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Contramodules for algebraic groups: the
existence of mock projectives

Dylan Johnston

Abstract. Let G be an affine algebraic group over an algebraically closed field of positive characteristic.
Recent work of Hardesty, Nakano, and Sobaje gives necessary and sufficient conditions for the
existence of so-called mock injective G-modules, that is, modules which are injective upon restriction
to all Frobenius kernels of G. In this article, we give analogous results for contramodules, including
showing that the same necessary and sufficient conditions on G guarantee the existence of mock
projective contramodules. In order to do this, we first develop contramodule analogs to many well-
known (co)module constructions.

1 Introduction

Let G be an affine algebraic group defined over an algebraically closed field of char-
acteristic p which splits over the subfield Fp . Then, G admits a Frobenius morphism
F ∶ G → G. Let Gr = ker(F r) denote the r th Frobenius kernel. In 2015, Friedlander
defined a support theory for rational G-modules for many important classes of groups
G and showed that a G-module has trivial support if and only if it is a mock injective
module, that is, a module which is injective when restricted to all Frobenius kernels
[Fri15]. It is also shown that mock injectivity of a module is a weaker condition
than injectivity, i.e., there are mock injective modules which are not injective as a
G-module. Such modules are called proper mock injective modules. Recent work of
Hardesty, Nakano, and Sobaje gives an explicit description of when G admits proper
mock injective modules [HNS17].

In this article, we consider the contramodule analog of the work of Hardesty,
Nakano, and Sobaje. That is, we aim to give a description of when G admits proper
mock projective contramodules, i.e., contramodules which are not projective as a
k[G]-contramodule, but which are projective when restricted to k[Gr].
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2 D. Johnston

Many of the results in this article look strikingly similar to those of the work of the
aforementioned authors, suggesting that looking through the lens of contramodules
may be another useful way to investigate properties of algebraic groups.

The contents are as follows. In Section 2, we will give the definition of contramod-
ules, and discuss important families of them. We will also describe the induction and
restriction functors, before finishing by giving some additional constructions in the
case of contramodules over a Hopf algebra.

The remaining sections are highly motivated by the work of Hardesty, Nakano, and
Sobaje. In Section 3, we show that the same conditions on G to ensure the existence
of proper mock injective modules will also ensure the existence of mock projective
contramodules.

In Section 4, we investigate mock projective contramodules with certain condi-
tions on the radical, including but not limited to finite co-dimensionally.

2 Contramodules

In this section, we define contramodules over a coalgebra and introduce their associ-
ated induction and restriction functors. We also present several results and construc-
tions in the case, where our coalgebra has the additional structure of a Hopf algebra.
For more details about contramodules, see [Pos10] or [Pos21].

2.1 First definitions

Let (C , Δ, ε) be a coalgebra over a field k, where Δ denotes the comultiplication map
and ε denotes the counit. A (left) C-contramodule (B, θB), or just B, is a k-vector
space B equipped with a linear map θB ∶ Homk(C , B) �→ B, called the contra-action,
satisfying contra-associativity and contra-unity conditions. That is, the following two
diagrams commute:

Homk (C , Homk(C , B)) Homk(C , B)

Homk(C ⊗ C , B) Homk(C , B) B

⊗⊣Hom

Homk(C ,θ B)

θ B

Homk(Δ,B) θ B

Homk(k, B) Homk(C , B)

B,

≅

Homk(ε ,B)

θ B

where “⊗ ⊣ Hom ” denotes the tensor-hom adjunction, which for any vector spaces
U , V , W is given by identifying Homk (U , Homk(V , W)) and Homk (V ⊗k U , W).
We remark that using instead the identification Homk (U , Homk(V , W)) ≅
Homk(U ⊗k V , W) gives the definition of a right C-contramodule. Unless stated
otherwise, contramodules will be left contramodules.

Given two C-contramodules B and D, let HomC(B, D) denote the space of con-
tramodule homomorphisms from B to D. That is, the linear maps f ∶ B �→ D such
that the following diagram commutes:
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Contramodules for algebraic groups: the existence of mock projectives 3

Homk(C , B) B

Homk(C , D) D.

Homk(C , f )

θ B

f

θ D

Now, consider the space Homk(C , k). It can be given the structure of a C-
contramodule by applying the comultiplication of the coalgebra C in the first factor.
That is, Homk(C , k) has structure map θ ∶ Homk (C , Homk(C , k)) �→ Hom(C , k)
given by the composition:

Homk(C , Homk(C , k)) ≅ Homk(C ⊗ C , k) Homk(Δ,k)������→ Homk(C , k).

More generally, one may replace k with any vector space V, obtaining what we will
call the free contramodule on V. One can show that there is an isomorphism of vector
spaces

HomC (Homk(C , V), W) ≅ Homk(V , W)

for each C-contramodule W. In particular, free contramodules are projective. It
follows that any contramodule B is projective if and only if it is a direct summand
of a free contramodule. We now see that one may construct projective contramodules
by taking the dual of injective comodules.

Lemma 1.1 Let C be a coalgebra, (M , ΔM) an injective right C-comodule, and V a
vector space. Then, Homk(M , V) is a projective C-contramodule, with contra-action
given by the composition:

Homk (C , Homk(M , V)) ≅ Homk(M ⊗ C , V) Homk(ΔM ,V)�������→ Homk(M , V).

