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Approximations for the Bessel and Airy functions with
an explicit error term

Ilia Krasikov

Abstract

We show how one can obtain an asymptotic expression for some special functions with a very
explicit error term starting from appropriate upper bounds. We will work out the details for the
Bessel function Jν(x) and the Airy function Ai(x). In particular, we answer a question raised by
Olenko and find a sharp bound on the difference between Jν(x) and its standard asymptotics.
We also give a very simple and surprisingly precise approximation for the zeros Ai(x).

1. Introduction and results

All basic formulas and asymptotic expressions for special functions we use without references
can be found in [9]. To write down error terms in a compact form we will use θ, θ1, θ2, . . . , to
denote quantities with the absolute value not exceeding one.

In most of the cases error terms of asymptotics of special functions are either not known or,
at best, valid for a rather restricted range of parameters. The following is a typical example
of that kind (see, for example, [9, Chapter 10]).

The Bessel function Jν(x) is defined by the series

Jν(x) =

(
x

2

)ν ∞∑
j=0

(−1)j
(x2/4)j

j!Γ(j + ν + 1)
, (1)

and is a solution of the ODE

x2J ′′ν (x) + xJ ′ν(x) + (x2 − ν2)Jν(x) = 0. (2)

Theorem 1. Suppose that ν > 0, x > 0, ων = (2ν + 1)π/4, and let

`1 > max

(
ν

2
− 1

4
, 1

)
, `2 > max

(
ν

2
− 3

4
, 1

)
, ai(ν) =

(1/2− ν)i(1/2 + ν)i
2ii!

,

then √
πx

2
Jν(x) = cos (x− ων)

(`1−1∑
i=0

a2i(ν)

x2i
+ θ21

a2`1(ν)

x2`1

)

− sin (x− ων)

(`2−1∑
i=0

a2i+1(ν)

x2i+1
+ θ22

a2`2+1(ν)

x2`2+1

)
. (3)

The assumption ν > 0 is not really restrictive and can be surmounted by, say, applying the
three term recurrence for Jν . However, if ν is large or depends on x, estimating the error term
in (3) seems at least as difficult as the original task to find a convenient approximation of the
Bessel functions.

In this paper we show how to circumvent this problem and find an explicit expression for
error terms, which is uniform in the parameters, provided one has an a priori upper bound
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on the absolute value of the considered function. In turn, in many cases, such a bound may
be obtained by using so-called Sonin’s function. For Bessel and Airy functions, as well as for
Hermite polynomials (see [2]), the details of this program can be worked out in a quite routine
way. For Jacobi and Laguerre polynomials it is a much more involved problem and the result
is known only for oscillatory and transition regions [5–7]. It is worth noticing that despite
the fact that it is rather a technical problem and we do have appropriate tools to tackle it
(see, for example, Lemma 11 and Remark 1 below), one still needs a good deal of calculations
to extend the bounds to the monotonicity region. Thus, although the underlying idea of the
method we use here is quite simple and can be applied to other special functions satisfying
a second order differential equation, it is not utterly straightforward to work out the details.
Here we will consider the Bessel function Jν(x) as an important example to illustrate this
approach. We provide asymptotic expressions with an explicit error term for the oscillatory
region and also give some new estimates in the monotonicity region. In particular, we answer
a question raised by Olenko [8] and find a sharp bound on the difference between Jν(x) and
its standard asymptotics. We also apply the derived results to obtain sharp bounds for the
Airy function Ai(−x), x > 0. As a corollary we give a surprisingly accurate approximation for
its positive zeros.

In what follows it will be convenient to use the following parameters:

µ = |ν2 − 1

4
|, ων = (2ν + 1)π/4.

Let us summarize the main results. First, we will establish a new bound in the monotonicity
region which improves the inequality

Jν(tν) < Jν(ν)tνe(1−t)ν , ν > 0, 0 < t < 1,

given in [10] and is also stronger than the classical inequality [15, p. 16],

Jν(x) <
xν

2νΓ(ν + 1)
e−x

2/4(ν+1),

provided x >
√

ln 16− 2 ν ≈ 0.88ν, and ν is large enough.

Theorem 2. For ν > 0, 0 < x 6 ν + 1
2 ,

Jν(x) <
21/3xν

32/3Γ(2/3)νν+1/3
exp

(
ν2 − x2

2ν + 1

)
. (4)

The following sharp inequality improves a result obtained in [2] and is crucial for our
purposes.

Theorem 3. Let ν > 1
2 , then for x > 0,

|x2 − µ|1/4|Jν(x)| <
√

2/π, (5)

and the constant
√

2/π is best possible.

The following theorem provides a bound on the difference between Jν(x) and its standard
asymptotics.

Theorem 4. For x > 0,

Jν(x) =

√
2

πx
cos(x− ων) + θcµx−3/2, (6)
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where

c =


(2/π)3/2, x > 0, |ν| 6 1/2,

4/5, 0 < x <
√
µ, ν > 1/2,

2/π, x >
√
µ, ν > 1/2.

