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Abstract

Start with a compact set K ⊂ R
d . This has a random number of daughter sets, each of

which is a (rotated and scaled) copy of K and all of which are inside K . The random
mechanism for producing daughter sets is used independently on each of the daughter
sets to produce the second generation of sets, and so on, repeatedly. The random fractal
set F is the limit, as n goes to ∞, of the union of the nth generation sets. In addition, K
has a (suitable, random) mass which is divided randomly between the daughter sets, and
this random division of mass is also repeated independently, indefinitely. This division of
mass will correspond to a random self-similar measure on F . The multifractal spectrum
of this measure is studied here. Our main contributions are dealing with the geometry
of realisations in R

d and drawing systematically on known results for general branching
processes. In this way we generalise considerably the results of Arbeiter and Patzschke
(1996) and Patzschke (1997).
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1. Introduction

We give first a fairly informal description of the problem. Start with a compact setK ⊂ R
d .

This has a random number of daughter sets, {Ki}, each of which is a (rotated and scaled) copy
ofK and all of which are insideK , so that

⋃
i Ki ⊂ K . The random mechanism for producing

daughter sets is used independently on each of theKi to produce the second generation of sets,
and so on, repeatedly. The union of the sets forming the (n+1)th generation is, by arrangement,
contained in the union of the nth generation sets. Hence, it makes sense to take the limit (the
intersection) of these as n goes to ∞. Then the limit set F can be ‘partitioned’, using the first
generation sets, as {Ki ∩ F }, with each part being a random (scaled) copy of F—note that this
need not be a true partition because daughter sets may overlap. Now, as an additional feature,
K has a (suitable, random) mass which is divided randomly between the Ki , and this random
division of mass is also repeated independently, indefinitely. This mass will derive from a
random measure, µ, on F , which will be randomly self-similar: µ can be decomposed into a
sum of ‘copies’ of µ, one defined on each of the sets Ki ∩ F . The law giving the {Ki} and the
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division of the mass is called a scaling law. A measure has a local dimension at a point when
the logarithm of the measure of a small ball around the point has (in the limit as the ball gets
small) a fixed ratio to the logarithm of the volume of the ball. The objective is to study the size,
in the sense of the Hausdorff dimension, of the subset of F with a specified local dimension for
the self-similar measure associated with a given scaling law. Doing this as the local dimension
varies is studying the multifractal spectrum.

We make no attempt to review fully the extensive relevant literature. Initial results on the
construction of random self-similar measures on R

d were obtained in [34], and put into the same
context as fractal sets in [32]. General results for the existence of a random self-similar measure
are due to [15] and [19] or, with the addition of a Markov structure in the construction, [21].
There is a multifractal formalism, developed in the physics literature, which characterises the
multifractal spectrum of a set using the Legendre–Fenchel transform of the empirical moment
measures. A mathematically precise version can be found in [30]. The application of these ideas
to random self-similar measures was the subject of [2], [13], [29], and [31], and is mentioned at
the end of [3]. In this paper we establish the usual multifractal spectrum of a random self-similar
measure under assumptions that are significantly weaker than those used in [2] by exploiting
branching process ideas. In that literature there are already good results (see [3], [4], and [23])
on the multifractal spectrum of random self-similar measures defined on the boundary of trees.
There is considerable extra complication in dealing with the geometry of realisations in R

d , as
we do here.

Despite the description just given, we treat the collection of maps that produce the Ki from
K as the fundamental object, rather than the sets themselves. The map S : R

d → R
d is a

contractive similitude when Sy = rOy + x, where r < 1 is a contraction factor, O is an
orthogonal matrix, and x is a shift. Let S be the set of contractive similitudes. Now let A be
the set of locally finite discrete measures with integer masses on (0,∞)× S. A scaling law is
a probability measure P on A. For a ∈ A, each unit of mass is interpreted as a point, so that
a mass of two gives two points at that place. The points of the process are a set of weights
{pi : i = 1, 2, . . .} and a corresponding set of similitudes {Si = (ri, Oi, xi) : i = 1, 2, . . .}. Let
N be the number of points, so N ∈ N ∪ {∞}. We usually write

∑
i , or sometimes just

∑
, for∑N

i=1. We assume throughout that E
∑
pi = 1, EN > 1, and P(N = 0) = 0.

A scaling law is called compact when there is a compact set K such that P(
⋃
i Si(K) ⊂

K) = 1, so all its contractive similitudes map K into K . We consider only compact scaling
laws. If there is a (nonrandom) finite c such that P(sup{|xi |/(1 − ri) : i} ≤ c) = 1 then the
scaling law is compact, for K can be taken to be {x : |x| ≤ c}.

For a given scaling law, a random self-similar measure is one which satisfies

µ(·) =
∑
i

piµi(S
−1
i (·)) almost surely (a.s.), (1.1)

where the µi are copies of µ, independent of each other and the scaling law {(pi, Si) : i =
1, 2, . . .}, and the supports, F̃ , F̃i , of the measures,µ,µi , are random self-similar sets satisfying

F̃ =
⋃
i

Si(F̃i) a.s.

We will mainly be interested in the cases where at most one term on the right-hand side of
(1.1) contributes at any point. To make this precise, the self-similar measure satisfying (1.1)
will be said to partition if there are disjoint sets Vi such that µi(S

−1
i Vi) = µi(R

d). Then
µ(Vi ∩ B) = piµi(S

−1
i (Vi ∩ B)). The existence of a self-similar µ for a scaling law will be
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discussed in the next section, where it will be called µπ . It will also emerge later that the
measure constructed will partition under suitable conditions. An illustration of the first two
steps in the construction of F̃ is given in Figure 1 in Section 4. In this example we can take
Vi = intKi, i = 1, 2, 3, to obtain a partition.

Let B(x; r) be the open ball of radius r centred at x. We set

F̃α =
{
x ∈ F̃ : lim

r→0

logµ(B(x; r))
log r

= α

}
,

which are the points of R
d where the measure of a small ball is, very roughly, its volume to

the power α/d . The main aim is to estimate the Hausdorff dimension of F̃α . To indicate the
results, let

m(q, φ) = E

[∑
i

p
q
i r
φ
i

]
and β(q) = inf{φ : m(q, φ) ≤ 1}.

The Legendre–Fenchel transform of β is then

β∗(α) = inf
q

{αq + β(q)};

this function arises also in the study of the related problem of the growth and spread of a
(continuous-time) general branching random walk [7], and that process will play a role here.
Let P, which is the scaling law on A, also denote the law of self-similar measures induced by
that scaling. We will show that, under certain conditions, P-a.s.,

F̃α = ∅ if β∗(α) < 0, dimH (F̃α) ≤ β∗(α) if β∗(α) ≥ 0,

and that, under other conditions, dimH (F̃α) ≥ β∗(α) > 0, P-a.s. Obviously, combining results
of this kind gives dimH (F̃α) = β∗(α) > 0 for suitable α. Such results are obtained in [2]
and [31]. Both of those treatments assume that N is fixed and there are pmin and rmin with
0 < pmin < pi < 1 and 0 < rmin < ri < 1. Also, both impose the open set condition (see
Definition 2.2): with a suitableK , the sets {Ki} have nonoverlapping interiors. The strong open
set condition adds that there is a positive probability that F is not confined to the boundary
of K—this is imposed in [2] and relaxed to the open set condition in [31]. Here, generalising
these results,N is random, and the uniform bounds on the {pi} and the uniform lower bound on
the {ri} are replaced by natural moment conditions. Most results are obtained under the open
set condition, though a few do not need it. The strong open set condition is not needed, but part
of the treatment is more straightforward when it holds.

An outline of the paper is as follows. In Section 2 we construct our random self-similar
measure and give the result concerning its partitioning. In Section 3 the main result is given
once enough notation has been established to state it. In Section 4 various preliminary results
on branching processes are discussed. In Sections 5 and 8 we derive the main results, giving
upper and lower bounds on the multifractal spectrum, that is, on dimH (F̃α). In Section 6 there
is a brief discussion about using a single null set for every α in the upper bound. In Section 7,
as part of the lead in to the discussion of lower bounds in Section 8, the theorem concerning
partitioning is proved. We discuss the verification and simplification of some of the conditions
in Sections 9 and 10. The final section gives a naturally occurring example drawn from [14]
which is easily handled by the results developed here but not by those previously available.
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2. Random self-similar measures

We need some standard branching process theory, which we deal with briskly. Let In =⋃n
k=0 N

k , I = ⋃
k Ik and I = I ∪ N

N. Here I0 consists solely of the empty sequence ∅.
A sequence in I , other than one in I1, will be denoted using bold type. Write ij for the
concatenation of i ∈ I and j ∈ I . For i ∈ I \ In, denote the sequence truncated to length n
by i|n and the nth element of i by i[n]. We write j ≤ i if i = jk for some k, and denote the
length of the sequence i by |i|. Finally, write i− for the sequence obtained by removing the
final entry in i ∈ I , so that i− = i|n when |i| = n+ 1.

A tree T is a subset of I such that (i) ∅ ∈ T is the root of the tree; (ii) i ∈ T implies that
i|k ∈ T for all k < |i|; and (iii) for each ij ∈ T , ik ∈ T for k < j . Part (iii) does not rule
out the possibility that a node produces a countably infinite number of branches. Level n of
the tree T will be denoted by Tn = T ∩ N

n. Denote by ∂T ⊂ N
N the topological boundary of

the tree. We define the cylinder sets of ∂T as follows: for i ∈ Tn, Ci is the set of all boundary
points stemming from the node i, so Ci = {j ∈ ∂T : j |n = i}.

A marked tree has a mark at each of its nodes. Let � be the space of trees with each node
marked with an element of A. Let Bn be the σ -algebra generated by the marks at all nodes up
to level n− 1, so that

Bn = σ(a(i) : T a tree, a a function from T to A, i ∈ Tk, k = 0, 1, . . . , n− 1)

and B = σ(
⋃∞
n=1 Bn). Construct a probability measure, also called P, on� (using the Ionescu

Tulcea extension theorem) sequentially in the level of the tree: given the marked tree to level n
and i ∈ Tn, the mark

a(i) = ((pi(i), Si(i)) : i = 1, . . .) = ((pi(i), ri(i),Oi(i), xi(i)) : i = 1, . . .)

is used to provide N(i), the number of children of i, and each of these has an independent
mark, drawn fromA using law P, attached to it. Note that the marks on the nodes in generation
n− 1 contain the information on the families in generation n.

Now it is easy, and common (see [3], [4], [23], and [25]), to define a random self-similar
measure on ∂T that relates naturally to the weights in the scaling law. Relevant results
are supplied by the theory of the branching random walk (or multiplicative cascades). The
connection with that literature is outlined next.

For i ∈ Tn, let pi be the product of the values of p associated with i and its antecedents in
the tree and let −zi be its logarithm so that, formally,

pi =
|i|−1∏
k=0

pi[k+1](i|k) and zi = − logpi .

Let Zn be the point process on R with unit mass at the points {zi : i ∈ Tn} (so any z ∈ R has an
integer mass giving the number i ∈ Tn with zi = z). Think of individual i having location zi .
Then Z = {Zn}∞n=0 is a branching random walk (BRW) in the sense of [5], with Z0 a unit mass
at the origin and offspring displacement given by the point process Z1.

Definition 2.1. For a BRW Z, let

m̃(θ) = E

(∫
e−θt dZ1(t)

)
= E

∑
i

pθi

https://doi.org/10.1239/aap/1300198510 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1300198510


Multifractal spectra for random self-similar measures SGSA • 5

and
W(n,θ) = m̃(θ)−n

∑
i∈Tn

exp(−θzi) = m̃(θ)−n
∑
i∈Tn

pθi .