Proof As M is an injective comodule, the coaction map ΔM ∶ M �→ M ⊗ C splits.
Applying the additive functor Homk(−, V) yields a split map of contramodules
Homk(M ⊗ C , V) �→ Homk(M , V)with contra-actions induced from the coaction
on the relevant comodules. However, as M ⊗ C is the cofree comodule on M we have
an isomorphism Homk(M ⊗ C , V) ≅ Homk (C , Homk(M , V)) of contramodules,
where the latter is the free contramodule on Homk(M , V). Thus, Homk(M , V) is
a direct summand of a free contramodule and is therefore projective. ∎

Given a coalgebra C, we denote the category of left C-comodules by C-Comod, and
the category of left C-contramodules by C-Contra. Moreover, we denote the category
of right C-comodules by Comod-C, and the category of right C-contramodules by
Contra-C.

2.2 Induction and restriction

Let π ∶ C → D be a map of coalgebras. Then, given a C-contramodule V , one obtains
a D-contramodule structure on V via the composition:
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4 D. Johnston

Homk(D, V) Homk(π ,V)������→ Homk(C , V) �→ V .

We call this the restriction to D and denote it by ResC
D(V), Res(V), or V ∣D .1

Now, let (M , ΔM) be a left D-comodule and let (B, θB) be a left D-contramodule.
Then, CohomD(M , B) denotes the cohomomorphisms between M and B. It is a
quotient vector space of Homk(M , B) given by the following coequaliser:

CohomD(M , B) = coeq(Homk(D ⊗ M , B) Homk(M , B))
Homk(ΔM ,B)

Homk(M ,θ B)

with Homk(M , θB) ∶ Homk(D ⊗ M , B)≅ Homk (M , Homk(D, B))→ Homk(M , B).
In particular, when M = C with D-comodule structure given by (π ⊗ id) ○ ΔC we can
equip CohomD(C , B) with a C-contramodule structure by observing it is nothing
more than a quotient of the free contramodule Homk(C , B). This is the induction
from D-contramodules to C-contramodules. We denote the resulting contramodule
by IndC

D(B). One can show that induction and restriction form an adjoint pair.

Lemma 1.2 The functor Ind ∶ D-Contra �→ C-Contra is left adjoint to the functor
Res ∶ C-Contra �→ D-Contra, that is, for all B ∈ D-Contra and V ∈ C-Contra we
have

HomC (IndC
D(B), V) ≅ HomD (B, ResC

D(V)).

2.3 Contramodules over a Hopf algebra

In the case of (co-)modules over a (co-)algebra, if one in fact has a Hopf algebra struc-
ture then one may equip the relevant module category with a monoidal structure. For
contramodules this is not quite the case. Instead, we can produce new contramodules
via a bifunctor which takes a right comodule and left contramodule as arguments. In
this section, we explicitly describe this bifunctor and give some properties of it.

Let (H,∇, η, Δ, ε, S) be a Hopf algebra. Recall that one may write the comultipi-
cation using Sweedler’s notation, that is, given c ∈ H we write the comultiplication
as Δ(c) = ∑ c(1) ⊗ c(2), with coassociativity implying that we may write (id⊗ Δ) ○
Δ(c) = (Δ⊗ id) ○ Δ(c) = ∑ c(1) ⊗ c(2) ⊗ c(3) .

Given a right H-comodule M and a left H-contramodule B, we may equip
Homk(M , B) with a “diagonal” contramodule structure via the following compo-
sition:

Homk (H, Homk(M , B)) Homk(∇,Homk(M ,B))�����������→ Homk (H ⊗ H, Homk(M , B))

≅ Homk (M ⊗ H, Homk(H, B)) Homk(ΔM ,Homk(H ,B))������������→ Homk(M , Homk(H, B))
Homk(M ,θ B)�������→ Homk(M , B),

1We omit explicit reference to the map π in the notation as it will always be clear from context.

Downloaded from https://www.cambridge.org/core. 05 Oct 2025 at 05:55:08, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Contramodules for algebraic groups: the existence of mock projectives 5

where the intermediate identification is given by

Homk (T ⊗U , Homk(V , W)) ≅ Homk (V ⊗ T , Homk(U , W)).

One readily checks that this gives Homk(M , B) the structure of a H-contramodule.
That is, given a Hopf algebra H, we have a bifunctor

Homk(−,−) ∶ Comod-Hop × H-Contra �→ H-Contra.

Let G be an algebraic group over a field k, and let k[G] denote its coordinate ring.
Then, k[G] is a Hopf algebra. Moreover, let T ⊂ G denote a maximal torus, and k[T]
be its coordinate ring. Finally, let X(T) ⊂ k[T]denote the weights of T [Jan03, Section
I.2.4]. Recall that for a right k[G]-comodule M , the weight space with weight λ ∈
X(T) is given by

Mλ = {m ∈ M ∶ ΔM(m) = m ⊗ λ}.

We may also define weight spaces for contramodules. Given a k[G]-contramodule
B, we may view it as a k[T]-contramodule via restriction along the coalgebra map
k[G] → k[T] corresponding to the inclusion T ⊂ G. Via a slight abuse of notation,
we also write θB for the contramodule structure map when considering B as a k[T]-
contramodule. Then, we define the weight space with weight λ ∈ X(T) as

Bλ = {b ∈ B ∶ for all ϕ ∈ Homk (k[T], ⟨b⟩) we have ϕ(λ) = θB(ϕ)},

where ⟨b⟩ ⊂ B denotes the subspace spanned by b. It is a fact that B = ∏λ∈X(T) Bλ as
a k[T]-contramodule, which follows readily from [Pos10, Lemma 2, A.2]. We now
describe the weight spaces of Homk(M , B). Note that we use additive notation for
the weights.