Moreover, up to the numerical factor c, the error term is sharp. In particular, c cannot be
taken less than 1/

√
2π.

In [8] Olenko proved the inequalities which for ν > 0 can be written as

c1ν
7/6 6 sup

x>0
x3/2

∣∣∣∣Jν(x)−
√

2

πx
cos(x− ων)

∣∣∣∣ 6 c2ν
13/6,

with some explicit constants c1, c2, and raised the question of what is the best possible exponent
α of ν in these inequalities. The answer α = 2 is an immediate corollary of (6) and for ν > − 1

2
we obtain

1√
2π
µ 6 sup

x>0
x3/2

∣∣∣∣Jν(x)−
√

2

πx
cos(x− ων)

∣∣∣∣ < 4

5
µ. (7)

The next theorem gives a more complicated yet much sharper approximation for the Bessel
function Jν(x).

Theorem 5. For |ν| 6 1
2 and x > 0,

Jν(x) =

√
2

π
(x2 + µ)−1/4 cos(B(x)− ων) + θ

µ√
2πx(x2 + µ)3/2

, (8)

and for |ν| > 1
2 and x >

√
µ,

Jν(x) =

√
2

π
(x2 − µ)−1/4 cos(B(x)− ων) + θ

13µ

12
√

2π(x2 − µ)7/4
, (9)

where

B(x) =


√
x2 + µ+

√
µ ln

x
√
µ+

√
x2 + µ

, |ν| 6 1/2,

√
x2 − µ+

√
µ arcsin

√
µ

x
, ν > 1/2.

(10)

Notice that (9) remains reasonably accurate even in the transition region when x = ν +
const · ν1/3.

Formula (9) can be rewritten in a slightly simpler way by setting x =
√
µ/ sin t,

Jν(
√
µ/ sin t) =

√
2

π
µ−1/4 tan t cos((t+ cot t)

√
µ− ων) + θ

13 tan7/2 t

12
√

2πµ3/4
. (11)

The argument of the cosine in (8) can be simplified at the cost of a weaker numerical constant
at the error term.
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Theorem 6. For |ν| 6 1
2 and x > 0,

Jν(x) =

√
2

π

cos (x− µ/2x− ων)

(x2 + µ)1/4
+ θ

25µ

24
√

2πx3(x2 + µ)1/4
. (12)

Let jνs be the sth zero of Jν(x). One can readily derive sharp approximations for jνs using
formulas (8), (9) and (12), and imposing some restrictions on the rate of growth of ν and s
to be able to solve arising transcendental equations. To illustrate this approach, we derive an
error term in the asymptotic McMahon’s expansion (see [15, p. 506])

jνs = r/4 + 2µ/r +O(s−3), r = (4s+ 2ν − 1)π →∞.

Corollary 1. For |ν| 6 1
2 ,

jνs = r/4 + 2µ/r + 18πθµr−3. (13)

Let us notice that in fact for |ν| 6 1
2 a stronger result, yet with a much more involved proof,

is known [3]:

jνs = r/4 + 2µ/r − 8µ(7µ+ 6)

3r3
+ 81θ2r−5.

Bounds and asymptotics for the Bessel function lead directly to approximation of the Airy
function

Ai(−x) =

√
x

3
(J−1/3(ζ) + J1/3(ζ)), ζ =

2x3/2

3
.

In this paper we prove the following.

Theorem 7. For x > 0,

x1/4|Ai(−x)| < 1/
√
π. (14)

Theorem 8. For x > 0,

Ai(−x) =
cos(ζ − π/4)√

πx1/4
+ θ

5

24π3/2x7/4
. (15)

Applying (8) to the Airy function readily yields a much more accurate result.

Corollary 2. For x > 0,

Ai(−x) =
2
√
x cos(

√
16x3 + 5/6− (

√
5/6) ln ((

√
16x3 + 5 +

√
5)/4x3/2)− π/4)√

π(16x3 + 5)1/4

+ θ
10
√

3√
πx1/4(16x3 + 5)3/2

. (16)

With a slightly less precise numerical constant at the error term this expression can be
written in a much simpler form.

Theorem 9. For x > 0,

Ai(−x) =
2
√
x cos((2/3)x3/2 − (5/48)x−3/2 − π/4)√

π(16x3 + 5)1/4
+ θ

5

9
√
πx4(16x3 + 5)1/4

. (17)
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Let as be the sth positive zero of Ai(−x). In [1] Breen established the bound as =
1
4π

2/3(12s − 3α)2/3, where α ∈ (2.895, 4.2). Here we will strengthen this bound and show
that formula (17) yields a sharper and also very simple approximation to as, for example
already for the first zero the error is less than 4

3 · 10−3.

Theorem 10. We have

as =
1

4
(m2 + 20)1/3 + θ

457

m3(m2 + 40)1/6
, m = (12s− 3)π. (18)

The paper is organized as follows. In the next section we describe the idea of the method.
In § 3 we establish upper bounds on Bessel and Airy functions, in particular, we prove
Theorems 2, 3 and 7. In § 4 we consider the error term of the standard asymptotics and
prove Theorem 4, thus answering Olenko’s question. The rest of the results will be obtained in
§ 5, where using the approach of § 2, we establish sharper approximations for Bessel and Airy
functions and in § 6, where we prove Corollary 1 and Theorem 10.

