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1. Introduction. This note extends the concept of the inner automorphism, but here
applies only to those finite groups G for which some member of the lower central series is Abelian.
In general (e.g. when G is metabelian) the construction yields an endomorphism semigroup,
but in the special case where 0 is nilpotent (and may therefore, for our present purposes, be
considered as a ^»-group) a group of automorphisms results.

2. Construction. Employing the notation

[s, t] = s-H^st

for any two elements s and t of a group G, we first list the identities

[xy, zt] = y~\x, t]t-i[x, z]y[y, z]t (2.1)

[[*. yl A = [y, *][*, *][*, yz] (2.2)

We denote by
(G = ) C 1 2 < ? 2 2 ...

the lower central series of G, so that C?2 = [G, G] and G{ = [G{_lt G]. The use of (2.1) yields
the result that, if the subgroup Gk of G is Abelian, then for g e G, h e G^^ and c e Gk,

[gc, h] = [g, h][c, h] (2.3)

Concerning endomorphisms, we clearly have the following criterion.

LEMMA 2.4. / / , with each element g of G is associated an element ag, then the mapping

a: ga. = gag

is an endomorphism if and only if, for all pairs g, h of elements of G,

aghah = hath.

THEOREM 2.5. If the subgroup Gk is Abelian, then for arbitrary elements av . . . , am chosen
from (?£_!, the mapping

d: g9 = g-[g,a1]...[g',am]

is an endomorphism of G, the set of all such endomorphisms being closed under multiplication.
Should G be also a p-group, then d defines, in all cases, an automorphism, the complete set

resulting in a p-group.

Proof. Since, for each i, the mapping g -> g[g, a,] is an inner automorphism, then, by
Lemma 2.4,

h, a,] = h[gh,at].
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Thus, writing w,- = [u, a,] for any element u of G, we have, since elements of the form x{, yt

commute,

01 ••• Qvfih ••• K = g2... gmgxhhx... hm

= 02 •••9mh(gh)1h2...hm

... (gh)m.

Hence, by Lemma 2.4, 0 is an endomorphism.
If the elements 6X bn of Gk_! define a second endomorphism

<f>- 9<l> = 9[9, &J - to. h i

then use of the identities (2.3) and (2.2) gives

gty = 9 IT to. «<] I I to to. «i] ••• to, «m]> &/]
i 3

= g n to,«,] n [g, hi n [[?,«,], &,i

= ^ II [ff, «,] IT to. b,] f[ [a,-. </] \b}, g\ [g, afii]
i i i,3

i.e., gO+ = g U [g, ajbt] U [a,, g]"-1 U U>t, g]m~x (2.6)
i,i i i

which is of the required form.
The fact that 8 is invariably an automorphism in the case where G is a ̂ i-group, is due to a

result of Burnside. See P. Hall [1, pp. 35-6]. Since the Frattini subgroup F of G contains the
commutator subgroup G', then if elements xv ...,xr form a minimal set of generators of G
(so that the cosets xt = xtF form a basis of G/F), it follows that each x{ = (xfi)F. This
implies that xfi, ...,xr6 generate G, or that 0 is an automorphism.

Since 6 belongs to the p-group consisting of those automorphisms of G which reduce to the
identity on GjF [1, pp. 37-8], then the set of all automorphisms 6 must also form a p-group.

3. Some identities. Suppose that G is a ̂ )-group. We choose first an element a from the
subgroup Gk_x, then an integer c (not necessarily positive) and for g e G, write 8 for the auto-
morphism

go = g[g,af (3.1)

It is easily verified that use of the formula (2.6) yields, for any positive integer q,

g8° =g[g,af[g,a*T>...[g,a<>]c<>,

where c{ = c<(l-c)«

The use of this formula, together with certain elementary congruence properties listed below,
makes it possible to derive some identities involving automorphisms of a type similar to 6.
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LEMMA 3.2. In the following, a, b, m and n are integers, m and n being positive, and r is an
integer in the range 0 =£J r <| n.

(i) " 1

(ii) If b is prime to p and satisfies 1 < 6 < pn~r, then [F r) = 0 (modpn~T).

(iii) Ifa=b (modpn), then a" s bp (modpn+1).

From (iii), we have immediately

(iv) / / a = 6 (mod pn), then aPm = bvm (mod pm+n).

Denoting the exponent of any group H by exp H, let p' = exp Ok and write w = p'-1.

THEOREM 3.3. Let 0 be the automorphism (3.1). (i) / / n^- s, then 0v = #"', where
gtf, = g[g,aPn~!+l]c. (ii) / / gifi = g[g, a]b, then c =b (modp*) implies that ipv = 8V, where
v = p'~*.

Proof, (i) Writing y for the automorphism gy = g[g, av]c, it is clearly sufficient to estab-

lish that, for n ^ s, 0P" = yPn~1. We have, putting q = pn and r = p n ~ \

g8° = g[g, a]e> ... [g, a"]\ gy' = g[g, a*f* ...[g,

where c, = o* (1 - c)"-* (J J , d, = c* (1 - c ) ' - ' I . J .

Since p* = exp Gk divides q, then, for i prime to p, we have, by Lemma 3.2,

c, = (q. J = 0 (mod p»)

and hence we may rewrite

where et = c " ' ( l - c ) " " - " |

Let p d be the highest power of p dividing j ; then 0 <; d ^ TO - 1 and

1), (1 -c) c-"" = (1 -c)r-' (modpd+1).

Hence dj = et (mod pn), and since exp Ok divides pn, the result is established,

(ii) We have

90" = 9[g, at ...[g, a*\f; ^ » = g[?, a ] A l . . . [jr, a"]A«,

where /, = c< (1 - c)'~* (fj , ht = &' (1 - ft)-* (") .

If pd, where 0 ^ d < s - 1 , is the highest power of p dividing i, then

https://doi.org/10.1017/S2040618500034171 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500034171


SOME AUTOMORPHISMS OF FINITE NILPOTENT GROUPS 207

W ~
and (1 -c)"- ' = (1 -&)«-• (modp*+d).

Together these congruences yield ft = h( (mod^s), which completes the proof.
This result provides an upper bound for the order of the automorphism 8 of (3.1). If we

examine first the case for which the integer c is arbitrary, Theorem 3.3 (i) yields the result:

COROLLARY 3.4. / / the inner automorphism of G with respect to the element a has order pm

then 8 has order dividing pm+a~1.
Should the integer c be divisible by pl{0 < t < s), then, by repeated applications of (ii)

we have, putting v = p'-*,
nV nv nV

where, writing c,- = ĉ *, gdt = g[g, of1. However, if t ^ 1, c,- is divisible by pP* and hence 8V

is the identity automorphism.

COROLLARY 3.5. / / the integer c is divisible by pf(l < t < s), then the order of the auto-
morphism 8 divides p"~*.
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