
at different z, the vortex line is tilted to realize streamwise vorticity. The equations that
govern this process beneath irrotational surface waves in the presence of weak shear were
first derived by Craik & Leibovich (1976), and are known as the CL equations. The CL
equations are wave averaged in the sense that they exploit the fact that LC evolves over
a longer time scale compared with the wave period and so take an average over the wave
field. The rectified effect of the wave field is then exposed as the Stokes drift. But for the
streamwise vorticity to realize the spanwise and vertical velocities and thus circulatory
rolls requires an instability mechanism.

To proceed, following Leibovich & Paolucci (1981) and Phillips (2001), we consider the
linearized CL equations, which can be written as

∂𝖛
∂t

+ 𝔴
∂Ue

∂z
i = Us∇p𝔲 − ∇p𝔭 + La∇2

p𝖛, (4.2)

where 𝖛( y, z, t) = 𝔲i + 𝔳j + 𝔴k is the non-dimensional wave-averaged perturbed
rotational velocity, Ue is the Eulerian mean velocity, 𝔭 is the wave-averaged perturbed
pressure and ∇p = ∂/∂yj + ∂/∂zk. The above process to realize the streamwise vorticity
of LCs is captured in the vortex force term Us∇p𝔲. In the non-dimensional equation (4.2),
the characteristic length scale L= k−1; the streamwise velocity is non-dimensionalized
by the characteristic velocity scale U= u2∗ν

−1
T k−1, where νT is the eddy viscosity; the

spanwise and vertical velocities are non-dimensionalized by V= U1/2U1/2
s ; the time is

non-dimensionalized by L/V; and the pressure is non-dimensionalized by ρV2. This
form then exposes the Langmuir number defined as La = νT V

−1L−1.
In the CL equation (4.2), the basic state consists of surface waves of ak ∼ O(ε) and

a weak Eulerian mean shear flow (Craik 1982). The level of shear is quantified by
U/c ∼ O(εs), where c is the phase velocity of the waves and the exponent s ≥ 0 (Phillips
1998, 2001). For a weak mean shear flow, s = 2, the characteristic scales of the perturbed
velocities are U∼ O(ε2) and V∼ O(ε2). For stronger but still weak shear, s = 1, the
CL instability mechanism, i.e. (4.2), is essentially unchanged, apart from scaling factors
(Craik 1982); the characteristic scales of the perturbed velocities become U∼ O(ε) and
V∼ O(ε3/2).

The CL equation (4.2) admits two instability mechanisms, CL types 1 and 2 (CL1
and CL2), according to whether the wave drift Us varies laterally. Since our simulations
impose unidirectional surface waves, the averaged large-scale vortical structures observed
in figure 8 are likely to be formed by the CL2 instability; and the spanwise width of
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the averaged LC pair would be close to the wavelength of the most unstable spanwise
disturbance.

Transverse instability of the rectified flow is then sought by assuming the disturbance to
be spanwise periodic with wavenumber � and represented by the normal mode

𝖛 = �̂�(z)Re {exp (i�y + σ t)} and 𝔭 = �̂�(z)Re {exp (i�y + σ t)} , (4.3a,b)

where the spanwise wavenumber � is equivalent to the ratio of the wavelength of surface
wave to the wavelength of spanwise disturbance, and σ is complex. Substituting (4.3a,b)
into the linearized CL equation (4.2), representing �̂� and �̂� by Chebyshev polynomials
and using the collocation technique results in a generalized complex eigensystem for
the truncated polynomial coefficients as the eigenvector and σ as the eigenvalue. The
transverse disturbance is unstable when the growth rate Re{σ } ≡ σr > 0. For the analysis
of asymptotic stability considering constant mean velocity shear as t → ∞, we concur
with the results of Tsai et al. (2017) employing the Galerkin technique of Phillips
(2001) up to two decimal places. The critical reciprocal Langmuir number La−1

c and
its corresponding critical wavenumber �c computed using the Galerkin and collocation
techniques are (La−1

c , �c) = (2.1435, 0.3182) and (2.1383, 0.3247), respectively. Note that
these values of La−1

c are higher than the 1.46 and 1.4395 globally stable values reported,
respectively, by Leibovich & Paolucci (1981) and Phillips (2001) because of a factor of 2
difference in the magnitude of the Stokes drift.

For stability analysis of the simulated flow, the mean shear velocity Ue is computed
from the ensemble average of the mean streamwise velocity ū when the flow reaches a
stationary state. The wave drift profile Us is calculated by the second-order Stokes drift
since the wave-correlated velocities (ũ, w̃) of the simulated flow field closely resemble
those of a third-order Stokes wave. The eddy viscosity νT is evaluated by taking the average
of −u′w′(dū/dz)−1 over the entire computation water column. For both cases I0 and L0,
the exponent of the shear index s ranges from 0.8 to 1.3, indicating the basic state consists
of a weak Eulerian mean shear flow, and the CL equation (4.2) can be used to explain the
formation mechanism of observed large-scale vortical structures.