Then W(n,θ) is a positive martingale and, thus, has a P-a.s. limit W(θ), and, by Fatou’s lemma,
EW(θ) ≤ 1.

By considering the BRW starting from individual i ∈ Tn we get a martingale limit W(θ)
i ,

with the same distribution asW(θ) = W
(θ)
∅

and independent ofW(θ)
j for all j ∈ Tn with j 
= i.

From the branching structure of the BRW we get

W(θ) = m̃(θ)−n
∑
i∈Tn

exp(−θzi)W(θ)
i = m̃(θ)−n

∑
i∈Tn

pθiW
(θ)
i a.s. (2.1)

Note that m̃(1) = E
∑
pi = 1 and m̃(θ) = m(θ, 0).

When we have positive finite random variables satisfying (2.1), we can useW(θ) to define a
random measure µ(θ) on ∂T by setting

µ(θ)(Ci) = m̃(θ)−npθiW
(θ)
i for i ∈ Tn. (2.2)

The existence of such random variables is immediate when EW(θ) = 1 and sharp results for
this are known (see [1], [5], [10], and [26]) both for this model and extensions of it. The main
cases are described in the next result and translated to the case where θ = 1 in the corollary.

Theorem 2.1. (Theorem 7.1 of [10].) Let Z be a BRW, and let m̃ and W(θ) be given as
in Definition 2.1. Then, for all θ > 0 such that m̃(θ) ∈ (0,∞) and m̃′(θ), which is
defined to be −E(

∫
te−θt dZ1(t)), exists, we have EW(θ) = 1 if log m̃(θ) > θm̃′(θ)/m̃(θ)

and EW(1,θ) logW(1,θ) < ∞.

Corollary 2.1. Suppose that

E
∑
i

pi = 1, E

[
−

∑
i

pi logpi

]
> 0, and E

[(∑
i

pi

)
log

(∑
i

pi

)]
< ∞. (2.3)

For i ∈ I , let

Wi = lim sup
n→∞

1

pi

∑
{k : ik∈Tn}

pik

(which is a martingale limit, except on a null set), andW = W∅. Then EWi = 1. Excluding a
suitable P-null set, for n > |i|,

piWi =
∑

{j : ij∈Tn}
pijWij , (2.4)

and the measure µ (= µ(1)) in (2.2) is defined on ∂T through µ(Ci) = piWi . Furthermore,
µ = ∑

piµi , P-a.s., where piµi(Cii) = piiWii , µi is concentrated on Ci , and, given B1, the
µi are independent copies of µ.

There are also results on nontrivial solutions to (2.1) under other conditions. When log m̃(θ)>
θm̃′(θ)/m̃(θ) > −∞ but EW(1,θ) logW(1,θ) = ∞, such results are given in [9]. When
log m̃(θ) = θm̃′(θ)/m̃(θ) and stronger moment conditions are imposed on W(1,θ), relevant
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results are given in [22] and [23], and, in some cases, the corresponding self-similar measure
on ∂T comes within the study in [3]. We do not consider these other cases and assume that
(2.3) always holds from now on. The null set on which (2.4) and µ = ∑

piµi fail is excluded
in all that follows.

Fix the compact setK ⊂ R
d that the scaling law maps into itself. Write |U | for the diameter

of U and arrange that |K| = 1 by the initial choice of units. For i ∈ Tn, define Si to be the
composition Si[1](∅) ◦ · · · ◦ Si[n](i|n− 1) and Ki , which is geometrically similar to K , to be
Si(K). Just as for pi , let

ri =
|i|−1∏
k=0

ri[k+1](i|k) and σi = − log ri .

Then |Ki | = ri . Also, σi can be thought of as the birth time of i, and we are in the framework
of the general (or Crump–Mode–Jagers) branching process [17, Chapter 6], [28], which for our
purposes is just a BRW on (0,∞).

Lemma 2.1. (Theorem 3 of [8].) If

there exists a ϕ > 0 such that m(0, ϕ) = E

[∑
i

r
ϕ
i

]
≤ 1 (2.5)

then
inf{σi : i ∈ Tn} → ∞ (and sup{ri : i ∈ Tn} → 0)

P-a.s.

We assume that (2.5) holds. Thus, there is a P-null set, which is excluded in all that follows,
such that we have σi|n → ∞ and ri|n → 0 for all i ∈ ∂T , except possibly on this set. A random
set F is now defined by

F =
∞⋂
n=1

⋃
i∈Tn

Ki .

Assumption (2.5) ensures that the individual sets here always become small as n gets large.
Following [2], straightforward calculations, using Lemma 2.1 and the fact that the scaling

is compact, show that the limit of Si|n(y) as n increases exists and is independent of y ∈ R
d

(and is in K) for each i ∈ ∂T . Thus, π : ∂T → R
d can be defined by

π(i) = lim
n→∞ Si|n(y).

Furthermore, π is continuous. Note that (by taking y ∈ K) π(i) = ⋂
n Ki|n = limn→∞Ki|n

and so π actually maps ∂T onto F ⊂ R
d . Later it will be natural to use Ki as an alternative

notation for π(i). The measure µ defined in Corollary 2.1 projects into R
d using π to give µπ .

Let Bc be the complement of the set B. Then, by definition, µπ(F c) = 0. Recall that F̃ is the
support of µπ .

Lemma 2.2. We have F ⊂ F̃ . If P(N < ∞) = 1 then F is closed and F̃ = F .

Proof. By Lemma 2.1, for any i ∈ ∂T and ε > 0, there is somen such thatKi|n ⊂ B(π(i); ε)
and then µπ(B(π(i); ε)) ≥ µ(Ci|n) = pi|nWi|n > 0. Hence, F ⊂ F̃ . Since µπ(F c) = 0, the
support of µ must be contained in the closure of F . When P(N < ∞) = 1, the collection Tn
is finite. Then F is closed and so F̃ ⊂ F .
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The measure µπ will be the main object studied here. (The analysis could just as well
be applied to µ(θ)π , derived from projecting µ(θ) in (2.2), whenever EW(θ) = 1.) From this
construction, it is clear that properties of the measure µ and the set F may be studied via the
boundary of the tree ∂T .

The first result, which is little more than decoding definitions, is that µπ is indeed self-
similar, the second is that there is a simple upper bound on the measure of any set. We write
I (A) for the indicator function of A.

Lemma 2.3. It holds that µπ is self-similar for the scaling law in that, for any D ⊂ R
d ,

µπ(D) =
∑
i

piµπ,i(S
−1
i D), (2.6)

where, given B1, the µπ,i are independent copies of µπ .

Proof. By Corollary 2.1, µ is self-similar on ∂T with µ = ∑
piµi . Now let πi be π

defined using the tree emanating from i. Then, for ii ∈ Ci ⊂ ∂T , π(ii) = Siπi(i) and, for
any D ⊂ R

d ,

µπ(D) = µ(π−1D) =
∑
i

piµi((π
−1D) ∩ Ci) =

∑
i

piµi(π
−1
i S−1

i D).

Now let µπ,i(·) = µi(π
−1
i ·), which are, given B1, independent copies of µπ , and note that

(2.6) then holds.

Lemma 2.4. For B ⊂ R
d and n ∈ N,

µπ(B) ≤
∑
j∈Tn

pjWj I (B ∩Kj 
= ∅). (2.7)

Proof. Note that µ(Cj ) = pjWj and so

µπ(B) = µ({i ∈ ∂T : π(i) ∈ B})
=

∑
j∈Tn

µ({i ∈ ∂T : π(i) ∈ B} ∩ Cj ),

≤
∑
j∈Tn

pjWj I ({j : i ∈ Cj , π(i) ∈ B}).

Furthermore,
{j ∈ Tn : i ∈ Cj , π(i) ∈ B} ⊂ {j ∈ Tn : B ∩Kj 
= ∅},

giving (2.7).

At the moment the set F and the measure µ could be rather simple since, for example,
we have not ruled out that all the contractive similarities in the scaling law are the same, in
which case F would be a single point. The next condition is a common one for removing this
possibility.

Definition 2.2. A scaling law satisfies the open set condition if there is a nonempty bounded
open set O with Si(O) ⊂ O for all i and Si(O) ∩ Sj (O) = ∅ when i 
= j .

This condition will be needed for most of the results derived. In particular, it will be one of
the conditions imposed in showing that the self-similar measure partitions. The next lemma,
which is simple to prove, illustrates that it subsumes some of the conditions already mentioned.
We write int(G) or, when there is no ambiguity, intG for the interior of the set G ⊂ R

d .
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Lemma 2.5. When the open set condition holds, the scaling law is compact and we can (and
will) assume that K is the closure of its interior and that the open set condition holds with
O = intK . Furthermore,

∑
i r
d
i ≤ 1, and so (2.5) holds with ϕ = d.

The next lemma uses the open set condition to provide a simple basic estimate ofµπ(int(Ki)).
It is worth pointing out that this is only a bound—it is certainly an overestimate when F , and,
hence, µπ is concentrated on the boundary of K . We finish this section by stating the theorem
concerning when the measures partition, which will be proved in Section 7.

Lemma 2.6. Under the open set condition, µπ(int(Ki)) ≤ piWi .

Proof. When |i| = n and |j | = n, the open set condition implies that int(Ki) ∩Kj 
= ∅ if
and only if j = i. Then, using this observation and (2.7),

µπ(int(Ki)) ≤
∑
j∈Tn

pjWj I (int(Ki) ∩Kj 
= ∅) = piWi .

Theorem 2.2. If the open set condition holds then µπ partitions in the sense that, P-a.s., there
are disjoint sets Vi such that µπ,j (S

−1
j V c

j ) = 0 and, for D ⊂ R
d ,

µπ(D) =
∑
i

piµπ,i(S
−1
i (D ∩ Vi)).

3. The main result

The properties of m, β, and β∗ have been discussed by several authors (see [2, Section 3],
[7, Section 3], and [13, Section 3]), usually under stronger conditions than in force here, and
are established with a mixture of calculus and convex analysis drawing on [33]. Convexity
of logm is well known, and follows from Hölder’s inequality, as is the concavity of β∗. Two
lemmas on convexity are now given: their proofs are deferred to the end of the section. Recall
that, by assumption, m(1, 0) = 1; hence, β(1) ≤ 0 and so is finite.

Lemma 3.1. The function β is a convex function that is finite somewhere and lower semi-
continuous. (It is a proper, closed, convex function in the sense of [33, Section 7].)

These results concerning β are given in [7, p. 1011], but with only an indication of the
proof. The fact that β is lower semicontinuous is important in drawing on general convexity
theory—for example, it ensures that the infimum over a bounded convex set is attained [33,
Theorem 27.3].

Since β is convex and β∗ is concave, we may define (qL, qU ) and (DL,DU) to be the interior
of their respective domains of finiteness. When it makes sense, let

P(q, φ) = E

[
−

∑
i

p
q
i r
φ
i logpi

]
(3.1)

and let

R(q, φ) = E

[
−

∑
i

p
q
i r
φ
i log ri

]
. (3.2)

In the next result, part (vi) is the key to the main proof. It identifies arguments of m—a
(q, β)—corresponding to a given α. The results on dimH (Fα) are produced via this (q, β).

https://doi.org/10.1239/aap/1300198510 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1300198510


Multifractal spectra for random self-similar measures SGSA • 9

Lemma 3.2. Assume thatm(1, 0) = 1,m(0, ϕ) is finite for some ϕ, and that P(1, 0), which is
E[− ∑

pi logpi], exists and is strictly positive. Then the following statements hold.