Lemma 1.3 Let M be a right k[G]-comodule and B a left k[G]-contramodule. Then,
we have

Homk(M , B)λ = ∏
α+β=λ

Homk(Mα , Bβ).

Proof Let α, β ∈ X(T) such that α + β = λ. We calculate explicitly the image of
Homk(Mα , Bβ) under the diagonal action.

Given (h ↦ ϕh) ∈ Homk(k[T], Homk(Mα , Bβ)) we have

(h ↦ ϕh) �→ (h ⊗ h′ ↦ ϕhh′) �→ (m ⊗ h ↦ (h′ ↦ ϕhh′(m)))
�→ (m ↦ θB( f ↦ ϕα f (m))) = ϕα+β

so indeed Homk(Mα , Bβ) ⊂ Homk(M , B)λ . Equality follows from the fact that

Homk(M , B) = Homk (⊕
α

Mα ,∏
β

Bβ) =∏
α ,β

Homk (Mα , Bβ). ∎

The next lemma may be thought of as a contra-analog of the tensor identity
for modules [Jan03, Proposition I.3.6]. We will dub this the “hom identity for
contramodules”.
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6 D. Johnston

Lemma 1.4 (Hom identity) Let M be a right k[G]-comodule. Let H ⊂ G be a
subgroup of G, and B a left k[H]-contramodule. Then,

Homk (M , Indk[G]
k[H]B) = Indk[G]

k[H](Homk(M , B)),

where the contramodule structure on Homk(−,−) is the diagonal action in both
cases, and where Indk[G]

k[H](−) is defined using the map of coalgebras k[G] → k[H]
corresponding to the inclusion H ⊂ G.

Proof For ease of notation throughout the proof, we assign the labels

L ∶= Homk (M , Indk[G]
k[H]B) R ∶= Indk[G]

k[H](Homk(M , B)).

Recalling the definition of Cohom from section 2, we see that as vector spaces both L
and R are quotients of Homk(k[G] ⊗ M , B). The steps of the proof will be as follows:
(1) Define linear maps α, β ∶ Homk(k[G] ⊗ M , B) → Homk(k[G] ⊗ M , B) with α

and β inverse to one another (as maps of vector spaces).
(2) Show that α and β factor to give maps from L to R. (Note that this is a well-

definedness check.)
(3) Show that in fact α, β are k[G]-contramodule homomorphisms.
To begin, we define α and β as follows:

α ∶ Homk(k[G] ⊗ M , B) �→ Homk(k[G] ⊗ M , B)
ϕ �→ ϕ ○ μT ○ (Idk[G]⊗M ⊗ S) ○ (Idk[G] ⊗ ΔM)

β ∶ Homk(k[G] ⊗ M , B) �→ Homk(k[G] ⊗ M , B)
ψ �→ ψ ○ μT ○ (Idk[G] ⊗ ΔM),

where μT ∶ k[G] ⊗ M ⊗ k[G] �→ k[G] ⊗ M denotes a certain twisted multiplica-
tion, given by μT( f ⊗ m ⊗ g) = g f ⊗ m. Concretely, we have for f ⊗ m ∈ k[G] ⊗ M

α(ϕ)( f ⊗ m) = ϕ(S(m(1)) f ⊗ m(0))

β(ψ)( f ⊗ m) = ψ(m(1) f ⊗ m(0)).

We now check that these maps are inverse to one another. We will only check that
β ○ α ≡ IdHomk(k[G]⊗M ,B), as checking that α ○ β ≡ Id is similar.

Let ϕ ∈ Homk(k[G] ⊗ M , B). Then, we have

(β ○ α)(ϕ) = β( f ⊗ m �→ ϕ(S(m(1)) f ⊗ m(0)))

= ( f ⊗ m �→ ϕ(S(m(1))m(2) f ⊗ m(0)))

= ( f ⊗ m �→ ϕ(ε(m(1)) f ⊗ m(0))) = ( f ⊗ m �→ ϕ( f ⊗ m))

and, therefore, (β ○ α)(ϕ) = ϕ ∈ Homk(k[G] ⊗ M , B).
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Now, as vector spaces, we have (with implicit applications of the tensor hom
adjunction):

L = coeq(Homk(M ⊗ k[H] ⊗ k[G], B) Homk(M ⊗ k[G], B)).
Homk (M⊗Δk[G] ,B)

Homk (M⊗k[G],θ B)

R = coeq(Homk(M ⊗ k[H] ⊗ k[G], B) Homk(M ⊗ k[G], B)).
Homk (M⊗Δk[G] ,B)

Homk (k[G],θHomk(M ,B))

To assist in easing notation, we will write fL = Homk (M ⊗ Δk[G], B), and
gL = Homk (M ⊗ k[G], θB) for the two maps defining L. Similarly, we will write
fR = Homk (M ⊗ Δk[G], B) and gR = Homk (k[G], θHomk(M ,B)) for the two maps
defining R.