2. Preliminaries

Our main tool for bounding functions satisfying a second order ODE is based on so-called
Sonin’s function, which is defined as follows. Let y(x) be a solution of

y′′(x) + a(x)y′(x) + b(x)y(x) = 0, b(x) > 0.

Then S(x) = y2 + y′2/b is just an envelope of y2, coinciding with it in all maxima. The sign
of S′ =

(
2ab+ b′

)
y′2/b2 depends only on a and b, which in many cases enables one to find the

global maximum of |y|. The following approach was briefly described in [7]. We want to find
an approximation of a solution of the differential equation

f ′′ + b2(x)f(x) = 0, (19)

in terms of some standard function F (x), which also satisfies a second order ODE

D1(F ) = p2(x)F ′′ + p1(x)F ′ + p0(x)F = 0.

We seek for a multiplier function z(x) such that the differential operator

D2(g) = q2(x)g′′ + q1(x)g′ + q0(x)g,

for g = g(x) = z(x)f(x), is in some sense close to the operator D1. In fact, in what follows we
choose F to be just cosφ(x) with an appropriate function φ.

To be more specific, consider a WKB-type approximation where one chooses g(x) =√
b(x)f(x), transforming (19) into

g′′ − b′

b
g′ + b2g(1 + ε(x)) = 0, ε(x) =

3b′2 − 2bb′′

4b4
. (20)

If ε is small we can expect that g(x) is close to the solution of the equation

g′′0 −
b′

b
g′0 + b2g0 = 0,

which is just g0 = M cosB(x), where B(x) =
∫
b(x) dx.
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Assume now that we have an a priori bound, say, |g(x)| 6 C. Then we can readily estimate
the error term |g − g0| by solving (20) as an inhomogeneous equation,

g(x) = g0 −
∫x
ε(t)b(t) sin(B(x)− B(t))g(t) dt, (21)

thus obtaining

g = g0 + θC

∫x
ε(t)b(t) dt.

To derive an upper bound on |g(x)| we consider Sonin’s function

S(x) = S(g;x) = g2 +
g′2

(1 + ε)b2
= g2 +

4b2

4b4 + 3b′2 − 2bb′′
g′2.

Applying (20) to get rid of g′′, one finds

S′(x) =
8b(6b′3 − 6bb′b′′ + b2b′′′)

(4b4 + 3b′2 − 2bb′′)2
g′2.

Let us assume now that 4b4 + 3b′2−2bb′′ > 0 and 6b′3−6bb′b′′+ b2b′′′ > 0, then S′ > 0 and we
obtain g2(x) < S(∞). Moreover, one can also get an upper bound on S in the following way:

S − b(4b4 + 3b′2 − 2bb′′)

2(6b′3 − 6bb′b′′ + b′2b′′′)
S′ = g2 > 0,

that is

S′/S 6
2(6b′3 − 6bb′b′′ + b′2b′′′)

b(4b4 + 3b′2 − 2bb′′)
=

d

dx
ln

b4

4b4 + 3b′2 − 2bb′′
,

provided the last expression is nonnegative. Integrating from x to y, we find

S(y)

S(x)
6

1 + ε(x)

1 + ε(y)
, x < y.

Thus, the envelope of g2(x) given by S(x) is almost constant as far as ε(x) = o(1).
In practically important examples the situation is somewhat more subtle as the coefficient

b(x) may vanish. For instance, for the Bessel function the coefficient b(x) = x−1
√
x2 − ν2 + 1

4 ,

and Sonin’s function does not provide any information for the monotonicity region 0 6 x 6√
ν2 − 1

4 . Thus, one needs some supplementary estimates to extend the bounds on |g(x)| to

this interval. Let us notice that although the behaviour of the solutions of (19) looks less
complicated in the monotonicity region, it probably allows only a piecewise approximation in
reasonably simple elementary functions.

Another rather technical problem is how to find the constants of integration in g0. Here one
either has to know the value of g(x) at some points, for example at infinity, or to be able to
match asymptotics in the oscillatory and transition regions.

3. Upper bounds

First we will establish a new upper bound on Jν(x) in the monotonicity region. The simplest
inequality of this type [15] states that for x real and ν > − 1

2 ,

|Jν(x)| 6 |x|ν

2νΓ(ν + 1)
. (22)

For our purposes we need much more accurate estimates. We will use the following inequality
established in [4] . We sketch a proof for self-completeness.
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Lemma 11. Let Jν(x) = x−νJν(x), ν > − 1
2 , then for 0 < x 6 ν + 1

2 ,

J ′ν(x)

Jν(x)
>

√
(2ν + 1)2 − 4x2 − 2ν − 1

2x
> − 2x

2ν + 1
. (23)

Proof. For ν > − 1
2 the Bessel function Jν(x) is an entire function with only real zeros

satisfying the Laguerre inequality J ′2ν − JνJ ′′ν > 0. Substituting J ′′ν from the differential
equation

xJ ′′ν + (2ν + 1)J ′ν + xJν = 0,

and dividing by J 2
ν we obtain xt2(x) + (2ν + 1)t(x) + x > 0, where t(x) = J ′ν/Jν . Hence for

0 < x 6 ν + 1
2 ,

t(x) /∈
(
−
√

(2ν + 1)2 − 4x2 + 2ν + 1

2x
,− 2x√

(2ν + 1)2 − 4x2 + 2ν + 1

)
.