(i) If m(q, β) = 1 then β(q) = β. In particular, β(1) = 0.

(ii) β(q) < ∞ for 0 ≤ q ≤ 1, so (0, 1) ⊂ (qL, qU ) = int({q : β(q) < ∞}).
(iii) β(q) > 0 for q < 1.

(iv) When β(q) < ∞, m(q, β(q)) ≤ 1.

(v) (DL,DU) is empty only when there is a constant γ such that pir
−γ
i = 1 for all i—then,

β(q) = γ (1 − q) and β∗(a) = −∞ unless a = γ when β∗(γ ) = γ .

(vi) If α ∈ (DL,DU) then there is a finite q̃(α) such that β∗(α) = αq̃(α) + β(q̃(α)) and
q̃(α) decreases as α increases.

(vii) sup{β∗(α) : α} = β(0) > 0. Let α◦ be the limit of q−1(β(0)− β(q)) as q ↓ 0 when this
exists and is finite, and let α◦ = ∞ otherwise. Then this supremum occurs at α◦.

(viii) Ifm(q, φ) = 1 andα = P(q, φ)/R(q, φ)makes sense and is finite, thenβ∗(α) = αq+φ.
In particular, whenm(0, β(0)) = 1, α◦ = P(0, β(0))/R(0, β(0))when this makes sense
and is finite.

We now collect together several conditions already mentioned into Assumption A, given
next. In addition to it, we will also need conditions to hold for a particular (q, β) and these are
contained in the second assumption.

Assumption A. (i) We have a scaling law mapping the compact set K into itself.

(ii) E
∑
pi = 1, E[− ∑

pi logpi] > 0, and E[∑pi log(
∑
pi)] < ∞.

(iii) There is a ϕ > 0 with E
∑
i r
ϕ
i ≤ 1.

(iv) K has diameter 1, and so is contained in a closed ball of radius one-half.

Assumption B. (i) (q, β) is such that m(q, β) = E
∑
i p

q
i r
β
i = 1.

(ii) With yi = p
q
i r
β
i , E[− ∑

yi log yi] > 0 and E[∑ yi log(
∑
yi)] < ∞.

(iii) P(q, β) = −E
∑
i p

q
i r
β
i logpi exists and is finite.

(iv) E
∑
i p

q
i r
β
i (log ri)2 < ∞, which implies that R(q, β) < ∞.

Lemma 3.2(viii) implies that, when Assumption B holds, β(q) = β and β∗(α) = qα + β

with α = P(q, β)/R(q, β). When Assumption B(i) and B(ii) hold, Corollary 2.1 applies with
‘y’ replacing ‘p’. This shows that if we let

Yi = lim
n→∞

∑
ik∈Tn yik

yi

(
= lim
n→∞

∑
ik∈Tn p

q

ikr
β

ik

p
q

i r
β

i

)

and Y = Y∅, then EYi = 1 and, for |i| < n,

yiYi =
∑

{j : ij∈Tn}
yijYij =

∑
{j : ij∈Tn}

p
q

ij r
β

ijYij . (3.3)
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Define the measure ν on ∂T through ν(Ci) = yiYi , and let νπ be the projection of ν onto R
d ,

which like µπ has its mass confined to π(∂T ) = F . This measure will play an important role
in the proof, and its associated random variable, Y, figures in the conditions. Of course, µ is
an example of a measure of this kind, with q = 1 and β = 0, and so results obtained for ν and
νπ will apply to µ and µπ as particular cases.

For the upper bound on the dimension, we need to have an estimate of the size of the boundary
of K in some cases. The estimate used is contained in the next definition.

Definition 3.1. For a compact set K with diameter 1 and a ≤ 1, let ĥ(a) be the maximum
number of disjoint open balls with diameter no smaller than a that can intersect the boundary
of K . Then the set K will be said to have a γ -boundary when there is a finite C′ such that
ĥ(x) ≤ C′x−γ for x ≤ 1.

If K has a γ -boundary, it also has a γ ′-boundary for all γ ′ > γ , and it is easy to see that
when K has a γ -boundary its boundary has a Hausdorff dimension of no more than γ . Since
K is contained in a closed ball of radius one-half, a crude volume argument shows that ĥ(a)
cannot be more than C′/ad for some constant C′, but in cases where K has a ‘nice’ boundary
ĥ will grow no faster than C′/ad−1.

We are now ready to state the main theorem. It has no content when (DL,DU) is empty,
which Lemma 3.2(v) shows to be a very special case, but the lemmas leading up to the proof
of this theorem do provide information on that case too. By analogy with F̃α , let

Fα =
{
x ∈ F : lim

r→0

logµπ(B(x; r))
log r

= α a.s.

}
= F ∩ F̃α.

Thus, Fα ⊂ F̃α and so a lower bound on dimH (Fα) serves also for dimH (F̃α). However, extra
argument (supplied, for example, by Lemma 2.2) is needed to move from an upper bound on
dimH (Fα) to an upper bound on dimH (F̃α).

Theorem 3.1. Suppose that the open set condition and Assumption A hold, and that K has a
γ -boundary. Let α ∈ (DL,DU), with q̃(α) and β(q̃(α)) as in Lemma 3.2(vi). Assume that

EWq̃(α) < ∞. (3.4)

If 0 < q̃(α) ≤ 1, assume that

m(q̃(α), 0) = E
∑
i

p
q̃(α)
i < ∞. (3.5)

If q̃(α) > 1, assume that

E

[(
min
i
ri

)β(q̃(α))−γ(∑
i

pi

)q̃(α)]
< ∞. (3.6)

Then, if β∗(α) ≥ 0,
dimH (Fα) ≤ β∗(α) a.s.

Furthermore, if β∗(α) < 0 then (a.s.) Fβ = ∅ for all β ≤ α when α < α◦ and Fβ = ∅ for all
β ≥ α when α > α◦ (with α◦ as in Lemma 3.2(vii)).

Suppose, in addition, that Assumption B holds for (q̃(α), β(q̃(α))), that

EY log+ Y < ∞, (3.7)
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and that
EY | logW | < ∞. (3.8)

Then
dimH (Fα) = β∗(α) a.s.

The sets Fα can be replaced by F̃α everywhere in this result when F̃ = F .

The conditions here are complex, but mostly natural. Results are noted in Section 9 that
allow the moment conditions on W and Y to be traced back to conditions on the scaling law.
Various results obtained in Section 10 produce stronger, but easier to check, conditions. One
outcome of these will be the following result. It improves on [2, Theorem 4.10(II)] and [31,
Theorem 5(II)] in allowing N , maxi r

−1
i , and maxi p

−1
i to be unbounded, though it cuts down

considerably on the generality of Theorem 3.1.

Corollary 3.1. Suppose that the open set condition and Assumption A both hold, and that
pi ∈ (0, 1) for all i. Suppose that, for some ε > 0, EN1+ε < ∞ and P(N ≥ 2) = 1.
Suppose also that E(mini ri)−
, E(mini pi)−
, and E(

∑
pi)


 are finite for all 
 > 0. Take
α ∈ (DL,DU). Then Fα = ∅ a.s. if β∗(α) < 0 and dimH (Fα) = β∗(α) a.s. if β∗(α) ≥ 0.

We mention also the following result, which is included in [27, Theorem 1.1], but is a side
issue for the multifractal spectrum.

Theorem 3.2. When the open set condition holds, dimH (F ) = β(0) = sup{β∗(α) : α}.
Proof of Lemma 3.1. Note first that, since ri ≤ 1 and EN > 1,m(q, φ) is strictly decreasing

in φ when finite and then tends to 0 as φ → ∞. If m(q1, φ1) ≤ 1 and m(q2, φ2) ≤ 1, then,
using convexity of logm,

m(λq1 + (1 − λ)q2, λφ1 + (1 − λ)φ2) ≤ m(q1, φ1)
λm(q2, φ2)

(1−λ) ≤ 1,

which implies that β(λq1 + (1 −λ)q2) ≤ λφ1 + (1 −λ)φ2. Since φ1 ≥ β(q1) and φ2 ≥ β(q2),
but are otherwise arbitrary, this gives convexity of β. Now let Q be the interior of the domain
of finiteness of β, so that β is continuous there, and let q̃ be on the boundary of Q. Let
β̃ = lim inf{β(q) : q ∈ Q, q → q̃}. By convexity, β(q̃) ≥ β̃ and, for the asserted continuity,
it remains to show that β(q̃) ≤ β̃. Take qn ∈ Q with qn → q̃ and β(qn) → β̃. For given
ε > 0, let �(ε) = sup{β(qn) : |qn − q̃| < ε}. Then, �(ε) → β̃ as ε ↓ 0. For φ > �(ε),
m(qn, φ) < 1. Then 1 ≥ m(qn, φ) → m(q̃, φ) as qn → q̃ using monotone and dominated
convergence. Hence, β(q̃) ≤ φ. Since φ > �(ε) is arbitrary, as is ε > 0, this implies that
β(q̃) ≤ β̃.

Proof of Lemma 3.2. Since m(q, φ) is strictly decreasing in φ when finite, m(q, β) = 1
implies that β(q) = β.

Since logm is convex, logm(λ, (1−λ)ϕ) is finite for all λ ∈ [0, 1]; hence, β(λ) < ∞ there.
Note that logm(q, 0) is a convex function of q, with value 0 and negative slope (E

∑
i pi ×

logpi) at q = 1. Hence, logm(q, 0) > 0 for q < 1 and so β(q) > 0 (but it might be +∞).
For the fourth part, use monotone convergence on 1 ≥ m(q, β(q)+ ε) = E

∑
i p

q
i r
β(q)+ε
i

as ε ↓ 0.
If γ is such that pir

−γ
i = 1 for all i then∑

i

p
q
i r
β
i =

∑
i

p
q
i p

β/γ

i =
∑
i

p
q+β/γ
i
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and so β(q) = γ (1 − q), which gives β∗. Now assume that β∗ is finite at only one point
(and −∞ elsewhere). Then β is linear. Truncate so that there are no more than c births, and
only i with | logpi | ≤ c and | log ri | ≤ c are included. Denote truncated entities by a prefixed
subscript c. Then cm(q, φ) ↑ m(q, φ) and so cβ(q) ↑ β(q) and cβ

∗(α) ↑ β∗(α). Hence,
cβ

∗ is also finite at only one point. By arrangement, cm(q, φ) is finite for all q and φ, and so
cm(q, cβ(q)) = 1. We now work with the truncated process. Since β is linear,

1 = m(q, β(q)) = E
∑
i

p
q
i r
β(q)
i = E

∑
i

p
q
i r
γ q−c
i = E

∑
i

(pir
γ

i )
qr−ci ,

which is possible only if (pir
γ

i ) is always 1. This is true of any truncated process and, hence,
also of the untruncated version.

Since β is a closed convex function, this is a consequence of [33, Theorems 12.2, 23.4,
and 23.5]. Alternatively, take ε > 0 with (α − ε, α + ε) ⊂ (DL,DU). For all q,

β∗(α − ε) ≤ (α − ε)q + β(q) and β∗(α + ε) ≤ (α + ε)q + β(q).

Hence,
min{β∗(α − ε), β∗(α + ε)} + ε|q| ≤ αq + β(q).