Now, α composed with the natural quotient map from Homk(M ⊗ k[G], B) to
R gives us a map from Homk(M ⊗ k[G], B) to R which we also denote α. We now
want to check that this α factors through L. In other words, we wish to check that
Im (α ○ ( fL − gL)) ⊂ Im ( fR − gR).

This is equivalent to finding a linear endomorphism T ∈ End(Homk(k[H] ⊗

k[G] ⊗ M , B)) with α ○ ( fL − gL) = ( fR − gR) ○ T . One checks that T ∶= Homk

(μ5,1
4,2 ○ (Id⊗2 ⊗ ((Id⊗ S⊗2) ○ Δ2

M)), B) satisfies this, where both μ i j and μ i j denotes
multiplication given by taking the element in the i th factor of the tensor and the
jth factor of the tensor, multiplying them together, and letting the resulting product
replace the factor taken from the jth position. Concretely, we have, for an algebra A,
say,

μ i j ∶ A⊗n �→ A⊗n−1

a1 ⊗ ⋅ ⋅ ⋅ ⊗ a i ⊗ ⋅ ⋅ ⋅ ⊗ a j ⊗ ⋅ ⋅ ⋅ ⊗ an �→ a1 ⊗ ⋅ ⋅ ⋅ ⊗ a i−1 ⊗ a i+1 ⊗ ⋅ ⋅ ⋅ ⊗ a i a j ⊗ ⋅ ⋅ ⋅ ⊗ an .

Similarly, to show that β gives a well defined map from R to L, we must find a linear
endomorphism U such that ( fL − gL) ○U = β ○ ( fR − gR). Once again, one readily
checks that U ∶= Homk (μ5,2

4,1 ○ (Id⊗2 ⊗ Δ2
M), B) satisfies this condition.

So far, we have that α ∶ L → R and β ∶ R → L are isomorphisms of vector spaces
which are inverse to one another. To conclude, we show that, in fact, α is a map of
contramodules. It will be sufficient to check that the following diagram commutes:

Homk (k[G], Homk (M , Homk(k[G], B))) Homk (M , Homk(k[G], B))

Homk (k[G], Homk (M , Homk(k[G], B))) Homk (M , Homk(k[G], B)).

Homk(k[G],α)

θdiag

α

θ free
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8 D. Johnston

Here, θdiag denotes the diagonal contra-action on Homk (M , Homk(k[G], B)),
and θfree denotes the free contra-action on Homk (M , Homk(k[G], B)) ≅

Homk (k[G], Homk(M , B)).

Let φ ∈ Homk (k[G], Homk (M , Homk(k[G], B))) be denoted as the map

f ↦ (m ↦ (g ↦ b( f , m, g))), where b(−,−,−) ∶ k[G] ⊗ M ⊗ k[G] �→ B. Trav-
elling vertically then horizontally yields

(θfree(α ○ φ))(m) = (m �→ ( f �→ b( f(2) , m(0) , S(m(1)) f(1)))).

On the other hand, travelling horizontally then vertically yields

(α ○ θdiag(φ))(m) = (m �→ ( f �→ b(m(1)S(m(2)) f(2) , m(0) , S(m(3)) f(1))))

which after observing that m(0) ⊗ m(1)S(m(2)) ⊗ m(3) = m(0) ⊗ m(1) ⊗ 1 and using
that b(−,−,−) is tensorial gives equality.

Finally, since α ∶ L → R is a k[G]-contramodule isomorphism with linear inverse
β ∶ R → L, we deduce that β is also a k[G]-contramodule isomorphism and the proof
is complete. ∎

We immediately obtain the following corollary.

Corollary 1.5 Let P be a projective k[G]-contramodule. Then, for any right
k[G]-comodule M we have that Homk(M , P), with diagonal action, is a projective
k[G]-contramodule.

Proof Since P is projective, the contra-action map θ ∶ Homk(k[G], P) �→ P splits.
Now, consider the additive functor Homk(M ,−) ∶ k[G]-Contra �→ k[G]-Contra
which equips the resulting contramodule with the diagonal action. Applying this to θ
above we have

Homk (M , Homk(k[G], P)) Homk(M ,θ)������→ Homk(M , P)

which splits. Thus, Homk(M , P) is a direct summand of Homk (M , Homk(k[G], P)).
However, by the previous lemma, we have

Homk (M , Homk(k[G], P)) ≅ Homk (k[G], Homk(M , P)),

where the latter is the free contramodule on the vector space Homk(M , P). There-
fore, Homk(M , P) is a direct summand of a free contramodule and is, therefore,
projective. ∎

To conclude the section, we give a final contra-analog of a construction well-
known for modules over a group. Namely, let G = N ⋊ K, and M be a (right) K-
module. Then, M has a (left) k[K]-comodule structure and indG

K M = k[G] ⊠k[K] M ≅
k[N] ⊗k M , where K < G acts on k[N] via conjugation, and ⊠ denotes the cotensor
product. For contramodules, the obvious analog to this holds. We have the following.
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Lemma 1.6 Let G = N ⋊ K with associated coordinate rings k[G], k[N] and k[K].
Then, for any k[K]-contramodule (M , θM), we have

Indk[G]
k[K](M) ≅ Homk(k[N], M),

where the contramodule structure on the right hand side is the diagonal action and the
right k[K]-comodule structure on k[N] is induced from the conjugation action of K on
k[N].