Since limx→0+ t(x) = 0, whereas limx→0+(−(
√

(2ν + 1)2 − 4x2 + 2ν + 1)/2x) = −∞, we get

t(x) > − 2x√
(2ν + 1)2 − 4x2 + 2ν + 1

> − 2x

2ν + 1
.

Proof of Theorem 2. By the previous lemma we have

ln
Jν(ν)

Jν(x)
> −

∫ν
x

2z

2ν + 1
dz = −ν

2 − x2

2ν + 1
,

hence

Jν(tν) 6 Jν(ν) exp

(
ν2(1− t2)

2ν + 1

)
.

This, together with the inequality Jν(ν) < 21/3/(32/3Γ(2/3)ν1/3) (see [9, equation (10.14.2)]),
yields the required result.

Remark 1. The function Jν(x) = x−νJν(x) of Lemma 11 belongs to the so-called Pólya-
Laguerre class and satisfies the infinite series of inequalities

Lm(Jν) =

2m∑
j=0

(−1)m+j

(
2m
j

)
(2m)!

J (j)
ν J (2m−j)

ν > 0, (24)

where L1(Jν) > 0 is the usual Laguerre inequality J ′2ν −JνJ ′′ν > 0 (see, for example, [11, 12]).
Using Lm(Jν) > 0 for m > 1 leads to much more precise yet more complicated bounds on
J ′ν/Jν and consequently on Jν . Alternatively, one can use the inequality L1(Jν + λJ ′ν) > 0,
λ ∈ R, then optimizing in λ. It is worth noticing that both methods give an inequality similar
to (23) but in the opposite direction. Thus, at least in principal, one can use the known value
of Jν(0) instead of Jν(ν).

Our main tool for bounding solutions of the second order differential equations will be Sonin’s
function. In particular, it was used by Szegö to prove that

|Jν(x)| 6
√

2

πx
, |ν| 6 1

2
, x > 0. (25)
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216 i. krasikov

Although he did not state this explicitly, his proof of Theorem 7.31.2 from [14] immediately
implies

|Yν(x)| 6
√

2

πx
, |ν| 6 1

2
, x > 0. (26)

His arguments go as follows: let y be a solution of the Bessel differential equation

x2y′′ + xy′ + (x2 − ν2)y = 0,

the normal form of which is given by

f ′′ +

(
1−

ν2 − 1
4

x2

)
f = 0, f =

√
xy.

Then for |ν| 6 1
2 and x > 0 the derivative of Sonin’s function is positive,

S′(x) =
2µx

(µ+ x2)2
f ′2(x) > 0,

hence S is increasing and inequalities (25) and (26) follow by calculating S(∞) from known
asymptotics of Jν and Yν . On the other hand, S′(x) < 0 for ν > 1

2 and x >
√
µ, which does

not lead, at least directly, to any explicit inequality.
It turns out that for ν > 1

2 it is more natural to deal with the function

Hν(x) = |x2 − µ|1/4Jν(x), (27)

rather than
√
xJν(x). Here we will refine an inequality for the Bessel function obtained in [2].

First we need the following lemma.

Lemma 12. The first positive maximum of Hν(x), ν > 5
3 , is attained at a point ξ satisfying

ξ > ν
√

1− (2ν)−2/3.

Proof. Since obviously 0 < ξ < µ, we can restrict ourselves to the interval (0, µ) and write
down

Hν(x) = xν(µ− x2)1/4Jν(x),

where as before Jν(x) = x−νJν(x). Then

0 = H′ν(ξ) =
ξν−1

2(µ− ξ2)3/4
(2(µ− ξ2)(ξt(ξ) + ν)− ξ2)Jν(ξ),

where t(x) = J ′ν(x)/Jν(x). Hence

t(ξ) = − (2ν + 1)(2ν2 − ν − 2ξ2)

(4ν2 − 1− 4ξ2)ξ
,

and comparing this with (4) we obtain the inequality

(2ν + 1)(2ν2 − ν − 2ξ2)

4ν2 − 1− 4ξ2
6

2ν + 1−
√

(2ν + 1)2 − 4ξ2

2
.

Simplifying we get that the last inequality holds if

p(ξ) = (4ν2 − 1)2 − (4ν2 − 1− ξ2)2((2ν + 1)2 − 4ξ2) > 0.
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Observe that for ν > 5
3 this polynomial has the only positive zero ξ0. Indeed, the discriminant

of p(ξ) in ξ, up to an irrelevant numerical factor, is

ν(ν + 1)(2ν − 1)6(2ν + 1)10(108ν2 − 172ν − 5)2.