The left-hand side tends to ∞ as q → ±∞. Hence, the infimum of the right-hand side is
at a finite q, and since β(q) is closed and convex, the infimum must be attained (see [33,
Theorems 8.1 and 27.3]). This gives q̃(α). For all q,

αq + β(q) ≥ αq̃(α)+ β(q̃(α)),

and so, for ε > 0,

(α + ε)q + β(q)− ((α + ε)q̃(α)+ β(q̃(α))) ≥ ε(q − q̃(α)),

which is greater than 0 when q − q̃(α) > 0. Hence,

inf
q

{(α + ε)q + β(q)} = inf
q≤q̃(α)

{(α + ε)q + β(q)},

and so q̃(α + ε) ≤ q̃(α).
Note that −α◦ is the one-sided derivative of β at 0, which exists by convexity. That the

supremum is β(0) and attained at α◦ when finite is in [33, Theorems 12.2 and 27.1]. Otherwise,
β(q) = ∞ for q < 0, which means that β∗(α) = inf{qα + β(q) : q ≥ 0}, which is increasing
in α and strictly less than β(0).

Consider f (θ) = m(θ, qα − θα + φ). This is a Laplace transform, and so convex and
differentiable when finite, and its first derivative is easily checked to be 0 at θ = q using the
definition of α. Hence, m(θ, qα − θα + φ) ≥ m(q, φ) = 1, and β(q) = φ. Therefore,
β(θ) ≥ qα − θα + β(q) for all θ , which implies that β∗(α) = qα + β(q).

4. Results for general branching processes

Recall that − logpi = zi and − log ri = σi . We generalise the BRW Z by allowing the
birth time σi of individual i to depend on the birth time of its parent. Specifically, if |i| = n

and i[n] = j , then σi = σi− − log rj (i−). An illustration of this process and its encoding of
the random self-similar measure is given in Figure 1.
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Figure 1: At the top we have three iterations in the realisation of a random fractal construction, with
components indexed using our tree notation. Here the set ϕ corresponds to K , the set 1 to K1 = S1(K),
and so on. At the bottom we have the corresponding general branching random walk, where sets in
iteration k correspond to individuals in generation k. The birth time of an individual (along the x-axis) is
− log of the diameter of the set, and the birth position is − log of the weight of the set. An infinite line of
descent in the BRW corresponds to a point in the limiting fractal set, and (formally) the asymptotic slope
of the trajectory gives the local dimension at that point. It is possible for a point in the fractal to have more
than one corresponding line of descent (such points lie on the boundary of two or more sets, for example,
K11 and K21 above). These points are the principle difficulty faced in computing a lower bound for the

multifractal spectrum; however, in Section 7 we show that in fact they do not contribute at all.

In the course of the main proofs, estimates will be needed of several quantities with the
general form E

∑
i∈Q e−qzi−γ σiW

q

i for various sets of individuals Q. In this section we develop
these estimates, by drawing on branching process theory. It is worth pointing out that the full
strength of that theory, as exhibited in the convergence results in [28], is not employed. The
calculations are eased by introducing an auxiliary probability measure, P̃, which is done next.
Its importance arises from the simple and well-known lemma following the definition. A first
application of this lemma is then given.
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Definition 4.1. When q and β are such that

m(q, β) = E
∑
i∈T1

e−qzi−βσi ≤ 1, (4.1)

define the probability measure η = ηq,β by

η(A) = E
∑
i∈T1

e−qzi−βσi I ((zi, σi) ∈ A)

for any Borel setA ⊂ R
2 and η(∞,∞) = 1 −η(R2). Hence, η is a probability measure on R

2

whenm(q, β) = 1. Let (Rn, Sn) denote the random walk with independent identical increments
chosen according to η with initial state (R0, S0) = (0, 0). We use Ẽ and P̃ for the expectation
and probability of this random walk. Note that P̃(S1 > 0) = 1, because σi = − log ri > 0 for
any i ∈ T1.

Lemma 4.1. For (q, β) satisfying (4.1) and any positive function g, with g(∞) = 0 in the case
when m(q, β) < 1,

E
∑
i∈Tn

p
q

i r
β

i g(− log ri) = E
∑
i∈Tn

e−qzi−βσig(σi) = Ẽg(Sn).

Proof. The proof can be found in, for example, [9, Lemma 4.1]: the case wherem(q, β) < 1
is just a minor reformulation.

Lemma 4.2. If m(q, β) ≤ 1 then, for ε > 0, Ẽe−εS1 < 1 and

E
∑
i∈Tn

e−qzi−βσi e−εσiW
q

i = (̃Ee−εS1)nEWq.

Proof. Note first that Ẽe−εS1 < 1, since P̃(S1 > 0) = 1. Also, using Lemma 4.1 for the
second equality,

EE

[∑
i∈Tn

e−qzi−βσi e−εσiW
q

i

∣∣∣∣ Bn

]
= (EWq)E

∑
i∈Tn

e−qzi−βσi e−εσi = (EWq)̃Ee−εSn,

which gives the result.

Suppose that ψ : � × R → [0,∞), so ψ is a function from R to [0,∞) that is random,
in the sense that it is defined on a random marked tree. Let � be its expectation. Such a
function is usually called a random characteristic in the branching process literature. Let ψi be
the corresponding function defined on the subtree rooted at i. Recall that B1 is the σ -algebra
containing all information on the life story of the initial ancestor and that Bn is the information
on the life histories of the first n − 1 generations. The remaining estimates use the idea of a
random characteristic and rely on renewal theory applied to (Sn). The key result is given next.
The defective case, which is easier, could be discussed separately—to encompass it here, define
�(−∞) = 0.

Lemma 4.3. Assume that m(q, β) ≤ 1 and that

∞∑
n=−∞

sup{�(t) : n ≤ t < n+ 1} < ∞. (4.2)
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Then there is a finite C such that, for all t > 0,

E
∑
n

∑
i∈Tn

e−qzi−βσiψi(t − σi) ≤ C.

Proof. Note first, again using Lemma 4.1 for the second equality, that

E
∑
i∈Tn

e−qzi−βσiψi(t − σi) = E
∑
i∈Tn

e−qzi−βσi�(t − σi) = Ẽ�(t − Sn).

Thus, with U the renewal measure associated with (Sn),

E
∑
n

∑
i∈Tn

e−qzi−βσiψi(t − σi) =
∫
�(t − σ)U(dσ),

which is bounded when (4.2) holds by the renewal theorem.

We will need to consider certain special sets of nodes which we now introduce. Recall that
i− is the parent of i, and let

C(t) = {i ∈ I : σi− ≤ t < σi}.
The collection C(t) is critical in the study of general branching process [18], [28], and is often
called the coming generation at time t in that literature.

Lemma 4.4. If m(q, β) ≤ 1, β > 0, and

E
∑
i∈T1

e−qzi < ∞,

then there is a finite C such that, for all t > 0,

Ee−βt ∑
i∈C(t)

e−qziWq

i ≤ CEWq.

Proof. Assume that EWq < ∞. Let

ψ(t) = e−βt ∑
j

e−qzjWq
j I (0 ≤ t < σj ).

Then it is straightforward to check that∑
i∈T

e−qzi−βσiψi(t − σi) = e−βt ∑
i∈C(t)

e−qziWq

i .

Furthermore, because β > 0,∑
n

sup
n≤t<n+1

�(t) ≤ E
∑
j

e−qzjWq
j

∑
n

sup
n≤t<n+1

e−βt I (0 ≤ t < σj )

≤ 1

1 − e−β E
∑
j

e−qzjEWq,

which is finite by assumption. Now, Lemma 4.3 gives the result.
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We need another collection of individuals: let J(t) be the first in their line of descent with a
child in C(t). This is the ‘lower boundary’of the set of parents of those in C(t). More formally,
let Li = max{σij − σi : j}, which is the age of i at the birth of her last child. Now let

J(t) = {i : σi + Li > t and σj + Lj ≤ t for all j < i}, (4.3)

so that, in particular, J(t) is just the initial ancestor for 0 ≤ t < L∅. Before giving the main
lemma, we need a preparatory lemma that simplifies moment conditions.

Lemma 4.5. For q ≥ 1 and a positive function g, Eg(L)Wq is finite when EWq < ∞ and

E

[
g(L)

(∑
j

e−zj
)q]

< ∞. (4.4)

Proof. Rewriting, using (2.1),

g(L)Wq = g(L)

(∑
j

e−zjWj

)q
,

where, given B1, the Wj are independent and distributed as W . Now, by a variation on
Rosenthal’s inequality [20, Corollary 3], and then the fact that EW = 1,

E

[(∑
j

e−zjWj

)q ∣∣∣∣ B1

]
≤ Cmax

{(∑
j

e−zjEW

)q
,

(∑
j

e−qzj
)

EWq

}

≤ C

(∑
j

e−zj
)q

EWq.

Hence,

Eg(L)Wq ≤ CE

[
g(L)

(∑
j

e−zj
)q]

EWq,

which is finite under the assumptions.

Lemma 4.6. Assume that m(q, β) ≤ 1 and q > 1. Then, if γ − β > 0 and (4.4) holds with
g(x) = e(γ−β)x , there is a finite C such that, for all t > 0,

Ee(γ−β)t ∑
j∈J(t)

e−qzj −γ σjW
q

j ≤ CEWq.

Proof. Note that
J(t) ⊂ P (t) = {i : σi ≤ t < σi + Li},

where P (t) is just the set of parents of C(t). Hence, it is sufficient, and less complicated, to
bound

Ee(γ−β)t ∑
j∈P (t)

e−qzj −γ σjW
q

j .

We can assume that EWq < ∞, for the result is obviously true otherwise. Let

ψ(t) = e(γ−β)tWqI (0 ≤ t < L).
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A straightforward calculation shows that∑
j∈T

e−qzj −βσjψj (t − σj ) = e(γ−β)t ∑
j∈P (t)

e−qzj −γ σjW
q

j .

Using �(t) = 0 for all t ≤ 0 and γ − β > 0,

∞∑
n=−∞

sup
n≤t<n+1

�(t) =
∞∑
n=0

sup
n≤t<n+1

�(t)

≤
∞∑
n=0

E
[
Wq sup

n≤t<n+1
{e(γ−β)t I (0 ≤ t < L)}

]

≤
∞∑
n=0

E[Wqe(γ−β)(n+1)I (n < L)]

≤ e2(γ−β)

eγ−β − 1
EWqe(γ−β)L.

By Lemma 4.5, this is finite. Hence, (4.2) holds and so Lemma 4.3 applies to give the result.

Note that, when g(x) = e(γ−β)x with γ − β > 0, (4.4) can hold only if L = L∅ is always
finite, which implies that P(N < ∞) = 1.

5. Upper bound on dimH (Fα)

Lemma 2.4 bounds µπ(B) using Tn. The next lemma provides a couple of variants of this
bound, using C(t) and J(t).

Lemma 5.1. We have

µπ(B) ≤
∑

j∈C(t)

pjWj I (B ∩Kj 
= ∅), µπ(B) ≤
∑

j∈J(t)

pjWj I (B ∩Kj 
= ∅).

Proof. Much as the proof of Lemma 2.4,

µπ(B) ≤
∑

|j |≤l, j∈C(t)

µ(Cj )I (B ∩Kj 
= ∅)+
∑

j∈Tl, σj ≤t
µ(Cj )I (B ∩Kj 
= ∅),

but, by Lemma 2.1, inf{σj : j ∈ Tl} goes to ∞ with l (P-a.s.) and so the second sum here is
eventually empty. Similarly,

µπ(B) ≤
∑

|j |≤l, j∈J(t)

µ(Cj )I (B ∩Kj 
= ∅)+
∑

j∈Tl, j<J(t)

µ(Cj )I (B ∩Kj 
= ∅)

and
{j < J(t) : j ∈ Tl} ⊂ {(σj + Lj ) ≤ t : j ∈ Tl} ⊂ {σj ≤ t : j ∈ Tl},

and, by Lemma 2.1 again, the final set is eventually empty for large l.