Stability diagrams of the CL equation showing the range of unstable wavenumber
� for varying reciprocal Langmuir number La−1 of cases I0 and L0 are presented in
figures 10(a) and 10(c). The thick, solid lines mark the margin of the neutral stability
boundary. Variation of the most unstable wavenumber �with La−1 is depicted by the thick,
red dashed line. Contour lines of various fractions of the maximum growth rate σmax

r are
superimposed on the instability region by the dashed lines. Also presented in figures 10(b)
and 10(d) are the corresponding evolutions of the reciprocal Langmuir number La−1

with time. The reciprocal Langmuir number decays rapidly from the unrealistic values
of O(106∼8) in the early stage of the simulation to 85 at t ∼= 15T0 for case I0 and
to 80 at t ∼= 23T0 for case L0. After this simulation spin-up period, La−1 approaches
asymptotically to ∼40 at t ∼= 30T0 for case I0 and to ∼35 at t ∼= 40T0 for case L0.
Therefore, the subsequent evolution of the Langmuir turbulence can be considered as being
dominated by the most unstable transverse instabilities incepted at t ∼= 15T0 ∼ 16T0 with
La−1 ∼= 80 ∼ 85 for case I0, and at t ∼= 24T0 ∼ 25T0 with La−1 ∼= 49.5 ∼ 52 for case L0.
From the stability diagram, the corresponding wavenumber of the unstable mode with the
maximum growth rate is �max ∼= 2.7 ∼ 2.9 for case I0 and �max ∼= 2.65 ∼ 2.77 for case L0.
These �max of the instabilities with the maximum growth rates are close to the wavenumber
�s ∼= 2.9 of the averaged vortical structure depicted in figure 8. The close wavenumbers of
the most unstable modes of cases I0 and L0 also explain that the two instabilities grow
into vortical structures of similar transverse length scales shown in figure 8.
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Figure 10. Stability diagrams of the CL equation showing the range of unstable wavenumber � for varying
reciprocal Langmuir number La−1 of cases I0 (a) and L0 (c). The thick, black solid lines mark the margin of
neutral stability. Variation of the most unstable wavenumber with La−1 is depicted by the thick, red dashed
line; variations of unstable wavenumber with fractions of maximum growth rate are depicted by the thin, black
dashed lines (0.9σmax

r , 0.7σmax
r and 0.5σmax

r ). Temporal evolutions of the reciprocal Langmuir number La−1

of cases I0 (b) and L0 (d).

Note that the instability of the linearized CL equations (4.2) depends on the Eulerian
mean velocity Ue and the Stokes drift of the waves Us. These two velocity profiles are
different for cases I0 and L0. However, the ranges of �max of the corresponding La−1

are similar for the two waves of different steepnesses. Whether such similarity is due to
the coincidence of the spin-up processes in the simulations is not conclusive. In contrast,
the two instabilities of similar transverse length scales develop into vortical structures of
different strengths for surface waves of different steepnesses. In the CL equations, the
cumulative effect of the waves appears as the vortex force, fv = us × (∇ × 𝔳), driving
the counter-rotating Langmuir cells. Therefore, steeper surface waves accompanying larger
wave drift us result in a stronger vortex force that intensifies the vortical structures of LC,
as revealed by the averaged structures of cases I0 and L0 in figure 8.

It should also be emphasized that the less unstable modes of other wavelengths can also
develop into LCs with a wide range of transverse length scales. They are filtered out in the
averaging process of § 4.1.

5. Small-scale CVSs

The distinct spatial scales of the streaky signatures in the decomposed thermal images θVLC
and θVT depicted in figures 4 and 6 possibly suggest different flow processes underneath
to form the elongated surface streaks. For a turbulent shear flow next to a no-slip wall, the
QSVs manifest themselves in the form of elongated low-speed streaks in the immediate
proximity of the wall (Kline et al. 1967). Likewise, similar CVSs can also arise in the
wind-driven shear layer inducing high-speed surface streaks.
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Figure 11. Instantaneous distributions of the λ2
ci = 0.06 isosurfaces for the flows of cases I0 (a), L0 (b) and

NW (c). The red and blue colours of the isosurfaces represent the vortical structures with positive and negative
streamwise vorticities, respectively. (d– f ) The corresponding skeleton distributions of QSV (blue), forward
horseshoe vortex (FHV; red) and reversed horseshoe vortex (RHV; green).

5.1. Eduction of CVSs
There exist various methods to identify CVSs within turbulent shear flows. In these
methods, the swirling core of a CVS is defined by mathematical criteria based on the
local analysis of the velocity-gradient tensor ∇υ (e.g. Hunt, Wray & Moin 1988; Chong,
Perry & Cantwell 1990; Zhou et al. 1999) or on the Hessian of the pressure (Jeong
& Hussain 1995). Despite the differences in the definitions, Chakraborty, Balachandar
& Adrian (2005) showed inter-relationships among these criteria for various canonical
turbulent flows. Chen et al. (2020) further confirmed such relationships are also valid
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Figure 12. Schematics of FHV, RHV and four types of QSV. The surface waves propagate in the x direction.

for undulated turbulent shear flow over progressive surface waves. With no particular
preference, we choose the λci criterion of Zhou et al. (1999) to extract the CVSs in this
study: a CVS is defined as the region with conjugate complex eigenvalues λcr ± iλci of the
velocity-gradient tensor ∇υ, where the imaginary part of the eigenvalue λci represents the
local swirling strength rate of the CVS. The swirling strength of the small-scale CVSs is
higher than that of the large-scale vortical structure of LCs. Employing a low value of λci
would identify large-scale structures but include too many structures of broad-range length
scales. Therefore, by choosing the proper value of λci, the small-scale CVSs are retained,
and the large-scale structures are excluded. We have experimented with various values of
λci to choose the one that is the least sensitive to the following analysis results.