Proof To begin, it will serve us well to establish some notation. Let ι ∶ N → G
denote the natural inclusion and ι∗ ∶ k[G] → k[N] be the corresponding map of
coordinate rings. Let ΔR ∶ k[G] → k[G] ⊗ k[K] denote the right k[K]-comodule
structure on k[G] corresponding to left multiplication K ×G → G, similarly define
ΔL ∶ k[G] → k[K] ⊗ k[G] corresponding to right multiplication of K on G. Finally, let
Δcong ∶ k[N] → k[N] ⊗ k[K] denote the k[K]-comodule structure on k[N] induced
from conjugation K × N → N ; (k, n) ↦ knk−1.

Recall that as vector spaces we have Indk[G]
k[K](M) ≅ Cohomk[K](k[G], M), and one

equips this space with contramodule structure by realizing it as a quotient of the free
contramodule on M. Now, consider the following map:

Homk(k[N], M) �→ Indk[G]
k[K](M)

ϕ �→ [ϕ ○ ι∗],

where [⋅] denotes the equivalence class. This is clearly an isomorphism of vector
spaces. So all that remains is to check that it preserves the k[G]-contramodule
structure. We also observe that the crux of the proof lies in checking that the
k[K]-contramodule structure (given by restriction) is preserved. Thus, consider the
following diagram, which we wish to show commutes:

Homk (k[K], Homk(k[N], M)) Homk (k[K], Ind(M))

Homk(k[N], M) Ind(M).

Let (k ↦ (n ↦ m(k, n))) ∈ Homk (k[K], Homk(k[N], M)). Travelling horizontally
and then vertically gives [g �→ m(ΔR(g)(1) , ι∗(ΔR(g)(0)))] ∈ Ind(M).

On the other hand, travelling vertically and then horizontally gives

[g �→ θM(k �→ m(Δcong(g)(1) ⋅ k, ι∗(Δcong(g)(0))))]

≡ [g �→ m(Δcong(ΔL(g)(0))
(1)
⋅ ΔL(g)(−1) , ι∗(Δcong(ΔL(g)(0))

(0)
))] ∈ Ind(M).
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10 D. Johnston

Observe that is it now sufficient to show that

ΔR(g) = Δcong(ΔL(g)(0))
(0)

⊗ Δcong(ΔL(g)(0))
(1)
⋅ ΔL(g)(−1)

or more concisely that ΔR ≡ (id⊗ μ) ○ ω ○ (id⊗ Δcong) ○ ΔL , where ω(x ⊗ y ⊗ z) =
(y ⊗ z ⊗ x) and (id⊗ μ)(x ⊗ y ⊗ z) = x ⊗ yz.

However, recall that ΔR is the map of coordinate rings associated with K ×G →
G; (k, g) ↦ kg and the right hand side is the map corresponding to the composition

K ×G �→ K × K ×G �→ K ×G × K �→ G × K → G
(k, g) �→ (k, k, g) �→ (k, g , k) �→ (kgk−1 , k) �→ kg

and so they are equal, as required. ∎

3 Conditions on k[G] for the existence of proper mock projective
contramodules

Let G be an affine group scheme over an algebraically closed field k. Given a subgroup
scheme H of G, we say that H is contra-exact in G if the induction functor (of
contramodules), Indk[G]

k[H](−), is exact. Analogously, one says that H is exact in G if the
induction functor of modules is exact. It turns out that these are equivalent [Joh25].
Therefore, we may drop the prefix “contra” and just say that H is exact in G. As an
example, all finite subgroup schemes of G are exact.

Before giving our first result on conditions on G for mock projective contramod-
ules to exist we give a useful lemma, showing that restriction takes projective con-
tramodules to projective contramodules, provided the subscheme is exact.

Lemma 2.1 Let H be exact in G. Then, the restriction functor Resk[G]
k[H] takes projective

contramodules to projective contramodules.

Proof Let B ∈ k[G]-Contra be projective. Then, B is a direct summand of
Homk(k[G], B), a free contramodule. Since restriction is an additive functor, B
is also a direct summand of Homk(k[G], B) as k[H]-contramodules. As H is exact
in G, k[G] is an injective k[H]-contramodule and so k[G] is a direct summand of
k[G] ⊗ k[H].

Now, the functor Homk(−, B) ∶ Comod − k[H] �→ k[H]-Contra is additive and
thus we have that Homk(k[G], B) is a direct summand of Homk(k[G] ⊗ k[H], B)
as k[H]- contramodules. Combining both direct summand inclusions, we have that
B is a direct summand of Homk(k[G] ⊗ k[H], B) ≅ Homk (k[H], Homk(k[G], B)),
with the latter free. Thus, B is projective, as it is a direct summand of a free
contramodule. ∎

Proposition 2.2 Let H be a finite subgroup scheme in G with coordinate rings k[H]
and k[G] respectively. Then:

a) Indk[G]
k[H]k is a projective k[G]-contramodule if and only if k is a projective k[H]-

contramodule.
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b) If the Frobenius map F ∶ G �→ G restricts to an automorphism of H, then Indk[G]
k[H]k

is projective over Gr for all r > 0.