We now state four upper-bound lemmas (that between them cover all cases) and the upper
bound that results from combining them before giving the proofs of these lemmas. The open set
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condition and thatK has a γ -boundary are needed only in the fourth of the lemmas, Lemma 5.5,
where q > 1. The basic idea is to fix on a (q, β) such that m(q, β) ≤ 1 and use this to bound
the Hausdorff dimension of Fα for any α. Then we can vary (q, β) to produce the best bound
for dimH (Fα) these results entail. It will be useful to work with some sets that contain Fα but
have some monotonicity in α. Let

Fα =
{
x ∈ F : lim inf

r→0

logµπ(B(x; r))
log r

≥ α

}
,

Fα =
{
x ∈ F : lim sup

r→0

logµπ(B(x; r))
log r

≤ α

}
.

Lemma 5.2. Suppose that Assumption A holds. Let q ≤ 0. Suppose that

(q, β) are such that m(q, β) = E
∑
i

p
q
i r
β
i ≤ 1 (5.1)

and
EWq < ∞. (5.2)

Then dimH (Fα) ≤ qα + β a.s. when qα + β ≥ 0, and Fα = ∅ a.s. when qα + β < 0.

Lemma 5.3. (cf. Theorem 1.3 of [27].) When Assumption A(iii) holds, dimH (F ) ≤ β(0).

Lemma 5.4. Suppose that Assumption A holds. Let 0 < q ≤ 1. Suppose that (5.1) holds and

m(q, 0) = E
∑
i

p
q
i < ∞. (5.3)

Then dimH (Fα) ≤ qα + β a.s. when qα + β ≥ 0, and Fα = ∅ a.s. when qα + β < 0.

Lemma 5.5. Suppose that Assumption A holds. Let q > 1. Suppose that (5.1) and (5.2) hold.
Suppose also that the open set condition holds, that K has a γ -boundary, and

E

[(
min
i
ri

)β−γ(∑
i

pi

)q]
< ∞. (5.4)

Then dimH (Fα) ≤ qα + β a.s. when qα + β ≥ 0, and Fα = ∅ a.s. when qα + β < 0.

Later, in Section 9, conditions for (5.2) are discussed. It is worth noting that (5.4) is a
strengthening of part of the condition (9.1) needed to give (5.2) when q > 1.

These four lemmas combine to give the next two propositions, which are just the upper
bound in Theorem 3.1, with a couple of the conditions moved to where they bite. It focuses on
a single α and, effectively, takes the (q, β) to make qα + β as small as it can to be consistent
with m(q, β) ≤ 1. In the excluded case, where (DL,DU) is empty, by Lemma 3.2(v), there is
a γ such that β∗(a) = −∞ unless a = γ when β∗(γ ) = γ and then Fα is empty unless a = γ

and dimH (Fγ ) ≤ dimH (F ) ≤ γ .

Proposition 5.1. Suppose that Assumption A holds. Let α ∈ (DL,DU), with q = q̃(α) and
β = β(q̃(α)) as in Lemma 3.2(vi). Assume that (5.2) holds. If 0 < q̃(α) ≤ 1, assume that
(5.3) holds. If q̃(α) > 1, assume that the open set condition holds, that K has a γ -boundary,
and that (5.4) holds. Then, if β∗(α) ≥ 0, dimH (Fα) ≤ β∗(α), P-a.s.
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Proof. By Lemma 3.2(vi), β∗(α) = αq̃(α) + β(q̃(α)) = αq + β and, by Lemma 3.2(iv),
m(q̃(α), β(q̃(α))) ≤ 1. The rest of the conditions ensure that the appropriate one of the four
lemmas applies.

Proposition 5.2. Under the same conditions as Proposition 5.1, if β∗(α) < 0 then (a.s.), when
α < α◦, Fβ = ∅ for all β ≤ α, and when α◦ < ∞ and α > α◦, Fβ = ∅ for all β ≥ α.

Proof. For β < α, Fβ ⊂ Fβ ⊂ Fα . For α < α◦, q̃(α) > 0 and then Lemmas 5.4 and 5.5
imply that Fα = ∅. Similarly, for α > α◦, q̃(α) < 0, Lemma 5.2 implies that Fα = ∅ and,
for β > α, Fβ ⊂ Fβ ⊂ Fα .

Our approach to all four proofs has similarities to that employed in [2, Lemma 4.2]. Let
Hd(A) be the Hausdorff d-dimensional measure of the set A, and let

Hκ
δ (A) = inf

{∑
i

|Bi |κ : A ⊂
⋃
i

Bi, |Bi | ≤ δ

}
,

where the Bi are balls. Then

Hκ(A) = lim
δ↓0

Hκ
δ (A) and dimH (A) = inf{κ : Hκ(A) = 0}.

Proof of Lemma 5.2. Let

r(k) = sup{ri|n : n ≥ k, i ∈ ∂T },
which goes to 0 as k goes to ∞ by Lemma 2.1. For each ε ∈ (0, α), c > 1, and k ∈ N, the
collection

Vε,c,k = {B(π(i); cri|n) : i ∈ ∂T , n ≥ k, µπ(B(π(i); cri|n)) ≤ (2cri|n)(α−ε)}
is a Vitali class forFα (that is, a collection from which, for any δ > 0, a covering can be selected
with every member having diameter less than δ). By a Vitali covering lemma, a collection of
disjoint members of Vε,c,k can be selected such that, when their radii are multiplied by 5, they
cover Fα . Let (Bi) be such a disjoint collection, which we call a Vitali collection. Then

Hκ
5cr(k)(Fα) ≤ 5κ

∑
i

|Bi |κ . (5.5)

The idea is to show that, for suitable κ , the right-hand side here is bounded a.s. by a variable
going to 0 as k ↑ ∞. Then dimH (Fα) ≤ κ .

Since c > 1, Ki|n ⊂ B(π(i); cri|n), and then

µπ(B(π(i); cri|n)) ≥ µπ(Ki|n) ≥ µ(Ci|n) = pi|nWi|n.

Hence, for B(π(i); cri|n) ∈ Vε,c,k and q ≤ 0,

|B(π(i); cri|n)|(α−ε)q = (2cri|n)(α−ε)q ≤ µπ(B(π(i); cri|n))q ≤ (pi|nWi|n)q,

and so
|B(π(i); cri|n)|(α−ε)q+β+ε ≤ (pi|nWi|n)q(2cri|n)β+ε .
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Then, using disjointness of the (Bi) to deduce that each term on the right-hand side occurs at
most once, ∑

i

|Bi |(α−ε)q+β+ε ≤
∞∑
n=k

∑
j∈Tn

(pjWj )
q(2crj )

β+ε .

Let the expression on the right-hand side here beUk; it follows from Lemma 4.2 that this goes to 0
a.s. as k↑∞. Hence, using this and (5.5), H (α−ε)q+β+ε(Fα) = 0, giving dimH (Fα) ≤ αq + β.

Now suppose that qα + β < 0, so that, for suitably small ε > 0, αq + β + ε|q| + ε < 0.
Taking a Vitalli collection from Vε,c,k ,∑

i

|Bi |αq+β+ε|q|+ε ≤ Uk → 0

as k ↑ ∞. Every term on the left-hand side exceeds (2c)αq+β+ε|q|+ε , and so, for large enough k,
the sum must be empty. Thus, Vε,c,k must be empty, which implies that Fα is empty.

Proof of Lemma 5.3. The collection

Vk = {B(π(i); ri|n) : i ∈ ∂T , n ∈ N, n ≥ k}
is a Vitali class for F . Let (Bi) be a Vitali covering from Vk . Take β = β(0). Much as in the
previous proof, ∑

i

|Bi |β+ε ≤
∞∑
n=k

∑
j∈Tn

(2rj )
β+ε,

and Lemma 4.2 applies to this with q = 0. The proof that dimH (F ) ≤ β(0) now mimics that
of dimH (Fα) ≤ αq + β in Lemma 5.2.

Proof of Lemma 5.4. For each ε ∈ (0, α), ρ ∈ (0, 1), and k ∈ N, the collection

V ′
ε,ρ,k =

{
B

(
π(i); ρ

n

2

)
: i ∈ ∂T , n ∈ N, n ≥ k, ρn(α+ε) ≤ µπ

(
B

(
π(i)

ρn

2

))}
is aVitali class forFα . Let (Bi,n) be aVitali collection from V ′

ε,ρ,k in whichBi,n has diameterρn.
Then

Hκ
5ρk (Fα) ≤ 5κ

∞∑
n=k

∑
i

|Bi,n|κ . (5.6)

It will be convenient to let Cn = C(−n log ρ). Take B ∈ V ′
ε,ρ,k . Since 0 < q ≤ 1, using

Lemma 5.1,
µπ(B)

q ≤
∑
j∈Cn

(pjWj )
qI (B ∩Kj 
= ∅),

and so

|Bi,n|(α+ε)q = (ρn(α+ε))q ≤ µπ(Bi,n)
q ≤

∑
j∈Cn

(pjWj )
qI (Bi,n ∩Kj 
= ∅).

Let n be the maximum number of disjoint balls of diameter greater than 1 that can overlap
with K; n is finite because K is bounded. Hence, for j ∈ Cn, there are at most n disjoint balls
of diameter ρn (in V ′

ε,ρ,k) that overlap with Kj . Therefore,∑
i

|Bi,n|(α+ε)q+β+ε =
∑
i

|Bi,n|(α+ε)qρn(β+ε) ≤ ρnεn
∑
j∈Cn

(pjWj )
qρnβ,
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and so ∞∑
n=k

∑
i

|Bi,n|(α+ε)q+β+ε ≤ n

∞∑
n=k

ρnε
∑
j∈Cn

(pjWj )
qρnβ. (5.7)

Let Uk be defined such that the right-hand side of (5.7) is nUk . Taking expectations, using
Lemma 4.4, gives

EUk = E

[ ∞∑
n=k

ρnε
∑
j∈Cn

(pjWj )
qρnβ

]
≤ CE[Wq ]

∞∑
n=k

ρnε = CE[Wq ]ρkε
1 − ρε

,

and so
Uk → 0 a.s. as k → ∞.

Hence, using this, (5.6), and (5.7), H (α−ε)q+β+ε(Fα) = 0, giving dimH (Fα) ≤ αq + β. The
argument is completed as in Lemma 5.2.

Proof of Lemma 5.5. Under the open set condition, a volume argument shows that there is
a finite maximum number, ñ, of nonoverlapping sets of shape intK and diameter greater than 1
that can intersect with the ball of diameter 1. This time the idea is to approximate the measure
of balls with diameter ρn using sets Kj with diameter larger than ρn, but as little larger as
possible. There can be no more than ñ such sets with disjoint interiors covering such a ball.
This finite bound on the number of terms will allow the pth powers of sums to be bounded by
the sum of pth powers.

Use the Vitali class V ′
ε,ρ,k for Fα and select a Vitali collection (Bi,n) from it as in the proof

of Lemma 5.4. Let Jn = J(−n log ρ), where J was introduced in (4.3). In general, using
Lemma 5.1,

|Bi,n|(α+ε)q ≤ µπ(Bi,n)
q ≤

( ∑
j∈Jn

(pjWj )I (Bi,n ∩Kj 
= ∅)

)q
.

There can be no more than ñ terms in the sum here and so

|Bi,n|(α+ε)q ≤ ñq−1
∑
j∈Jn

p
q

jW
q

j I (Bi,n ∩Kj 
= ∅).