Figure 11 depicts instantaneous distributions of the λ2
ci = 0.06 isosurfaces for the

simulated flows of I0, L0 and NW. The red and blue colours of the isosurfaces denote
the vortical structures with positive and negative streamwise vorticities, respectively. The
distributions reveal the following notable features of CVS distributions: the population
of CVSs beneath steeper surface waves (case I0) is higher than that beneath less steep
waves (L0) and a flat surface (case NW). Most of the educed CVSs are elongated in the
streamwise direction; some horseshoe-shaped vortices, with both upward and downward
heads, are also observed. The CVSs tend to accumulate and align along elongated regions,
and the distributions depend on wave phase for the flows with waves (cases I0 and L0).
In contrast, the CVSs are distributed more randomly without spatial coherence in flow
beneath a flat surface (case NW).

The complex variabilities of different vortical structures result in difficulty in revealing
their population partitions and the spatial correlations with the surface waves and
Langmuir cells. This calls for a formal scheme to classify the vortical structures and to
quantify their distributions.

5.2. Spatial distribution and partition of CVSs
The method developed by Chen et al. (2020) is adopted here to identify and classify the
CVSs of different geometries. Details of the scheme are described in Chen et al. (2020)
and summarized in the following.

Given an instantaneous spatial distribution of λci, an isolated region with λ2
ci higher than

a given threshold is identified as a vortical structure. The geometry of the vortical structure
is then characterized by the skeleton of the isolated λ2

ci region. The skeleton of an identified
vortical structure is defined by connecting the grid points with the minimum increment
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Figure 13. Spatial distributions of the CVSs in the simulated flows of I0 (a–d) and L0 (e–h). The two panels
in the top two rows are distributions of accumulative occurrence count of characteristic vortices of FHV (a,e),
RHV (b, f ) and QSV (c,g), respectively. The bottom panels (d,h) are the corresponding histogram variations in
wave phase φ. The wave trough and the wave crest are defined to be 0◦ and 180◦, respectively.

in λ2
ci of the neighbouring grids. Each identified structure is then classified according to

the topological characteristics of its skeleton. Three types of vortical structures, including
QSV, FHV and RHV, are identified as schematized in figure 12. The QSV possesses a
geometric structure similar to that of the horseshoe vortex but with one dominant leg
and one degraded leg; therefore, it can be further classified into four types based on the
orientation and geometry properties, as depicted in figure 12. Type-1 and 2 QSVs bend in
at the downstream end and can be considered as a degenerate or incomplete FHV, whereas
type-3 and 4 QSVs bend in at the upstream end and thus are geometrically similar to an
RHV.

With the identification and classification scheme, the population partitions of different
types of CVSs and their spatial variations can then be quantified by computing the
cumulative occurrence count that a spatial coordinate (x, z+) is occupied by one of
the three types of CVSs, as shown in figure 13 for the flows of cases I0 and L0. The
distributions are ensemble results computed from the flows beneath four surface waves at
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Figure 14. Spatial distributions of accumulative occurrence count of four types of QSVs for the simulated
flows of I0 (a–d) and L0 (e–h).

21 independent time instances. The corresponding histogram variations in wave phase φ,
which are calculated by summing up the occurrence counts over z+, are also shown in
figure 13. Comparing the distributions of cases I0 and L0 reveals that more CVSs form
beneath steeper waves, consistent with the qualitative observation from figure 11.

Similar to the turbulent airflow above the wavy surface (Chen et al. 2020), the
distributions of the CVSs in the turbulent aqueous flows beneath surface waves also
strongly depend on the wave phase. The QSVs dominate the distribution, but in contrast
to airflow, the populations of FHV and RHV are insignificant. The QSVs are observed
beneath the entire wavy surface; the distribution initiates near the wave crest (x/λ ∼=
0.5 in figure 13(c,g), and extends upstream along the windward face (0 < x/λ < 0.5),
subducts below the wave trough (x/λ = 0) and continues toward the next forward face
(0.5 < x/λ < 1). The peak of the occurrence-count histogram is located near the middle
of the windward face (θ ∼= 90◦ in figure 13d,h).

The corresponding distributions of the four types of QSVs are shown in figure 14. Again,
type-3 and 4 QSVs, which can be considered as incomplete or degenerate RHVs with
elongated vortices bending inward at the submerged upstream end, significantly outgrow
type-1 and 2 QSVs.
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Figure 15. Probability density histograms (red vertical bars) and cumulative probability distributions (black
lines and rectangular symbols) of the non-dimensional distance d+

k from the skeleton of the QSV to the nearest
skeleton of the predominant streak for the flows of cases I0 (a) and L0 (b).

The above analyses reveal that type-3 and type-4 QSVs accumulate beneath
the backward surface of the carrier wave and dominate the formation of CVSs.
Figures 11(d)–11(e) depict the instantaneous skeleton distributions of QSVs for the
corresponding distributions of λ2

ci isosurfaces shown in figures 11(a)–11(b), indicating the
QSVs are more populous along several elongated regions; and the QSVs with positive and
negative streamwise vorticities tend to align alternatively.