Thus the number of real and, as it is an even function of ξ, positive zeros does not change for
108ν2 − 172ν − 5 > 0, in particular for ν > 5

3 . Choosing ν = 5
2 we obtain the test equation

p(ξ) = ξ6 − 21ξ4 + 144ξ2 − 315 = 0, with the only positive zero ξ ≈ 2.14. Finally,

p(ν) = ν(4ν3 − 2ν − 1) > 0,

and using the substitution ν = r3/2, we find

p(ν
√

1− (2ν)−2/3 ) = p(
√
r6 − r4/2) = −r3(r2 − 1)2(2r4 + 4r2 − r + 2) < 0.

Hence, since r > 1, we get ξ > ν
√

1− (2ν)−2/3.

Proof of Theorem 3. For x =
√
µ the result is trivial. Otherwise we shall consider three (in

fact, overlapping) cases.

Case 1: x >
√
µ. The function Hν(x) = (x2 − µ)1/4Jν(x), as is easy to check, satisfies the

differential equation

H′′ν (x)− µ

x(x2 − µ)
H′ν(x) +

4(x2 − µ)3 + (6x2 − µ)µ

4x2(x2 − µ)2
Hν(x) = 0. (28)

Consider the corresponding Sonin’s function

S(x) = H2
ν(x) +

4x2(x2 − µ)2

4(x2 − µ)3 + (6x2 − µ)µ
H′2ν(x),

then H2
ν(x) 6 S(x) for x >

√
µ > 0. On excluding H′′ν (x) by (28) one finds

S′(x) =
24µx3(x2 − µ)(4x2 + µ)

(4(x2 − µ)3 + (6x2 − µ)µ)2
H′2ν(x) > 0,

hence |Hν(x)| <
√

limx→∞ S(x). Using J ′ν(x) = (Jν−1(x) − Jν+1(x))/2, and the asymptotic
formula

Jν(x) ∼
√

2

πx
cos (x− ων),

after some calculations one finds |Hν(x)| <
√

2/π. Since H2
ν(x) = S(x) at all local maxima

the constant
√

2/π is sharp.

Case 2: 0 < x 6
√
µ, 12 6 ν 6 4.9. By (22) and ν > 1

2 we have

Hν(x) = (µ− x2)1/4Jν(x) 6
(µ− x2)1/4xν

2νΓ(ν + 1)
.

The maximum of the right-hand side is attained for x =
√
ν2 − ν/2, yielding

Hν(x) 6

(
1− 1

2ν

)ν/2+1/4
(ν/2)ν/2+1/4

Γ(ν + 1)
< e−1/4

(ν/2)ν/2+1/4

√
2πνννe−ν

=
(e/2)ν−1/4

2
√
πν1/4

<
√

2/π,
1

2
6 ν 6 4.9.
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Case 3: 0 < x <
√
µ, ν > 19

7 . Inequality (4) yields

Hν(x) <
21/3xν(µ− x2)1/4

32/3Γ(2/3)νν+1/3
exp

(
ν2 − x2

2ν + 1

)
.

Let r = (2ν)1/3. By Lemma 12 we can set

x = ν
√

1− (2ν)−2/3z =
r2

2

√
r2 − z, r−4 < z < 1 6 r.

This gives Hν(x) < Af(z), where

A =
21/6

32/3Γ(2/3)
, f(z) =

(
1− z

r2

)r3/4(
z − 1

r4

)1/4

exp

(
zr4

4r3 + 4

)
.

We find
f ′(z)

f(z)
=

(1 + r3 + r6 − 2zr4 − z2r5)r3

4(1 + r2)(r2 − z)(zr4 − 1)
.

The denominator here is obviously positive. The numerator is also positive by

1 + r3 + r6 − 2zr4 − z2r5 > (r2 − 1)(1 + r)(r3 − 2r2 + r − 1) > 0,

provided ν > 19
7 . Hence f(x) is increasing and

Hν(x) < Af(1) = A

(
1− 1

r2

)r3/4
(r4 − 1)1/4r−1 exp

(
r4

4r3 + 4

)
< Ae−r/4(1− r−4)1/4 exp

(
r4

4r3 + 4

)
< A <

√
2/π.

This completes the proof.

Proof of Theorem 7. Set f(x) = x1/4Ai(−x), then

f ′′ − 1

2x
f ′ +

(
x+

5

16x2

)
f = 0,

and the corresponding Sonin’s function is

S(x) = f2 +
16x2

16x3 + 5
f ′2, S′(x) =

240x

(16x3 + 5)2
f ′2 > 0.

Hence f2(x) 6 S(x) 6 S(∞). Using the asymptotics [9, equations (9.7.9), (9.7.10)]

Ai(−x) ∼ cos(ζ − π/4)√
πx1/4

, Ai′(−x) ∼ x1/4 sin(ζ − π/4)√
π

, ζ =
2

3
x3/2,

one obtains S(∞) = 1/π and the result follows.