Let ξi,n,i be the indicator that Bi,n ⊂ int(Ki), and let

ξ ′
i,n = 1 −

∑
i∈Jn

ξi,n,i,

which is the indicator that Bi,n intersects with the boundary of Ki for some i ∈ Jn. Then, for
any κ , ∑

i

|Bi,n|κ =
∑
i

|Bi,n|κξ ′
i,n +

∑
i

∑
i∈Jn

|Bi,n|κξi,n,i .

The two parts here will be bounded separately.
Since Kj has diameter rj , its boundary can overlap with at most ĥ(rj/ρn) disjoint balls of

diameter ρn, where ĥ was introduced in Definition 3.1. Hence,

∑
i

|Bi,n|(α+ε)qξ ′
i,n ≤ ñq−1

∑
j∈Jn

p
q

jW
q

j ĥ

(
rj

ρn

)
.
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Balls with ξi,n,i = 1 are all in int(Ki) and are disjoint. Using this and Lemma 2.6, for a fixed i,∑
i

|Bi,n|(α+ε)qξi,n,i ≤
∑
i

µπ (Bi,n)
qξi,n,i

≤
(∑

i

µπ (Bi,n)ξi,n,i

)q
≤ (µπ(int(Ki)))

q

≤ (piWi)
q .

Hence, since both ñq−1 and ĥ(x) always exceed 1,

∑
i

∑
i∈Jn

|Bi,n|(α+ε)qξi,n,i ≤ ñq−1
∑
i∈Jn

(piWi)
q ĥ

(
rj

ρn

)
.

Therefore, combining these two estimates and using the bound on ĥ arising from K having a
γ -boundary, ∑

i

|Bi,n|(α+ε)q+β+ε = ρn(β+ε)∑
i

|Bi,n|(α+ε)q

≤ 2ñq−1ρn(β+ε) ∑
j∈Jn

p
q

jW
q

j ĥ

(
rj

ρn

)

≤ C′′ρnεe(γ−β)(−n log ρ)
∑
j∈Jn

e−qzj −γ σjW
q

j ,

where C′′ is independent of n. Now, using Lemma 4.6,

∞∑
n=k

ρnεEe(γ−β)(−n log ρ)
∑
j∈Jn

e−qzj −γ σjW
q

j ≤ CE[Wq ]ρkε
1 − ρε

,

and so if we let

U ′
k = C′′

∞∑
n=k

ρnεe(γ−β)(−n log ρ)
∑
j∈Jn

e−qzj −γ σjW
q

j

then U ′
k → 0 a.s. as k → ∞. Finally, since the collection is from V ′

ε,ρ,k ,

∑
n

∑
i

|Bi,n|(α+ε)q+β+ε =
∞∑
n=k

∑
i

|Bi,n|(α+ε)q+β+ε ≤ U ′
k,

and the proof is finished in the same way as in Lemmas 5.2 and 5.4.

6. Upper-bound theorem with a single null set

It is natural to want the null set to be independent of α. The next result gives some conditions
for this. To state it, let (�L, �U) be the interior of the set where β∗ is greater than 0. The proof
is only sketched. It would be easy to give other formulations by considering a subset of the
collection of values for α covered here. Before giving the result some further facts about β∗
need to be recorded.
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Lemma 6.1. Make the same assumptions as in Lemma 3.2.

(i) (�L, �U) is nonempty when (DL,DU) is nonempty.

(ii) DL = ess inf(inf i ((logpi)/(log ri))), DU = ess sup(supi ((logpi)/(log ri))).

(iii) If, for some ε > 0, (�L−ε,�U+ε)⊂(DL,DU) thenβ∗(�U) = β∗(�L) = 0, q̃(�U ) ≤ 0,
and q̃(�L) ≥ 1.

(iv) Suppose that there is no constant γ such that pir
−γ
i = 1 for all i. Suppose too that,

for every q ∈ (q1, q2), m is finite in a neighbourhood of (q, β(q)). Then, on (q1, q2),
m(q, β(q)) = 1, β is strictly convex, β ′(q) is strictly increasing,

−β ′(q) = P(q, β(q))

R(q, β(q))
∈ (−∞,∞),

and β∗(−β ′(q)) = −qβ ′(q)+ β(q).

Proof. Lemma 3.2(vii) ensures that there is one point where β∗ is greater than 0. Now the
concavity of β∗ gives this part.

LetD = ess inf inf i ((logpi)/(log ri)). The result holds for the truncated process introduced
in the proof of Lemma 3.2(v) (see [13, Proposition 3.3 II(b)]—the restriction there that pi ≤ 1
is not needed in the proof). Letting c → ∞ gives DL ≤ D. For ε > 0, r(D−ε)

i > pi . Then,
for q > 0,

m(q,−qD) = E
∑
i

p
q
i r

−qD
i < E

∑
r
−qD+q(D−ε)
i = E

∑
r
−qε
i → 0

as q → ∞, so β(q) ≤ −qD for large positive q. Hence,

β∗(D − ε) = inf
q

{(D − ε)q + β(q)} ≤ −εq

for large q, and this tends to −∞. Consequently, DL ≥ D. The argument for DU is similar.
Once (�L − ε, �U + ε) ⊂ (DL,DU), (DL,DU) is nonempty, and β∗ is continuous there,

which forces β∗(�U) = β∗(�L) = 0. By parts (vi) and (vii) of Lemma 3.2, q̃(�U ) ≤ 0. By
parts (vi) and (viii) of Lemma 3.2, q̃(�L) ≥ 1.

Ifβ is linear somewhere then, when it is, 1= m(q, β(q)) = m(q, γ q + b) = E
∑
i p

q
i r
γ q+b
i ,

but this is possible only if pir
γ

i = 1 for all i, which has been ruled out. The rest is calculus.

Theorem 6.1. Suppose that the open set condition and Assumption A hold,K has aγ -boundary,
and (DL,DU) is not empty. Suppose that, for some δ > 0, m is finite in a neighbourhood of
(q, β(q)) for every q ∈ (q̃(�U )− δ, q̃(�L)+ δ). Assume that, for some ε > 0,

E[Wq̃(�U )−ε +Wq̃(�L)+ε] < ∞, (6.1)

E

[∑
i

p
q̃(�U )−ε
i

]
< ∞, (6.2)

and

E

[(
min
i
ri

)−q̃(�L)�L−γ−ε(∑
i

pi

)q̃(�L)+ε]
< ∞. (6.3)

Then, P-a.s., dimH (Fα) ≤ β∗(α) if β∗(α) ≥ 0 and Fα = ∅ if β∗(α) < 0.
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Proof. Using Lemma 6.1(iv), for suitably small ε and ε′, α ∈ (�L + ε, �U − ε) has q̃(α) ∈
(q̃(�U ) − ε′, q̃(�L) + ε′). Then (6.1) suffices to ensure that (5.2) holds for every q̃(α) ∈
(q̃(�U )− ε′, q̃(�L)+ ε′). Similarly, (6.2) suffices for (5.3) for every q̃(α) ∈ (q̃(�U )− ε′, 1]
and (6.3) suffices for (5.4) for every q̃(α) ∈ (1, q̃(�L)+ ε′).

For α > α◦, q̃(α) < 0 and, for α < α◦, q̃(α) > 0. Now as in the proof of Proposition 5.2,
for α > γ > α◦, Fα ⊂ Fα ⊂ Fγ . Similarly, for α < γ < α◦, Fα ⊂ Fα ⊂ Fγ . We can use
a single null set in obtaining dimH (Fα) for rational values of α, and similarly for dimH (Fα).
Furthermore, β∗ is continuous and so the remaining values are forced by these.

7. Partitioned self-similar measures

The results in this section will be important for establishing the lower bound on dimH (Fα).
They also yield a proof of Theorem 2.2, which relates to the basic ‘fractal’property ofµπ . Recall
from Lemma 2.3 that µπ,i(·) = µi((π

−1
i ·) ∩Ci), that these are, given B1, independent copies

of µπ , and that (2.6) holds for any D ⊂ R
d . We assume throughout this section that parts (i)

and (ii) of Assumption B hold, so the corresponding measures ν and νπ can be constructed, and
that the open set condition holds.

7.1. Replacing intK by U

Later, we will need to bound the measure of small balls around a point π(i) ∈ F and so we
need such small balls to be sandwiched by sets whose measure we can easily estimate. Roughly,
when π(i) ∈ intK , we can use int(Ki|n) for suitable n, but when F is confined to the boundary
ofK , some additional manoeuvres are needed, drawing on, but modifying, ideas in [31]. These
involve introducing new sets, Ui , with properties similar to the int(Ki), but constructed so that
F ⊂ U . When the strong open set condition holds, so that there is a positive probability that
F ∩ intK is nonempty, we will see that there is no need to introduce these sets.

For δ > 0, let the open set K(δ) be given by K(δ) = ⋃
x∈K B(x; δ). Fix ε ∈ (0, 1). For

i ∈ T , let Gi = Si(K
(2ε)) and let

H(i) = {j : σj ≤ σi, Gi ∩Kj 
= ∅}.

Note that H(i) contains i and all its ancestors and that if k /∈ H(i) then none of the descendants
of k is in H(i) either. Now let

� (i) = {j : j ∈ H(i) but jk /∈ H(i) for all jk ∈ T },

so that � (i) contains those who are in H(i) but with no children in H(i)—they are last in
their line of descent to be in H(i). Note that i ∈ � (i). Let Mi be the cardinality of � (i).
Under the open set condition, a consideration of volumes shows that there is a finite maximum
number, n̂, of nonoverlapping sets of shape intK and diameter greater than 1 that can intersect
with K(2ε). By arrangement, none of the members of � (i) is a descendant of any other and
so the interiors of the sets indexed by � (i) do not overlap. Hence, rescaling by (ri)−1 shows
that Mi ≤ n̂ for all i ∈ T . (A different definition for � (i) is used in [31], with its members
drawn from j ∈ C(σi)—this works there because the ri were assumed bounded away from 0
and so there is then a lower bound on the sizes of the sets indexed by C(σi) relative to that
of Gi , allowing a volume argument to bound Mi .) Let M be the largest integer such that
q = P(Mi = M for no i ∈ T ) is strictly less than 1, so M is the essential supremum of the
random variable supi Mi .
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These definitions carry over to the tree emanating from m. Let

Hm(mi) = {mj : σmj ≤ σmi, Gmi ∩Kmj 
= ∅},
which is the same as

{mj : σmj − σm ≤ σmi − σm, S
−1
m Smi(K

(2ε)) ∩ S−1
m Smj (K) 
= ∅},

and so is indeed H on the tree with root m. Then Hm(mi) ⊂ H(mi) and if mj ∈ H(mi)

then mj ∈ Hm(mi). Now let

�m(mi) = {j : j ∈ Hm(mi) but jk /∈ Hm(mi) for all jk ∈ T }.
Then

�m(mi) = {j : j ∈ Hm(mi) but jk /∈ Hm(mi) for all jk ∈ T }
= {j : j ∈ Hm(mi) but jk /∈ H(mi) for all jk ∈ T }
⊂ {j : j ∈ H(mi) but jk /∈ H(mi) for all jk ∈ T }
= � (mi),

and there must be equality here when |�m(mi)| = M . Therefore, when any subtree from a
first generation person contains a ‘maximal’ node, so does the original tree. Hence, with q
as defined earlier in this section, q ≤ EqN , which forces q = 0. Also, when Mi = M , the
tree emanating from i is independent of this information. Hence, the tree will contain nodes
with Mi = M in arbitrarily large generations. Order labels on a tree by generation and then
lexicographically, so that the first node in the tree with a property can be sensibly identified.