Comparing the QSVs distributions in figures 11(a) and 11(d) with the corresponding
surface temperature distributions in figure 6(b) further reveals that the accumulation
regions of QSVs roughly coincide with predominant streaks. This can also be
demonstrated by examining the transverse distance dk between the skeleton of the QSV and
the nearest skeleton of the predominant streak depicted in figure 7(b). Figure 15 presents
the probability density histograms P and their corresponding cumulative probability
distributions CP of the non-dimensional distance d+

k = dku∗/ν for the identified QSV
skeletons in the simulated flows of cases I0 and L0. The results reveal that approximately
50 % of the QSVs are within the interval of 30 wall units from the predominant streaks.

The above observations suggest that the spanwise heterogeneity of the QSV distribution
could be attributed to the larger-scale circulatory structure of LCs. In § 6, the averaged
spatial relation between QSV and LC, and the interplay between these two vortical
structures are examined.

6. Enhancement of QSVs by LCs

6.1. Variable-interval space averaging of QSVs
To explore the relative spatial locations of the fine-scale QSVs and the large-scale
Langmuir cells, the method of variable-interval space averaging (VISA, e.g. Kim & Moin
1986) is combined with the CVS eduction and classification scheme described in § 5. The
modified VISA procedure consists of two major steps.

First, the QSVs of the designated type whose skeletons intersect with the plane of z+
0 =

h(1 − ζ0)u∗/ν ∼= 13.23 are identified. The vertical coordinate ζ0 ∼= 1 − 13.23ν/(hu∗),
where a layer of discretized points is located in the computational domain, is around the
skeleton midpoints of most QSVs; ζ0 is chosen by experimenting with various values
to produce the best averaging result. The intersection-point coordinate of the ith QSV
skeleton is denoted by (x0i, y0i, ζ0). A realization interval encompassing the identified
QSV is defined by choosing a rectangular domain centred horizontally at (x0i, y0i).
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Aligning (x0i, y0i, ζ0) of the identified intervals, averaging of the velocity field of the
realized QSV events is then taken as

{υ}(X, Υ, ζ ) = 1
NtNs

Nt∑
n=1

Nv∑
i=1

υ
(
x − x0i, y − y0i, ζ, tn

)
, (6.1)

where Nv is the total number of realizations of QSVs, Nt is the total number of ensemble
time instances, (X = 0, Υ = 0, ζ = 0) is the origin of the averaging interval. The VISA
velocity field {υ} is analysed to educe the flow structures.

Since type-3 and 4 QSVs dominate the population of educed CVSs, as shown in
figure 14, the flow intervals encompassing these two types of CVSs are realized.
Figure 16 depicts the plane distributions of the averaged velocities ({u′}, {υ ′}, {w′}) and
the isosurface λ2

ci = 0.06 from different perspective views of case I0, delineating the
dominant flow pattern and vortical structure around QSVs. The results deduced from the
realizations of type-3 and 4 QSVs are presented in the right and left columns, respectively.
The ensemble averaging is taken from flows at 21 time instances from t = 25T0 to 30T0 of
the simulation.

The λ2
ci isosurfaces highlight the characteristic geometries of type-3 and 4 QSVs: both

averaged vortical structures elongate in the streamwise direction from the submerged
(z+ ∼= 25) upstream head to the near-surface downstream end. The averaged structures
do not have the submerged spanwise heads; the lengths are shorter than the observed
QSVs of the instantaneous flow field in figure 11. These are attributed to the smearing
effect of averaging, particularly near the two ends of the QSVs. The averaged structure
deduced from the realizations of type-4 QSV (see figure 16a–d) is dominated by an
elongated structure of {ωx} < 0 that forms on the right edge (looking downstream, Υ < 0)
of a streamwise high-speed streak. A degenerated structure of {ωx} > 0 is attached to the
downstream end of the dominant {ωx} < 0 structure and extends toward the left side of
the streak. This is due to the coexistence of some type-4 QSVs on the other side of the
dominant streaks (Υ > 0). A similar but opposite-orientation pattern of vortical structure
is observed in the averaged flow based on realizations of the type-3 QSV (figure 16e–h).
These results reveal two distinct features of the QSV structures: first, the type-3 and
4 QSVs form at different but preferable spanwise and vertical locations relative to the
Langmuir cells. Second, the type-3 and 4 QSVs do not appear simultaneously in the
averaged flow, suggesting the intermittent appearances of the two types of QSVs along
both sides of the predominant streaks in the instantaneous flow field.