4. Error term of the standard asymptotics of Jν(x)

Having at hand an upper bound on |Jν(x)| one can estimate the difference

r(x) =

√
πx

2
Jν(x)− cos(x− ων), (29)
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in a rather elementary way. Notice that r(x) satisfies the equation

r′′ + r =

√
π

2x3

(
ν2 − 1

4

)
Jν(x),

with the general solution of the form

r(x) = c1 cosx+ c2 sinx+

√
π

2

(
1

4
− ν2

) ∫∞
x

sin(t− x)

t3/2
Jν(t) dt. (30)

Now one has only to estimate the integral and to notice that as far as it is o(1), we have
c1 = c2 = 0 by an obvious limiting argument.

To get better numerical constants the following observation will be useful. Let f(x) > 0 be
a decreasing function for x > 0. Since∫π(k+1)

πk

(|sin t| − 2/π) dt = 0, k = 0, 1, . . . ,

one readily obtains ∫∞
0

f(t)|sin t| dt 6 2

π

∫∞
0

f(t) dt, (31)

assuming that the last integral exists.

Proof of Theorem 4. We shall estimate the function r(x) defined by (29). First notice that
asymptotically

Jν(x) =

√
2

πx
cos(x− ων) +O(x−3/2),

that is limx→∞ r(x) = 0, hence c1 = c2 = 0 in (30), and therefore

|r(x)| =
√
π

2
µ

∣∣∣∣∫∞
x

sin(t− x)

t3/2
Jν(t) dt

∣∣∣∣ :=

√
π

2
µIν(x).

Thus, c = supx>0 xIν(x) and for |ν| 6 1
2 the result immediately follows by (31),

Iν(x) 6

√
2

π

∫∞
x

|sin(t− x)|
t2

dt 6
(2/π)3/2

x
.

For ν > 1
2 and x >

√
µ, applying (5), (31) and the inequality arcsinx 6 πx/2, we get

Iν(x) 6

√
2

π

∫∞
x

|sin(t− x)|
t3/2(t2 − µ)1/4

dt 6

(
2

π

)3/2 ∫∞
x

dt

t3/2(t2 − µ)1/4

6

(
2

π

)3/2
√∫∞

x

dt

t2
·
∫∞
x

dt

t
√
t2 − µ

=

(
2

π

)3/2
√

arcsin(
√
µ/x)

x
√
µ

6
2

πx
.

Similarly, for ν > 1
2 and 0 < x 6

√
µ,

Iν(x) 6

√
2

π

∫∞

√
µ

|sin(t− x)|
t3/2(t2 − µ)1/4

dt+

√
2

π

∫√
µ

x

|sin(t− x)|
t3/2(µ− t2)1/4

dt

6
2

π
√
µ

+

√
2

π

∫√
µ

x

dt

t2
·
∫√

µ

x

dt

t
√
µ− t2

=
2

π
√
µ

+

√
2

π

(
1

x
− 1
√
µ

)
ln (
√
µ+

√
µ− x2)/x

√
µ

.
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This inequality can be rewritten as

xIν(x) 6
2z

π
+

√
2

π
(1− z)z ln

1 +
√

1− z2
z

with z = x/
√
µ.

A routine but rather tedious investigation reveals that the last expression does not exceed 4
5 .

We omit the details.
Let us show that up to the numerical factor c the error term in (6) is sharp. By (30) and

(6) we have for the error term

Rν(x) = x3/2
∣∣∣∣Jν(x)−

√
2

πx
cos(x− ων)

∣∣∣∣ = µx

∣∣∣∣∫∞
x

sin(t− x)

t3/2
Jν(t) dt

∣∣∣∣
=

√
2

π
µx

∣∣∣∣∫∞
x

sin(t− x) cos(t− ων)

t2
dt

∣∣∣∣+ θcµx

∣∣∣∣∫∞
x

sin(t− x)

t3
dt

∣∣∣∣ :=

√
2

π
µx|I1|+ I2.

Here

I2 = θcµx

∫∞
x

dt

t3
=
θcµ

2x
.

To bound I1 we introduce two auxiliary functions f and g defined by

Si(x) =
π

2
− f(x) cosx− g(x) sinx, Ci(x) = f(x) sinx− g(x) cosx,

with the asymptotics (see [9, § 6.12(ii)])

f(x) = x−1 +O(x−3), g(x) = x−2 +O(x−4).

Calculations yield

I1 = Si(2z) sin(x+ ων) + Ci(2z) cos(x+ ων)− sin t cos(z − ων)

z

∣∣∣∣∞
t=0

= f(2z) sin(2t+ x− ων)− g(2z) cos(2t+ x− ων)− sin t cos(z − ων)

z

∣∣∣∣∞
t=0

=
sin(ων − x)

2x
+O(x−2), z = x+ t.

Hence

Rν(x) =
µ√
2π
|sin(ων − x)|+O(x−1),

and the result follows.