Before giving the proof, let us remark that when H is finite, then there is an equiva-
lence of categories between k[H]-Contra and k[H]-Comod (or equivalently Mod-H,
the category of right H-modules) [Joh25].2 Explicitly, if M ∈ k[H]-Comod, then M
can be equipped with a H-contramodule structure via the following composition:

Homk(H, M) ≅ H∗ ⊗ M H∗⊗ΔM����→ H∗ ⊗ H ⊗ M eval⊗M����→ k ⊗ M ≅ M .

In the other direction, if B ∈ H-Contra, then we have a (right) H∗-module structure
(equivalently, a left H-comodule structure) on B via Homk(H, B) ≅ B ⊗ H∗.

Proof We first prove part a). For the if direction, simply observe that since restric-
tion takes epimorphisms to epimorphisms, induction takes projective contramodules
to projective contramodules. To prove the only if direction we wish for some sort
of “generalised Frobenius reciprocity” for contramodules; we develop this via the
Grothendieck spectral sequence [Jan03, Section I.4.1] [Lan12, Theorem XX.9.6].

Observe that for any k[G]-contramodule V, the adjunction between induction and
restriction may be viewed as an isomorphism of functors

Homk[G](−, V) ○ Indk[G]
k[H]

op(−) ≅ Homk[H] (−, V ∣k[H]),

where notably we have Indk[G]
k[H]

op ∶ k[H]-Contraop �→ k[G]-Contraop. Since con-
tramodule categories have enough projectives, opposite contramodule categories
have enough injectives. Furthermore, Indk[G]

k[H]
op is exact since H is a finite subgroup

scheme of G. One checks that all other requirements to apply Grothendieck’s spectral
sequence (specifically special case (2) of the Proposition in [Jan03, Section I.4.1]) are
satisfied, and so we have an isomorphism

Extn
k[G]-Contra (Indk[G]

k[H]W , V) ≅ Extn
k[H]-Contra (W , V)

for each V ∈ k[G]-Contra, W ∈ k[H]-Contra. In particular for V = W = k and n > 0,
we have

Extn
k[H]-Contra (k, k) = 0 for all n > 0

since Indk[G]
k[H]k is projective by assumption. Finally, since H is finite, we have an

equivalence of categories between k[H]-Contra and Mod-H, the category of right H
modules. Now, by the theory of cohomological support varieties, we have that k is a
projective H-Mod, and thus a projective k[H]-contramodule [FP05, Theorem 5.6 (5)].
For part b), let I be an injective k[G]-comodule. Since H is exact in G the restriction
of I to k[H] is an injective k[H]-comodule [CPS77, Proposition 2.1]. If the Frobenius

2The equivalence holds for arbitrary H if we restrict ourselves to only finite dimensional objects. The
key is to have an isomorphism Homk(H,−) ≅ − ⊗ H∗.
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morphism F restricts to an automorphism of H, then I(r) is also an injective k[H]-
comodule for any r > 0. Therefore, Homk (I(r), k) is a projective k[H]-contramodule
by Lemma 1.1. Furthermore, by Lemma 1.4, we have

Homk (I(r), Indk[G]
k[H]k) ≅ Indk[G]

k[H](Homk (I(r), k)).

Since induction takes projective objects to projective objects, the right hand side (and,
therefore, the left hand side) is a projective k[G]-contramodule. Furthermore, since
Gr is exact in G, restriction takes projective objects to projective objects, and so the
restriction of the left hand side is a projective k[Gr]-contramodule. But now, as a
k[Gr]-contramodule we have

Homk (I(r), Indk[G]
k[H]k) ≅ Homk (

dim(I)
⊕
i=1

k, Indk[G]
k[H]k) ≅

dim(I)

∏
i=1

Indk[G]
k[H]k.

Thus, as k[Gr]-contramodules, Indk[G]
k[H]k is a direct summand of a projective con-

tramodule, and so is itself projective. ∎

Proposition 2.3 Let H be a finite subgroup scheme of G for which every simple k[H]-
contramodule is the restriction of a k[G]-contramodule. Then, for any right k[G]-
comodule M, Homk (M , Indk[G]

k[H]k) is a projective k[G]-contramodule if and only if
Homk(M , k) is a projective k[H]- contramodule.

Proof Using the Grothendieck spectral sequence, as seen in the proof of Proposi-
tion 2.2, we have that for any k[G]-contramodule B:

Extn
k[G]-Contra (Indk[G]

k[H](Homk(M , k)), B) ≅ Extn
k[H]-Contra (Homk(M , k), B).

As every simple k[H]-contramodule comes from a k[G]-contramodule, by
assumption, we immediately conclude that Homk(M , k) is projective if and only
if Indk[G]

k[H](Homk(M , k)) is. Moreover, by Lemma 1.4, we have that Indk[G]
k[H](Homk

(M , k)) ≅ Homk (M , Indk[G]
k[H]k). ∎

We may now describe conditions on an algebraic group scheme for it to have
proper mock projective contramodules. In order to assist with the proof, we first give
the following lemma.

Lemma 2.4 [Pos10, Lemma 2, Appendix A.2] Let C be a coalgebra which is the direct
sum of a family of coalgebras Cα . Then, any left contramodule B over C is the product of
a uniquely defined family of left contramodules Bα over Cα .