Both averaged velocity fields based on realizations of type-3 and 4 QSVs reveal flow
patterns similar to that of averaged LCs depicted in figure 8: a streak with higher
streamwise velocity forms on the water surface, the near-surface flows converge toward
the surface streak, downward beneath the surface streak, and diverge in the submerged
depth. However, in contrast to the averaged flow of LC, the averaged flow based on QSV
realization exhibits spanwise unbalance. For averaging based on type-4 QSV realizations
(figure 16d), the flow structure on the opposite side of the QSV (Υ > 0) remains
analogous to that of LCs in figure 8; the near-surface convergence ({υ ′} > 0) above the
QSV and the submerged divergence ({υ ′} < 0) beneath the QSV, however, are more
intensified and skewed toward the type-4 QSV. An opposite unbalanced flow pattern
is observed for averaging based on type-3 QSV realization (figure 16h). Such averaged
flow structures again imply that in the instantaneous flow field, the vortical structures of
ωx > 0, primarily type-3 QSVs, tend to form on the port side of the dominant thermal
streaks. Likewise, the major vortical structures that appear on the starboard side of the
dominant streaks are mainly type-4 QSVs with ωx < 0. Therefore, the resulting averaged
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Figure 16. The distributions of the velocities from different perspective views for the VISA flow of case I0
(ak = 0.22). The averaged QSVs are revealed by the isosurface λ2

ci = 0.06. The red and blue colours of the
isosurfaces represent the vortical structures with positive and negative streamwise vorticities, respectively. The
results deduced from the realizations of type-3 and 4 QSVs are shown in (e–h) and (a–d), respectively. The
coordinates are made non-dimensional by the friction length. The ensemble averaging is taken from flows at
21 time instances from t = 25T0 to 30T0 of the simulation.
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Figure 17. (a,b) Schematics of vortical structures near Langmuir cells viewing downstream. The
counter-rotating circulatory pair denotes the Langmuir cells. The dark-red colour beneath the origin of the
Υ − z axes represents the high-speed surface jet; the wind is in the direction out of the paper. The type-4 and
3 QSVs are depicted by blue and red circles in (a,b), respectively. (c) Schematic of a perturbed streak between
the counter-rotating Langmuir cells.

flow beneath a dominant streak is formed by a localized swirling flow of either type-3 or
4 QSV superimposed on the larger-scale flow of LCs, as illustrated by the schematics in
figures 17(a) and 17(b). Of note is that QSVs can also be observed in the region away from
the predominant streaks, as revealed in figures 11 and 15. These QSVs are perhaps formed
by the same mechanism as that in wall turbulence.

Figure 18 presents the plane distributions of the velocities and the isosurface λ2
ci = 0.06

for the averaged flow of case L0 (ak = 0.135). The averaged velocity distributions and
vortical structure of L0 are similar to those of I0 (ak = 0.22). However, decreasing the
steepness of the carrier surface waves weakens the strength of the QSVs; the length of the
averaged QSV and the maximum averaged velocities decrease. This observation indicates
that the attenuation of LCs attributed to decreasing wave steepness weakens the formation
of QSVs in the vicinity of LCs, inferring the role of LCs in enhancing the nearby QSVs.

The above observations validate the proposition raised in § 3 regarding how the
steepness of surface waves affects the distribution of surface streak spacings in Langmuir
turbulence: the interaction between the surface waves and the shear layer gives rise to the
LCs that enhance the formation of QSVs. The QSVs are more populous in the vicinity
of LCs, resulting in finer streak spacing. Increasing the steepness of the surface waves
strengthens the LCs, thus intensifying the enhancement of LCs on the QSVs. Such a trend
is consistent with the finding revealed in the probability distributions of streak spacing
shown in figure 5 and the distributions of CVSs presented in § 5.2. The observation sheds
light on understanding the wind wave–turbulence interaction by revealing another route of
energy transport from surface waves to turbulence. The recent study by Xuan et al. (2020)
also highlighted such a wave–turbulence energy transport route.

6.2. Enhanced formation of QSVs by LCs
The spatial correlation between the Langmuir cells and the nearby type-3 and 4 QSVs
observed in the previous section indicates the possible interaction between the LCs and
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Figure 18. The distributions of the velocities from different perspective views for the VISA flow of case L0
(ak = 0.135). The averaged QSVs are revealed by the isosurface λ2

ci = 0.06. The red and blue colours of the
isosurfaces represent the vortical structures with positive and negative streamwise vorticities, respectively. The
results deduced from the realizations of type-3 and 4 QSVs are shown in (e–h) and (a–d), respectively. The
coordinates are made non-dimensional by the friction length. The ensemble averaging is taken from simulated
flows at 21 time instances from t = 30T0 to 35T0 of the simulation.
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the QSVs. The various production budgets of streamwise enstrophy Ωx = 0.5ω2
x in the

vorticity transport attributed to the flow field is then examined to elucidate such an
interaction.

Applying the decomposition (2.2) to the velocity and vorticity fields, and noting that
the flow set-up of long-crest waves renders the decomposed components of velocity
and vorticity as u = ū(z, t)+ ũ(x, z, t)+ u′(x, y, z, t), υ ≈ υ ′(x, y, z, t), w ≈ w̃(x, z, t)+
w′(x, y, z, t), ωx ≈ ω′

x(x, y, z, t), ωy = ω̄y(z, t)+ ω̃y(x, z, t)+ ω′
y(x, y, z, t) and ωz ≈

ω′
z(x, y, z, t), the transport equation of streamwise enstrophy Ωx is expressed as