Remark 2. Numerical calculations suggest that in fact

sup
x>0

x3/2
∣∣∣∣Jν(x)−

√
2

πx
cos

(
x− π(2ν + 1)

4

)∣∣∣∣ =
µ√
2π
,

for all ν > − 1
2 outside the strip 3

2 < ν . 4.4767. The maximal value of the function

in that strip is approximately equal to 1.064 24/
√

2π and is attained at the point (ν, x) ≈
(2.687 29, 2.982 19).
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5. Sharper asymptotics

The classical asymptotics given by (6) do not make much sense for x = O(µ) when the
main term and the error are of the same order. Here, using formula (21), we derive a different
asymptotic expression with much smaller error term. It also leads to very sharp approximation
of the Airy function Ai(−x) and its zeros. We will need the following lemma given in [7].

Lemma 13. Let f(x) satisfy the differential equation

f ′′(x) + b2(x)f(x) = 0,

where b(x) > 0 and b′′(x) exists on an interval I. Let g(x) =
√
b(x)f(x), then for x ∈ I,

provided the integral exists,

g(x) = c1 cosB(x) + c2 sinB(x) + θ

∫x
a

∣∣∣∣3b′2(t)− 2b(t)b′′(t)

4b3(t)
g(t)

∣∣∣∣ dt, (32)

where B(x) =
∫x
b(t) dt and a ∈ I is arbitrary.

Proof. Observe that g(x) satisfies the equation

g′′ − b′

b
g′ + gb2(1 + ε) = 0, ε = ε(x) =

3b′2 − 2bb′′

4b4
. (33)

The solution of the corresponding homogeneous equation

g′′0 −
b′

b
g′0 + b2g0 = 0

is g0 = c1 sinB(x) + c2 cosB(x). Solving (33) formally as an inhomogeneous equation with the
right-hand side −ε(x)g(x) we get

g(x) = g0(x)−
∫x
a

ε(t)b(t)g(t) sin (B(x)− B(t)) dt

= g0(x) + θ

∫x
a

|ε(t)b(t)g(t) sin (B(x)− B(t))| dt

= g0(x) + θ

∫x
a

∣∣∣∣3b′2(t)− 2b(t)b′′(t)

4b3(t)
g(t)

∣∣∣∣ dt. 2

The normal form of differential equation (2) is

f ′′ +

(
1− ν2 − 1/4

x2

)
f = 0, f =

√
xJν(x).

Thus, for x >
√

max{0, ν2 − 1
4} we have

b(x) =

√
x2 − ν2 + 1/4

x
,

B(x) =


√
x2 + µ+

√
µ ln

x
√
µ+

√
µ+ x2

, |ν| 6 1/2,

√
x2 − µ+

√
µ arcsin

√
µ

x
, ν > 1/2,

and g(x) = (x2 − ν2 + 1
4 )1/4Jν(x).
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Proof of Theorem 5. Since |Jν(x)| 6
√

2/πx for |ν| 6 1
2 , by (32) we have

g(x) = g0(x) + θ
µ√
8π

∫∞
x

6z2 + µ

z3/2(z2 + µ)9/4
dz = g0(x) + θ

µ√
2πx(x2 + µ)5/4

.

Comparing this with the standard asymptotics

f(x) =
√
xJν(x) =

√
2

π
cos (x− ων) +O(x−3/2), (34)

for large x one finds

c1 =

√
2

π
sinων , c2 =

√
2

π
cosων ,

yielding (8).
Similarly, for ν > 1

2 and x > µ, using (5) instead of (25), we obtain

g(x) = g0(x) +
θµ√
8π

∫∞
x

6z2 − µ
z(z2 − µ)5/2

dz = g0 +
θ√
8π

∣∣∣∣ 3x2 + 2µ

3(x2 − µ)3/2
−

arcsin(
√
µ/x)

√
µ

∣∣∣∣.
It is easy to check that the expression inside the absolute value bars is positive and decreasing
in x. Therefore, by arcsin(

√
µ/x) >

√
µ/x, x > 0, we get

3x2 + 2µ

3(x2 − µ)3/2
−

arcsin(
√
µ/x)

√
µ

6
3x2 + 2µ

3(x2 − µ)3/2
− 1

x

=
13µ

6(x2 − µ)3/2
− (x+ 2

√
x2 − µ)(

√
x2 − µ− x)2

2x(x2 − µ)3/2
<

13µ

6(x2 − µ)3/2
,

and

g(x) = g0(x) + θ
13µ

12
√

2π(x2 − µ)3/2
.

Comparing this with the asymptotics for large x one finds c1 =
√

2/π sinων , c2 =
√

2/π cosων ,
and (9) follows.

The corresponding results for the Airy function are now almost straightforward. In particular,
Corollary 2 follows directly from (8).