In particular, if C is cosemisimple, then any contramodule over C is the direct
product of simple contramodules. With this fact in hand, we may now state and prove
our theorem.
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Theorem 2.5 Let G be an affine algebraic group scheme over a field k which is defined
and split over a finite subfield Fq ⊂ k. Let G0 denote the connected component of G.
Then, the following are equivalent:
i) k[G] has proper mock projective contramodules;
ii) G has proper mock injective modules;
iii) either G0 is not a torus or G/G0 has order divisible by p.

Proof The analogous result of Hardesty, Nakano, and Sobaje gives ii) ⇐⇒ iii)
[HNS17, Theorem 2.2.1]. To show i) ⇐⇒ iii) we use a similar proof technique. If
p does not divide the order of G(Fq), then G0 is a torus and G/G0 is a finite group
of order not divisible by p. Thus, every element of G is semisimple ([Nag61, Theorem
2]) and so k[G] is cosemisimple. Therefore, by Lemma 2.4, every contramodule is a
direct product of simple contramodules. Thus, every k[G]-contramodule is projective
since all maps of contramodules are given as products of maps between the simple
constituents, and so there cannot be any proper mock projective contramodules.
On the other hand, if p divides the order of G(Fq) then k is a non-projective
k[G(Fq)]-contramodule. Thus, by Proposition 2.2, Indk[G]

k[G(Fq)]
k is a non-projective

k[G]-contramodule whilst being projective as a contramodule over k[Gr] for all
r > 0. ∎

We now produce a family of non-projective k[G]-contramodules which are pro-
jective with respect to the fixed point subgroups of powers of the Frobenius map.

Proposition 2.6 Let G be an affine algebraic group defined over Fp . Let P be a projec-
tive k[G]-contramodule. Then, P(r), r > 0, is projective as a k[G(Fq)]-contramodule,
q = ps for all large enough s, but is not projective as a k[G]-contramodule.

Proof As G(Fq) is finite, it is exact in G and therefore Resk[G]
k[G(Fq)]

P is a projec-
tive contramodule. For r < s, the r th power of the Frobenius map is an automor-
phism of G(Fq), and so P(r) is also projective over k[G(Fq)]. Finally, as a k[Gr]-
contramodule, it is trivial. Thus, it is not projective over k[Gr] and so cannot be
projective over k[G]. ∎

4 Mock projectives with cofinite radicals

In this section, G is a connected reductive algebraic group scheme over a field k. We
wish to investigate mock projective contramodules which have a finite head, that is,
contramodules whose largest semisimple quotient is finite dimensional. We begin our
investigation by looking at contramodules over the coordinate ring of a unipotent
group.

Let U be a connected unipotent group over k which is defined over Fp and let
k[U] be its coordinate ring. We first want to classify all simple k[U]-contramodules.
It turns out that, just as in the case of k[U]-comodules, there is only one.

Lemma 3.1 Let U be unipotent. Then, k is the only simple k[U]-contramodule.
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Proof Let ε ∶ k[U] �→ k denote the counit map. Then k[U] = k ⊕ ker(ε), where
ker(ε) is a conilpotent coalgebra. Let (S , θ) be a simple k[U]-contramodule.
Let S′ = Im (θ∣Homk(ker(ε),S)) denote the image of θ under the restriction to
Homk (ker(ε), S). Then, we have S′ ⊊ S [Pos10, Appendix A.2, Lemma 1]. Now,
consider the restriction of θ to Homk(k, S′) ⊂ Homk(k[U], S). We have by counity
that θ∣Homk(k ,S′) ∶ (1 ↦ s′) �→ s′ and so S′ is a k[U]-subcontramodule of S properly
contained in S and, therefore, S′ = 0. Thus, S must be simple as a k-contramodule,
which implies S = k. ∎

We now produce a proper mock projective contramodule over a unipotent group
with cofinite radical.

Proposition 3.2 Let r ≥ 1 and q = pr . Then, the proper mock projective k[U]-
contramodule Dr = IndU

U(Fq)k satisfies Dr/rad(Dr) ≅ k.

Proof Indeed, Dr is a mock projective contramodule, as seen in the proof of
Theorem 2.5. By the previous lemma, we know that k is the only simple k[U]-
contramodule. Furthermore, by the adjunction between induction and restriction we
have

HomU(Dr , k) ≅ HomU(Fq)(k, k) ≅ k.

It follows that Dr/rad(Dr) ≅ k. ∎

4.1 Parabolic subgroups of G

We now turn our attention to contramodules associated with parabolic and Levi
subgroups of algebraic groups. Let G be a connected reductive algebraic group; fix
a maximal torus T and a Borel subgroup B containing T. Then, we have maps of
coordinate rings k[G] → k[B] → k[T] induced from the inclusions T ⊂ B ⊂ G. Let Φ
denote the resulting root system. Choose simple roots Δ such that the root subgroups
contained in B correspond to negative roots. Note that our choice of simple roots Δ
determines the set of dominant weights, which we denote X(T)+.