DΩx

Dt
= ωxωx

(
∂u
∂x

)
︸ ︷︷ ︸

S̄11

+ωxωx

(̃
∂u
∂x

)
︸ ︷︷ ︸

S̃11

+ωxωx

(
∂u
∂x

)′

︸ ︷︷ ︸
S′

11

+ωxω̄
II
y

(
∂u
∂y

)′

︸ ︷︷ ︸
T̄12

+ωxω̃
II
y

(
∂u
∂y

)′

︸ ︷︷ ︸
T̃12

+ ωxω
′II
y

(
∂u
∂y

)′

︸ ︷︷ ︸
T ′

12

+ωxω
I
z

(
∂u
∂z

)
︸ ︷︷ ︸

T̄13

+ωxω
I
z

(̃
∂u
∂z

)
︸ ︷︷ ︸

T̃13

+ωxω
I
z

(
∂u
∂z

)′

︸ ︷︷ ︸
T ′

13

+ ν∇2Ωx − ν

[(
∂ωx

∂x

)2

+
(
∂ωx

∂y

)2

+
(
∂ωx

∂z

)2
]
, (6.2)

where the spanwise and vertical vorticities are expressed as ωy = ∂u/∂z − ∂w/∂x ≡
ωI

y + ωII
y and ωz = ∂υ/∂x − ∂u/∂y ≡ ωI

z + ωII
z . In deriving (6.2), the contributions of

vorticity ωI
y to the budget, namely the terms associated with (∂u/∂z)(∂u/∂y), cancel out

the contributions of ωII
z , namely the terms associated with −(∂u/∂y)(∂u/∂z) (Brooke &

Hanratty 1993). Therefore the component of vertical vorticity ωII
z = −∂u/∂y makes no

net contribution to the production budget, highlighting the impact of the flow process that
induces the vertical vorticity component ωI

z = ∂υ/∂x. To present the actual contribution
of the wave motion, only the variation along the wave-following coordinate ξ is considered
in evaluating the derivatives of x and y of streamwise velocity. In (6.2), the first three terms
S̄11, S̃11 and S′

11 represent the production of Ωx due to the stretching of ωx by mean, wave
straining and fluctuating streamwise variation of the streamwise velocity, respectively;
T̄12, T̃12 and T ′

12 represent the production of Ωx attributed to the turning of spanwise
vorticity, ω̄II

y , ω̃II
y and ω′II

y , by fluctuating spanwise variation of the streamwise velocity,
respectively; T̄13, T̃13 and T ′

13 are the productions of Ωx due to the tilting of vertical
vorticity ωI

z = ∂υ/∂x by mean, wave straining and fluctuating vertical variation of the
streamwise velocity, respectively; the last two terms are viscous diffusion and dissipation,
respectively.

Note that Lu et al. (2021) explained the impact of surface waves on the scaling of streak
spacing by comparing the difference in enstrophy transport beneath the gravity–capillary
waves and a flat surface without knowing the interaction mechanism between the LC
vortical structures and QSVs in Langmuir turbulence. We reappraise the analysis of
streamwise enstrophy transport in Lu et al. (2021) to validate the interaction process
depicted in figure 17 and described above. The analysis is similar to that in Lu et al. (2021),
but the interpretations are new.

Figure 19 presents the phased-averaged distributions of the production terms in the
enstrophy transport equation (6.2) for the simulated flow of case I0. For comparison,
the distributions of the total production budget S11 + T12 + T13, the production budget by
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Figure 19. Phase-average distributions of various production terms in the transport equation of enstrophy Ωx
for the flow of case I0; (a) S̄11, (b) T̄12, (c) T̄13, (d) S̃11, (e) T̃12, ( f ) T̃13, (g) S′

11, (h) T ′
12, (i) T ′

13, ( j) S11 + T12 +
T13, (k) T12 and (l) T13. The distributions are ensemble results computed from the flows under four carrier
waves at 21 independent time instances from t = 25T0 to 30T0.

turning T12 and the production budget by tilting T13 are also depicted in figures 19( j),
19(k) and 19(l), respectively, where S11 = S̄11 + S̃11 + S′

11, T12 = T̄12 + T̃12 + T ′
12 and

T13 = T̄13 + T̃13 + T ′
13. The distributions on the x − z plane are obtained by taking the

phase average (2.5). The corresponding vertical variations of the gross contributions by
the various terms are shown in figures 20(a)–20(c). The gross contribution is computed by
taking the spatial average (2.3).

The profiles of the gross contributions in figure 20 indicate that the most significant
production to the streamwise enstrophy is contributed by the T̄13 term. This production
occurs within the layer beneath the windward surface, as shown in figure 19(c). This is
also the region where the QSVs accumulate, as depicted in figures 13 and 14. The VISA
results of figures 16 and 18 further reveal that the QSVs tend to form in the edge vicinity of
the surface streaks induced by the LCs, with small tilting and turning angles relative to the
streaks. These observations, therefore, suggest the following interaction process between
the QSVs and the streaks in enhancing streamwise enstrophy production. A schematic
helping explain the process is depicted in figure 17(c).
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Figure 20. Vertical variations of various enstrophy Ωx production terms averaged over the ξ–ψ plane for
flows of cases I0 (upper row, a–c) and L0 (lower row, d– f ); S11 = S̄11 + S̃11 + S′

11, T12 = T̄12 + T̃12 + T ′
12 and

T13 = T̄13 + T̃13 + T ′
13.