Definition 7.1. Consider only the tree emanating from i ∈ T . Let ik(i) be the first in this tree
such that |�i(ik(i))| = M . Also, let k∗ = k(∅).

Thus, k(i) is such that there areM sets (with labels in �i(ik(i))) overlapping withGik(i) in
the tree emanating from i. Since �i(ik(i)) ⊂ � (ik(i)) and the former has maximal cardinality,
it must equal the latter. Therefore, all the Kj overlapping Gik(i) with labels in � (ik(i)) must
actually be in the tree emanating from i. The next lemma uses these k(i) to construct the open
set U that will ‘replace’ intK . This has similar properties to intK , except that the self-similar
measure puts some weight on U , whereas it could be concentrated on the boundary of K , and
U is random but intK is not.

Lemma 7.1. Let
Ui =

⋃
j

Sijk(ij)(K
(ε)) and U = U∅.

Then Ui is open, Ui ⊂ Ui−, S−1
i (Ui) has the same distribution as U , and Ui ∩ Ui′ 
= ∅ only

when i ≤ i′ or i′ ≤ i. Furthermore,

Kik(i) ⊂ Sik(i)(K
(ε)) ⊂ Ui

and P(F ∩ U 
= ∅) = 1.

Proof. The first three assertions are immediate. Suppose that y ∈ Ui ∩ Ui′ , so there are ij

and i′j ′ such that
y ∈ Sijk(ij)(K

(ε)) ∩ Si′j ′k(i′j ′)(K
(ε)).
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Let l = ijk(ij) and l′ = i′j ′k(i′j ′). Say σl ≤ σl′ , or, equivalently, rl ≥ rl′ . The idea is to
show that ij ≤ l′ = i′j ′k(i′j ′), which implies that either i ≤ i′ or i′ ≤ i.

There is y1 ∈ Sl(K) with |y1 − y| < rlε and y2 ∈ Sl′(K) = Kl′ with |y2 − y| < rl′ε.
Hence, |y1 − y2| < 2rlε. Therefore,

y2 ∈ (Sl(K))
(2rlε) ∩Kl′ = Sl(K

(2ε)) ∩Kl′ = Gl ∩Kl′ ,

and soGl ∩Kl′ is nonempty. Then, since σl ≤ σl′ , some ancestor of l′ is in � (l) and, therefore
(from the definition of k(·)), must be in �ij (l) and, hence, in the tree emanating from ij . Thus,
ij ≤ l′ = i′j ′k(i′j ′), giving the result.

The final assertions follow directly from the definitions and noting that F ∩Kk(∅) 
= ∅.

7.2. Estimates of the measure

When we come to estimate the measures of open balls, we need an upper bound on the
measure of the open set that contains them, which may be U or intK depending on the
formulation. The next two lemmas provide these. Recall that µπ is a particular case of νπ , so
the second part in the first lemma is just for emphasis and Lemma 2.6 is a special case of the
second one.

Lemma 7.2. We have νπ (Ui) ≤ yiYi . In particular, µπ(Ui) ≤ piWi .

Proof. Let K(i; s) = {j : σijk(ij) ≤ s}. Now truncate Ui by letting

Ui(s) =
⋃

j∈K(i;s)
Sijk(ij)(K

(ε)).

Then, for any n, as in (2.7),

νπ (Ui(s)) ≤
∑
j∈Tn

yjYj I (Ui(s) ∩Kj 
= ∅).

By Lemma 2.1, there is an n′ ≥ |i| such that inf{σk : k ∈ Tn} > s for all n ≥ n′. Take n ≥ n′.
Suppose that y ∈ Ui(s)∩Kj . Then there is l′ = ij ′k(ij ′), necessarily with σl′ ≤ s < σj , and
with

y ∈ Sl′(K
(ε)) ∩Kj .

Since Sl′(K(ε)) ⊂ Gl′ , this implies that Gl′ ∩ Kj 
= ∅. Since σl′ ≤ σj , some ancestor of j

is in � (l′), and, therefore (from the definition of k(·)), must be in the tree emanating from ij ′,
and, hence, from i. Hence, for all n ≥ n′,∑

j∈Tn
yjYj I (Ui(s) ∩Kj 
= ∅) =

∑
{j : ij∈Tn}

yijYij I (Ui(s) ∩Kij 
= ∅)

≤
∑

{j : ij∈Tn}
yijYij

= yiYi,

using (3.3). This shows that νπ (Ui(s)) ≤ yiYi for any s, and upon letting s ↑ ∞, monotone
convergence gives νπ (Ui) ≤ yiYi .

Lemma 7.3. We have νπ (int(Ki)) ≤ yiYi .

Proof. The proof is the same as Lemma 2.6, but with yjYj in place of pjWj .
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7.3. Self-similar measures partition

Let D(·, ·) give the shortest distance between its two arguments. Take V = U . If P(F ∩
intK = ∅) < 1, we can instead take V = intK . Most arguments are unchanged; those that
are not are indicated.

Recall, from Section 2, that, for i ∈ ∂T , Ki is another notation for π(i) and that V c is the
complement of V . For i ∈ T ∪ ∂T , let

�i = − log(D(Ki, V
c)), (7.1)

and, for i ∈ T and j ∈ T ∪ ∂T , let

�i
ij = − log

(
D(Kij , V

c
i )

ri

)
= − log D(Kij , V

c
i )− σi, (7.2)

which, given the information up to generation |i|, has the same distribution as �j . The basic
idea is to show that � : ∂T → R is usually not large, where ‘usually’ is with respect to the
measure ν, or µ, on ∂T . It is worth noting that the random variable �i depends, through U,
on a random portion of the tree, and not just on the tree up to generation |i|. This difficulty is
absent when V = intK .

Lemma 7.4. For any i ∈ T , j ∈ T ∪ ∂T , and c,

I (�ij > σij + c) ≤ I (�i > σi + c)I (�i
ij > σij − σi + c).

Proof. Since Kij ⊂ Ki , �ij ≤ �i and, since Vi ⊂ V ,

�ij = − log(D(SijK,V
c)) ≤ − log(D(SijK,V

c
i )) = �i

ij + σi .

Hence,
I (�ij > σij + c) ≤ I (�i > σij + c)I (�i

ij > σij − σi + c)

and σij ≥ σi .

Now certain indicator variables are introduced. These are defined differently depending on
whether V is U or intK , but have the same relevant properties. Both depend on an integer r
and a suitable ε ∈ (0, 1).

When V = U , the definition of U (or, more precisely, Gi) supplies the ε. Let

κ(k) = sup{|i| : i ∈ C(σk)} = sup{|i| : σi− ≤ σk < σi},
which is finite, by Lemma 2.1, and at least |k| + 1. Recall that k∗ = k(∅) was introduced in
Definition 7.1. Let r be sufficiently large that, with positive probability, κ(k∗) ≤ r , and, for
i ∈ Tr , let

ξi = 1 − I (κ(k∗) ≤ r, k∗ ≤ i),

so there is a positive probability that at least one of these is 0. For k with |k| ≤ r − 1,
I (κ(k) ≤ r) is known given Br . Then I (Mk = M) is also known, since all those born before
σk are in generations up to r − 1. Hence, ξi is not random given Br . (Note that this need not
be so if ‘κ(k∗) ≤ r’ is omitted.)

When P(F ∩ intK 
= ∅) > 0 (and V = intK), choose r large enough that

P(Ki ⊂ intK 
= ∅ for some i ∈ Tr) > 0.
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Now choose ε ∈ (0, 1) and small enough that there is a positive probability that at least
one of the variables defined for i ∈ Tr by ξi = I (D(Ki, (intK)c) < riε) is 0. Note that
ξi = I (�i > σi − log ε).

In both cases we may now define c∗ = − log ε ∈ (0,∞) and γ by

E

[∑
i∈Tr

yiξi

]
= γ r .

Then γ < 1 because E[∑i∈Tr yi] = 1.

Lemma 7.5. For all n ∈ N,

E

[∑
j∈Tn

yj I (�j > σj + c∗)
]

≤ γ n−r .

Proof. Let

χi = I (�i > σi + c∗) and χ i
ij = I (�i

ij > σij − σi + c∗).

Then, by Lemma 7.4, χij ≤ χiχ
i
ij so that

∑
ij∈Tn+r

yijχij ≤
∑
i∈Tr

yiχi

( ∑
{j : ij∈Tn+r }

yij

yi
χ i

ij

)
.

Note that {yiχi : |i| = r} are not necessarily known when given Br . However, as we shall see,
χi ≤ ξi . Hence, ∑

ij∈Tn+r
yijχij ≤

∑
i∈Tr

yiξi

( ∑
{j : ij∈Tn+r }

yij

yi
χ i

ij

)
.

Now, given Br , each term in the brackets on the right-hand side is an independent copy of∑
i∈Tn yiχi and {yiξi : i ∈ Tr} are known. Thus, taking expectations conditional on Br and

then unconditionally,

E

[ ∑
ij∈Tn+r

yijχij

]
≤ E

[∑
i∈Tr

yiξi

]
E

[∑
i∈Tn

yiχi

]
= γ rE

[∑
i∈Tn

yiχi

]
.

The proof is finished by induction. It remains to show that, when ξi is 0, so is χi . When
V = intK , by definition, ξi is the same as χi and there is nothing more to do. Turning to
the other case, when V = U , take i with ξi = 0 so that, by definition, k∗ ≤ i. Then, by
Lemma 7.4, χi ≤ χ∗

k for any i ≥ k∗. Since Kk∗ ⊂ Sk∗(K(ε)) ⊂ V ,

�k∗ = − log D(Kk∗ , V c) ≤ − log D(Kk∗ , (Sk∗(K(ε)))c) ≤ − log(rk∗ε) = σk∗ + c∗,

which means that χk∗ = 0. Hence, χi = 0 as required.

Proposition 7.1. We have Eνπ (V c) = 0 and Eνπ ((
⋃
i∈T1

Vi)
c) = 0. Let

F∗ =
⋂
n

( ⋃
j∈Tn

Vj

)
.

Then Eνπ (F c∗ ) = 0 and so Eνπ ((F ∩ F∗)c) = 0. In particular, all these results hold for µπ .
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Proof. Note that π(j) ∈ V c implies that �j |n = ∞ for every n. Hence,

Eνπ (V
c) ≤ E

∑
i∈Tn

yiYiI (�i = ∞) ≤ E

[∑
j∈Tn

yj I (�j > σj + c∗)
]

≤ γ n−r → 0

using Lemma 7.5. Let νi be the copy of ν defined on the tree emanating from i. Then

ν(A) =
∑
i∈Tn

yiνi(A ∩ Ci).

Hence,

ν

({
i : π(i) ∈

( ⋃
j∈Tn

Vj

)c})
=

∑
k∈Tn

ykνk

({
i : π(i) ∈

( ⋃
j∈Tn

Vj

)c}
∩ Ck

)

≤
∑
k∈Tn

ykνk({i : π(i) ∈ V c
k } ∩ Ck),

and, given Bn, each term on the right-hand side has expectation 0. Hence, taking n = 1 gives
Eνπ ((∪i∈T1Vi)

c) = 0 and, more generally,

Eνπ

({
π(i) ∈

⋃
n

( ⋃
j∈Tn

Vj

)c})
= 0,

which implies that Eνπ (F c∗ ) = 0. We already know that νπ (F c) = 0, so Eνπ ((F ∩ F∗)c) = 0.