For J ⊂ Δ, let PJ denote the corresponding parabolic subgroup of G containing B,
with unipotent radical UJ and Levi factor LJ . Let ZJ ∶= Z(LJ) denote the center of
the Levi factor; it can be verified that the central characters are given by X(ZJ) =
X(T)/ZJ. Letting π ∶ X(T) �→ X(ZJ) denote the canonical quotient map, we see
that π(ZΦ) = ZI, where I = Δ/J. It follows immediately that any k[LJ] contramodule
(D, θD) has a central character decomposition of the form

D = ∏
χ∈ZI

Dχ ,

where Dχ = {d ∈ D ∶ ϕ(χ) = θD(ϕ) for all ϕ ∈ Homk(k[LJ], ⟨d⟩)} with the nota-
tion ⟨d⟩ denoting the one-dimensional subspace of D spanned by d ∈ D. Now,
Homk(k[UJ], k) has a natural contramodule structure induced from the k[LJ]-
comodule structure on k[UJ]. The preceding discussion, along with [HNS17, Lemma
3.3.2], gives the following result.
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Lemma 3.3 The k[LJ]-contramodule Homk(k[UJ], k) has a central character
decomposition

Homk(k[UJ], k) = ∏
χ∈NI

Homk(k[UJ]χ , k),

where dim (Homk(k[UJ]χ , k)) < ∞ for all χ ∈ NI.

Let λ ∈ X(T)+ be a dominant weight. Denote the simple module of highest weight
λ by L(λ). Recall (from the discussion after the statement of Proposition 2.2) that
L(λ) may be viewed as a k[G]-contramodule. Let P(λ) ∈ k[G]-Contra denote the
projective cover of L(λ) [Joh25].

Lemma 3.4 Let M be a finite dimensional right k[G]-comodule with linear dual M∗,
and let λ, μ ∈ X(T)+. Then:

dim(Homk[G] (Hom(M , P(λ)), L(μ))) = [Hom (M∗ , L(μ)) ∶ L(λ)],

where the right-hand side denotes the multiplicity of L(λ) as a composition factor of
Hom (M∗ , L(μ)).

Proof Let M have basis {m i} and M∗ have dual basis {m∗i }. Then, one checks that
we have the following isomorphism:

Homk[G] (Hom (M , P(λ)), L(μ)) ≅ Homk[G] (P(λ), Hom (M∗ , L(μ)))

( f �→∑
i
((ϕ ○ f )(m i))(m∗i )) ←� ϕ

ψ �→ (p �→ (α �→ ϕ(m �→ α(m)p))),

where both M and M∗ are viewed as right comodules and Hom(−,−) is a
contramodule via the diagonal action. Since P(λ) is projective, Hom(P(λ),−)
is exact and so by induction on the composition length, one may show that
dim (Homk[G] (Hom(M , P(λ)), L(μ))) is exactly the number of times L(λ)
appears as a composition factor in Hom (M∗ , L(μ)), as required. ∎

One may inflate a k[LJ] contramodule M to a k[PJ] contramodule via the compo-
sition

Homk(k[PJ], M) �→ Homk(k[LJ], M) �→ M .

Given a weight λ ∈ X(T) which is dominant for LJ , let M = LJ(λ) denote the simple
LJ module with highest weight λ. We denote the inflation by LPJ(λ). The projective
cover PPJ(λ) of LPJ(λ) is given by

PPJ(λ) ≅ Indk[PJ]
k[L J]

(PL J(λ)) ≅ Homk (k[UJ], PL J(λ)),

where the isomorphism is a consequence of Lemma 1.6.
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Lemma 3.5 Let P be a projective k[PJ] contramodule with cofinite dimensional
radical. Then, we have

P∣k[L J] = ∏
λ∈X(T)

PL J(λ)nλ ,

where nλ < ∞ for all weights λ ∈ X(T).

Much as in the analogous result for injective modules of PJ with finite dimensional
socle, [HNS17, Proposition 3.4.3], one must turn to using central characters and the
fact that homomorphisms preserve weight spaces for the proof. All required results
needed to produce an analog of this proof have been proven for contramodules. We
leave the necessary modifications to the reader.

Let F ∶ PJ �→ PJ be the Frobenius morphism and let (PJ)r LJ = (F r)−1(LJ). We
have the following result.

Proposition 3.6 Let D be a k[PJ] contramodule with cofinite dimensional radical
which is projective as a k[(PJ)r LJ] contramodule for all r ≥ 1. Then, D is projective as a
k[PJ] contramodule.

Proof Since D/rad(D) is finite dimensional, it follows that the projective cover of
D in the category k[PJ]-Contra is of the form Homk(k[UJ], P) for some projective
k[LJ] contramodule P with cofinite dimensional radical. This gives us a projec-
tion Homk(k[UJ], P) �→ D. Since by assumption D∣k[(PJ)r L J] is projective for all
r > 0 we have projections of the form D �→ Homk ((k[UJ])r , P) (of k[(PJ)r LJ]
contramodules). It suffices for us to show that we have

Homk(k[UJ], P) = ⋃
r

Homk ((k[UJ])r , P),

but this follows from the fact that the coordinate ring of an algebraic group is the
projective limit of the coordinate rings of its Frobenius kernels.

Since colimits commute with colimits, and in particular, unions commute with
cokernels, we have a projection D �→ Homk(k[UJ], P) and so D = Homk(k[UJ], P).
Thus, D is projective as a k[PJ] contramodule, as required. ∎

Corollary 3.7 Let P be a mock projective k[B] contramodule which cofinite dimen-
sional radical, then P is a projective k[B] contramodule.

Proof Let J = ∅. Then, P∅ = B and L∅ = T . The result follows from the previous
proposition, along with the fact that a contramodule is projective as a k[Br T]
contramodule if and only if it is projective as a k[Br] contramodule [Jan03, Lemma
II.9.4]. ∎
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