Suppose that the background flow is turbulent such that the fluctuations act over time
scales that are small with respect to the LCs, and the QSVs have somehow formed to
realize the respective velocity fields of LCs and mean shear flow. The counter-rotating
cells of LCs induce high-speed streamwise streaks in the near-surface region and introduce
spanwise gradient of the streamwise velocity ∂u/∂y < 0 and ∂u/∂y > 0 on the port and
starboard sides of the streaks, respectively, as illustrated in the schematics of figures 17(a)
and 17(b). The QSVs in the edge vicinity of the streak, of which the downstream
near-surface portions tilt upward and turn toward the streak, perturb the nearby flows.
Specifically, the type-3 QSV, which tends to form on the port side of the streak, induces
∂υ/∂x = ωI

z > 0 in the flow region above the upper part of the QSV, as depicted in
figure 17(c). Similarly, the type-4 QSV on the starboard side of the streak induces
∂υ/∂x < 0. The vertical vorticity in these localized regions is tilted by vertical shear
through ωxω

I
z(∂u/∂z) and therefore contribute to the production of streamwise enstrophy.

To validate the above proposition regarding the production process of streamwise
enstrophy arising from the interaction between the QSVs and the LC streak, we present in
figure 21 the distributions of related flow properties in the VISA flows around the QSVs.
The distributions of the spanwise gradient of streamwise velocity clearly show that type-3
and 4 QSVs form on the port ({∂u′/∂y} > 0) and starboard ({∂u′/∂y} < 0) sides of the
streaks, respectively; they also reveal the streaks being undulated to be parallel with the
QSVs. Consequently, strong streamwise gradient of spanwise velocity occurs in a localized
region around the near-surface part of the QSVs, as shown in figures 21(b) and 21( f ). The
resulting contribution to the production ωx(∂υ/∂x)(∂u/∂z) is depicted in figures 21(d)
and 21(h). Note that such a production process is not observed in the flow regions near
the streaks without the QSVs, therefore underlining the interaction between the QSVs and
LCs.
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Figure 21. The distributions of {−∂u′/∂y} (a,e), {∂υ/∂x} (b, f ), {ωx} (c,g) and {ωx}{∂υ/∂x} (d,h) at z+ =
3.29 for the VISA flow of case I0. The averaged QSVs are revealed by the isosurfaces λ2

ci = 0.06. The red
and blue colours of the isosurfaces represent the vortical structures with positive and negative streamwise
vorticities, respectively. The results deduced from the realizations of type-3 and 4 QSVs are shown in the right
and left columns, respectively. The coordinates are made non-dimensional by the friction length. The ensemble
averaging is taken from simulated flows at 21 time instances from t = 25T0 to 30T0 of the simulation.

The distribution of T̄13 production initiates from the wave crest and extends upstream
in the layer beneath the windward surface. In the same region, stretching production due
to wave straining, S̃11, is also significant, as shown in figure 19(d). The combined effect
of these two mechanisms intensifies the production of streamwise enstrophy and enhances
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the formation of QSVs there. These QSVs are convected upstream in the −x-direction
relative to the wave (Xuan et al. 2019), and accumulate in the surface layer extending
from the windward surface to the wave trough, as revealed by the spatial distributions
of accumulative occurrence count of QSVs depicted in figure 13(c), and figures 14(c)
and 14(d). Beneath the leeward surface, compression straining of wave results in negative
production of streamwise enstrophy, S̃11 < 0. However, the gross contribution of S̃11 is
positive, as shown in in figure 20(a), indicating the wave stretching is more significant
than the wave compression in the production of streamwise enstrophy.

The vertical profiles of the gross contributions to streamwise enstrophy by various
mechanisms for the flow of case L0 are presented in figures 20(d)–20( f ). Comparing the
results of I0 and L0 reveals that decreasing the steepness of the surface wave reduces all
the contributions to the production of streamwise enstrophy, in particular, the S̃11 and
T̄13 terms. Reduction in the contribution attributed to stretching/compression of wave
straining (S̃11 term) is evident since the streamwise velocity associated with wave motions
(ũ) decreases with the steepness ak. Reducing the wave steepness also decreases the Stokes
drift and attenuates the LCs and the accompanying streaks. This weakens the interaction
between the streaks and the nearby QSVs, consequently decreasing the production owing
to the interaction (T̄13 term).

7. Conclusions

Direct numerical simulations of turbulent shear flow beneath stress-driven surface waves
are conducted to reveal the underlying vortical structures associated with LCs and
turbulent QSVs, and their mutual interaction. Both vortical structures manifest themselves
by inducing wind-aligned streaks on the wavy surface. However, the length scales and
the footprint intensities of both streaks are different. This allows for decomposing of the
streaks according to their characteristic signatures. Guided by the decomposed surface
imageries, the flow intervals beneath the predominant streaks are realized to educe the
responsible averaged flow structure. The result reveals a cellular structure consistent
with the counter-rotating circulatory pair of LCs. Linear instability analysis of the
wave-averaged CL equations is then conducted to determine whether the least stable
spanwise spacings given by instability theory are consistent with our LC spacing found
numerically. The spanwise wavelengths of the most unstable disturbances are found to
be close to the width of averaged LC pairs. The favourable comparison also confirms
the effectiveness of the developed decomposition method in extracting surface imageries
associated with physical processes underneath.