Proof of Theorem 8. Let f(x) = Ai(−x), then f ′′ + xf = 0, that is b(x) =
√
x, then (32)

together with (14) yield

g(x) = x1/4f(x) = c1 sin ζ + c2 cos ζ +

∫∞
x

5

12πx3/2
dx

= c1 sin ζ + c2 cos ζ + θ
5

24πx3/2
, ζ =

2x3/2

3
,

and the result follows by comparing this with the asymptotics

Ai(−x) ∼ 1√
πx1/4

cos (ζ − π/4).

Proof of Theorems 6 and 9. It is easy to verify the following Taylor expansions:√
x2 + µ+

√
µ ln

x
√
µ+

√
µ+ x2

= x− µ

2x
+ θ2

µ2

24x3
, x > 0,

√
16x3 + 5

6
−
√

5

6
ln

√
16x3 + 5 +

√
5

4x3/2
=

2

3
x3/2 − 5

48
x−3/2 + θ2

25

9216
x−9/2.

Now (12) and (17) follow by applying |cos(x+ ε)− cosx| 6 ε, ε > 0.
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6. Approximation of zeros

In this section we deduce the approximations of Corollary 1 and Theorem 10 from (12) and
(17) respectively. Both proofs are based on the following simple observation: the inequality
|sinx| 6 ε implies x = πs+ θπε/2, s ∈ Z.

Proof of Corollary 1. Let

x0 =
r +

√
r2 + 32µ

8
, x±0 =

r +
√
r2 + 32µ± (800πµ/3r2)

8
.

We will prove a slightly stronger result, namely that x−0 < jνs < x+0 . Then (13) will follow in
view of the inequality

|r/4 + 2µ/r − x±0 | < 18πµr−3.

First, notice that π/2 6 jν1 6 π for |ν| 6 1
2 , thus we will assume x > 1. By (12) the equation

Jν(x) = 0 is equivalent to

sin

(
x− µ

2x
− ων +

π

2

)
= θ

25µ

48x3
.

Hence, for x = jνs we get

x− µ

2x
− ων +

π

2
= πs+ θ

25πµ

96x4
,

giving the equation

V (x) = 96x4 − 24rx3 − 48µx2 − 25θπµ = 0, r = (4s+ 2ν − 1)π. (35)

By Descartes’ rule of signs this equation has only one positive zero for θ > 0 and a maximum
of two for θ < 0. If θ = 0 then x0 is the only positive root of (35).

Suppose next that θ > 0. One easily checks V (x0) < 0 and V (x+0 ) > 0, hence x0 < x < x+0 .
Now let θ < 0. We find V (0) > 0 and V ( 1

2 ) < 0. Hence the equation V (x) = 0 has just one
root for x > 1

2 . Since V (x0) > 0, whereas

V (x−0 ) =
25πµ

6r4

(
400πµ− 48µr2 − 3(1 + 2θ)r4 − 3r3

√
r2 + 32µ− 800πµ

3r2

)
6

25πµ

2r

(
r −

√
r2 + 32µ− 800πµ

3r2

)
6 0,

we conclude that in all the cases x−0 < x < x+0 . This completes the proof.

Proof of Theorem 10. By (17) Ai(−x) = 0 means

sin

(
2

3
x3/2 − 5

48
x−3/2 +

π

4

)
= θ

5π

36
x−9/2,

hence for x = as we obtain

2

3
x3/2 − 5

48
x−3/2 = πs− π

4
+ θ

5π

36
x−9/2, s = 1, 2, . . . . (36)

First we need a lower bound on x. Since a1 = 2.33 . . . , we may assume x > 2. Then

2

3
x3/2 = πs− π

4
+

5

48
x−3/2 + θ

5π

36
x−9/2 > πs− π

4
,
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so x > m2/3/4,m = (12s − 3)π. Substituting this into the term with θ in (36) we get the
equation

2

3
x3/2 − 5

48
x−3/2 = m/12 + δ, δ = θ

640π

9m3
,

with the only positive root

x = 16−2/3(m+ 12δ +
√

(m+ 12δ)2 + 40)2/3.

After some calculations one gets

x = 16−2/3(m+
√
m2 + 40)2/3

(
1 + θ

16δ

m+
√
m2 + 40

)
. (37)

Finally, using the inequality

0 <
1

4
(m2 + 20)1/3 − 16−2/3(m+

√
m2 + 40)2/3 <

25

3m3(m2 + 40)1/6
,

we get

x =
1

4
(m2 + 20)1/3 + θ

457

m3(m2 + 40)1/6
.

This completes the proof.

Finally, let us notice that the formulas (37) and (18) can be strengthened to

as < 16−2/3(m+
√
m2 + 40)2/3 < 1

4 (m2 + 20)1/3.

This follows from rather involved estimates given in [13] of the error term of Miller’s asymptotic
expansion for as,

as ∼ m2/3

(
1

4
+

5

3m2
− 1280

9m4
+

4 936 000

81m6
− · · ·

)
.

In particular, in [13] it is shown that

as < m2/3

(
1

4
+

5

3m2
− 1280

9m4
+

4 936 000

81m6

)
,

and by straightforward calculations we conclude that the last expression does not exceed
16−2/3(m+

√
m2 + 40)2/3.
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