We isolate the CVSs using a detection criterion based on conjugate complex eigenvalues
of the velocity-gradient tensor and classify the vortical structures according to the
topological characteristics of their skeletons. The results indicate that QSVs, which can
be considered to be the degenerated reversed horseshoe vortices, dominate the population
of identified CVSs. These QSVs accumulate beneath the windward surface. Moreover, the
QSVs are more populous in the vicinity of the streamwise streaks formed by the LCs,
suggesting such spanwise heterogeneity could be attributed to the circulatory structures of
the LCs.

To understand the spatial correlation between the LCs and the QSVs, the VISA
technique is utilized in the regions around the identified QSVs. The averaged flows reveal
that the CVSs that tend to form on the port side of the streamwise streaks induced by
the LCs are type-3 QSVs with positive streamwise vorticity. In contrast, the CVSs on the
starboard side edge of the surface streaks are more likely to be type-4 QSVs with negative
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streamwise vorticity. The type-3 and 4 QSVs do not form concurrently on both sides of
the streaks. The downstream near-surface portions of these QSVs tilt upward and turn
toward the streaks. Such a spatial configuration between the QSVs and the streaks disturbs
the nearby flows of the LCs and undulates the streaks to be parallel with the QSVs. The
staggered type-3 and 4 QSVs in the edge vicinity of the streaks induce streamwise gradient
of the spanwise velocity, that is, vertical vorticity, in the localized regions around the
near-surface parts of the QSVs. The vertical shear tilts the vertical vorticity of these flow
regions, contributing to streamwise enstrophy production and enhancing the formation of
QSVs.

The denser distribution of QSVs in the vicinity of Langmuir cells also implies more
fine streaks being formed near the predominant streaks attributed to LCs, resulting in
smaller spacings between streaks than those away from the predominant streaks. Thus the
distribution of the scaled streak spacings d+ deviates from the log-normal distribution, and
the mean value d+ becomes smaller than 100. The deviation becomes more significant as
the steepness of surface waves increases, which is consistent with the intensification of
LCs.

These findings from numerical simulations explain the reduction of mean streak
spacings on the infrared images of non-breaking wind waves observed in the laboratory
experiments (figure 2). They also highlight the differences in the vortical structures
between the Langmuir turbulence and the turbulent wall layer.
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Appendix A. Decomposition of surface image

The image processing method developed in Lu et al. (2019) is an extension of the
two-dimensional ensemble empirical mode decomposition (EEMD) of Wu et al. (2009).
Employing the EEMD algorithm of Huang et al. (1998) and grouping the intrinsic mode
functions (IMFs) according to their distinct directionalities, a data image θ(x, y) is first
decomposed as

θ(x, y) =
M∑

k=1

θ̃k(x, y)+
∑
k=1

θ̌k(x, y) ≡ θW(x, y)+ θV(x, y), (A1)

where θ̃k and θ̌k are the derived IMFs with the dominant signatures aligned with the
spanwise and streamwise directions. For a surface image of wind waves, θW and θV, are
the decomposed images associated with the surface waves and the streaks, respectively.

The derived wave-correlated and streak-correlated IMFs, θ̃k and θ̌k, show a trend of
increasing spatial scale with k. They are further decomposed into groups based on the
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Figure 22. Variations in the ensemble-averaged SSIM indices between the decomposed images θWG , θWC ,
θVLC and θVT of case I0 shown in figure 4 and the decomposed imageries employing different decomposition
criteria dx and dy.

distinct length scales of the surface signatures as

θ(x, y) = θWG(x, y)+ θWC(x, y)+ θVLC(x, y)+ θVT (x, y), (A2)

where θWG , θWC , θVLC and θVT are the decomposed images predominantly associated with
the long gravity waves, the short capillary waves, the wind-aligned streaks attributed to
LCs and the quasi-streamwise streaks associated with turbulent QSVs, respectively. The
criterion for differentiating the derived IMF is based on the intrinsic length scales of the
flow processes observed in the experimental measurements. Lu et al. (2019) conducted a
detailed sensitivity test of the criteria in classifying the derived IMFs of infrared images
taken at various wind-wave conditions. The results show the ranges of decomposition
criteria in which the decomposed images are insensitive to the criterion.

The test quantifies the similarity between the decomposed images using the structural
similarity (SSIM) index of Wang et al. (2004). The value of SSIM( f , g) represents
the degree of similarity between images f and g; SSIM � 1 and SSIM = 1 if the two
images are identical. Figure 22 presents the variations of the SSIM indices between
the decomposed thermal images θWG, θWC , θVLC and θVT of case I0 shown in figure 4
and the decomposed images using different decomposition criteria d. The results reveal
that the decomposed images remain nearly identical (SSIM ∼= 1) for a large range of
decomposition criteria.

We emphasize that the decomposed images do not represent the surface footprints
induced solely by one flow process. Instead, the dominant footprints on the decomposed
image are formed by the flow processes of interest; other flow processes generate much
weaker surface footprints. In the present study, the decomposed image θVT is used to reveal
the influence of surface waves on the spanwise spacing between small-scale streaks in § 3;
the decomposed image θVLC is used to guide the conditional averaging for educing the
large-scale vortical structure in § 4.1.
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