Proof of Theorem 2.2. The {Vi} introduced above ({Ui}, or {intKi} when P(F ∩ intK 
=
∅) > 0) are disjoint and, by Proposition 7.1, Eµπ((

⋃
i∈T1

Vi)
c) = 0. Also, for i 
= j ,

S−1
i Vi and S−1

i Vj are disjoint and so S−1
i Vj ⊂ (S−1

i Vi)
c. Applying Proposition 7.1 to µπ,i ,

Eµπ,i((S
−1
i Vi)

c) = 0. Then, using decomposition (2.6), excluding a suitable P-null set,

µπ(D) = µπ

(
D ∩

( ⋃
j∈T1

Vj

))

=
∑
i

piµπ,i

(
S−1
i

(
D ∩

( ⋃
j∈T1

Vj

)))

=
∑
i

piµπ,i

(
S−1
i D ∩

( ⋃
j∈T1

S−1
i Vj

))

=
∑
i

piµπ,i(S
−1
i D ∩ S−1

i Vi)

=
∑
i

piµπ,i(S
−1
i (D ∩ Vi)),

as required.

8. Lower bound on dimH (Fα)

8.1. The result

The aim is to give conditions for the upper bound derived in Proposition 5.1 to be also a lower
bound. When Assumption B holds, let α be given by α = P(q, β)/R(q, β), where P and R
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are as in (3.1) and (3.2). Then the idea is to show that, under suitable weak moment conditions,
dimH (Fα) ≥ qα + β. The next lemma shows that this lower bound is indeed positive.

Lemma 8.1. When Assumption B holds, β∗(α) = qα+β > 0 and in Lemma 3.2(vi) q̃(α) = q

and β(q̃(α)) = β.

Proof. Note first that

0 < E

[
−

∑
yi log yi

]
= −E

∑
i

p
q
i r
β
i (q logpi + β log ri) = qP + βR.

Hence, (qα + β)R > 0, and so, since R ∈ (0,∞), qα + β > 0. Lemma 3.2(viii) combines
with Assumption B(i) to give β∗(α) = qα + β, q̃(α) = q, and β(q̃(α)) = β.

When Assumption B holds, the measure ν has already been defined on ∂T through ν(Ci) =
yiYi and νπ is its projection onto R

d .

Proposition 8.1. Suppose that Assumptions A and B and the open set condition hold. Suppose
also that EY log+ Y < ∞ and that EY | logW | < ∞. Then dimH (Fα) ≥ β∗(α) a.s.

This result supplies the second half of Theorem 3.1. We have not obtained a more refined
result of the null set here remaining the same as α varies. This is done for measures on ∂T in
[3] under additional conditions. We tackle the lower bound using the following lemma, with
νπ as m and the set A given by π(G∗), the projection of a suitableG∗ ⊂ ∂T into R

d . Then we
give a number of lemmas to break the main proof down into digestible chunks. The first few
of these show that various relevant sets in ∂T have full measure under ν.

Lemma 8.2. (Theorem 4.9 of [12].) Let m be a Borel measure on R
d and A an m-measurable

set with m(A) > 0. If, for all x ∈ A,

lim sup
r↓0

m(B(x; r))
rs

< ∞

then dimH (A) ≥ s.

Lemma 8.3. Let

G1 =
{
i ∈ ∂T : lim

n→∞
logYi|n
log ri|n

= 0

}
.

If E[Y log+ Y ] < ∞ then ν(G1) = ν(∂T ), P-a.s.

Proof. Let

Eε,k =
{
i ∈ ∂T : | logYi|k|

− log ri|k
> ε

}
.

Then, for any l ∈ N, {
i ∈ ∂T : lim sup

n→∞
| logYi|n|
− log ri|n

> ε

}
⊂

⋃
k≥l
Eε,k.

Hence, for any ε > 0,

ν

{
i ∈ ∂T : lim sup

n→∞
| logYi|n|
− log ri|n

> ε

}
≤ lim
l↑∞

∑
k≥l

ν(Eε,k). (8.1)
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Now

E[ν(Eε,n)] = E

[∑
i∈Tn

yiYiI (| logYi | > −ε log ri)

]

= E

[∑
i∈Tn

p
q

i r
β

i E[YiI (| logYi | > −ε log ri) | Bn]
]

= Ẽ[EYI (| logY | > εSn)],
using Lemma 4.1. Recall that U(t) is the renewal function for Sn, for which there is a constant
C such that U(t) ≤ C(t + 1). Summing over n,∑

n

E[ν(Eε,n)] =
∑
n

Ẽ[EYI (| logY | > εSn)]

= E[YU(ε−1| logY |)]
≤ CE[Y (1 + ε−1| logY |)],

which is finite when E[Y log+ Y ] < ∞. Hence, the right-hand side of (8.1) is 0 a.s.

Lemma 8.4. Let

G2 =
{
i ∈ ∂T : lim

n→∞
logWi|n
log ri|n

= 0

}
.

If EY | logW | < ∞ then ν(G2) = ν(∂T ), P-a.s.

Proof. The proof is the same as the previous proof, but with logW in the place of logY .

In the same way, the following minor variant can be established. Using it in place of
Lemma 8.4, it is possible to give lower bounds for dimH (Fα) when q < 0 and for dimH (Fα)

when q > 0.

Lemma 8.5. If EY log+W < ∞,

Eν

{
i ∈ ∂T : lim inf

n→∞
logWi|n
log ri|n

< 0

}
= 0.

If EY log+(1/W) < ∞,

Eν

{
i ∈ ∂T : lim sup

n→∞
logWi|n
log ri|n

> 0

}
= 0.

Lemma 8.6. Let

G3 =
{
i ∈ ∂T : lim

n→∞
log ri|n
n

= E

[∑
i

p
q
i r
β
i log ri

]}

and

G4 =
{
i ∈ ∂T : lim

n→∞
logpi|n
n

= E

[∑
i

p
q
i r
β
i logpi

]}
.

Then ν(G3) = ν(G4) = ν(∂T ), P-a.s. On G3 ∩G4, logpi|n/ log ri|n → α as n → ∞.
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Proof. This is a standard, using the strong law of large numbers for what is sometimes called
the Peyrière measure: see, for example, the proofs of Lemma 11 of [25], Lemma 4.6 of [2],
and Theorem 8 of [4]. It uses Assumption B(iii) and (iv).

The final result needed of this kind, which is stated next, concerns the variables �j
ji

introduced in (7.2). It seems possible that it can be proved by a suitable application of the
ergodic theorem to the Peyrière measure, but we have not tried to do this. Before proving it
a couple of additional lemmas are needed that concern �i (= �

∅

∅i) defined in (7.1). In the
proofs c∗ and γ are as defined just before Lemma 7.5.

Lemma 8.7. Let

G5 =
{
i ∈ ∂T : �

i|k
i

k
→ 0

}
.

Then ν(G5) = ν(∂T ), P-a.s.

Lemma 8.8. For large C′ > 0,∑
k

Eν({i ∈ ∂T : �i > kC′}) < ∞.

Proof. First, with C′ = C + c∗

{�i > kC′} ⊂ {�i > σi|k + c∗} ∪ {σi|k + c∗ > k(C + c∗)}
⊂ {�i > σi|k + c∗} ∪ {σi|k > kC}.

Then ∑
k

Eν({i ∈ ∂T : σi|k > kC}) =
∑
k

E
∑
j∈Tk

yjYj I (σj > kC) =
∑
k

P̃(Sk > kC),

which is finite whenC > ẼS1 and ẼS2
1 < ∞, using a result of Hsu and Robbins [11, Corollary 2,

Section 10.4]. Assumption B(iv) implies that ẼS2
1 < ∞. Also, since �i ≤ �i|k , we have∑

k

Eν({i ∈ ∂T : �i > σi|k + c∗}) ≤
∑
k

Eν({i ∈ ∂T : �i|k > σi|k + c∗})

=
∑
k

[∑
j∈Tk

yjYj I (�j > σj + c∗)
]

≤
∑
k

γ k−r ,

by Lemma 7.5. Combining these two bounds gives the result.

Lemma 8.9. If E
∑
k ν({i ∈ ∂T : �i > kC}) is finite for some C > 0 then it is finite for all

C ∈ (0,∞).

Proof. For any C > 0,∫
∂T

�iν(di) ≤ C
∑
k

ν({i ∈ ∂T : �i > kC}) ≤
∫
∂T

(�i + C)ν(di) =
∫
∂T

�iν(di)+ CY.
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Proof of Lemma 8.7. We have

ν

({
i ∈ ∂T : lim sup

n→∞
�

i|k
i

k
> ε

})
≤ lim
l↑∞

∑
k≥l

ν({i ∈ ∂T : �i|k
i > kε}).

Now
{i ∈ ∂T : �i|k

i > kε} = {j ∈ Tk, ji ∈ ∂T : �j
ji > kε},

and, for j ∈ Tk ,
E[ν({ji ∈ ∂T : �j

ji > kε}) | Bk] = yj E[νj ({ji ∈ ∂T : �j
ji > kε})]

= yj E[ν({i ∈ ∂T : �i > kε})].
Hence,

E[ν({i ∈ ∂T : �i|k
i > kε}) | Bk] =

∑
j∈Tk

yj Eν({i ∈ ∂T : �i > kε}),

and so
E[ν({i ∈ ∂T : �i|k

i > kε})] = Eν({i ∈ ∂T : �i > kε}).
By Lemmas 8.8 and 8.9, these have a finite sum over k. Hence, for any ε > 0,

Eν

({
i ∈ ∂T : lim sup

n→∞
�

i|k
i

k
> ε

})
= 0,

and so Eν(∂T \G5) = 0.

Proof of Proposition 8.1. Combine the sets introduced in Lemmas 8.3, 8.4, 8.6, and 8.7 by
letting G∗ = G1 ∩G2 ∩G3 ∩G4 ∩G5. For i ∈ G∗ and 
 < D(π(i), V c), let k = k(
) be
the largest integer such that


 < D(π(i), V c
i|k)(= exp(−�i|k

i − σi|k)).

Then
B(π(i); 
) ⊂ Vi|k,

and so, using Lemma 7.2 or 7.3 as appropriate,

νπ (B(π(i); 
)) ≤ yi|kYi|k. (8.2)

Now, by arrangement (with k = k(
)) we have

�
i|k
i + σi|k < − log 
 ≤ �

i|(k+1)
i + σi|(k+1).

Since i ∈ G∗ ⊂ G3 ∩G5, Lemmas 8.6 and 8.7 give, as 
 → 0,

− log 


k
→ ẼS1 = −E

[∑
i

p
q
i r
β
i log ri

]
, (8.3)

and so, using also Lemma 8.3 and i ∈ G∗ ⊂ G1 ∩G3 ∩G4 ∩G5,

q logpi|k + β log ri|k + logYi|k
log 


→ qα + β as 
 → 0 .
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Now substituting for yi|k into (8.2) gives

νπ (B(π(i); 
))

s

≤ exp

((
q logpi|k + β log ri|k + logYi|k

log 

− s

)
log 


)
,

which is bounded as 
 ↓ 0 for s < qα+β. Hence, Lemma 8.2 gives dimH (π(G
∗)) ≥ qα+β

and Lemma 8.1 notes that αq + β = β∗(α).
It remains to show that π(G∗) ⊂ Fα . Let r = r(
) be the smallest integer such that


 > exp(−σi|r ). Then, with k as already defined,

Ki|r ⊂ B(π(i); 
) ⊂ Vi|k,

so
µ(Ci|r ) ≤ µπ(Ki|r ) ≤ µπ(B(π(i); 
)) ≤ µπ(Vi|k),

which combines with Lemma 2.6 or 7.2 to give

logpi|r + logWi|r ≤ logµπ(B(π(i); 
)) ≤ logpi|k + logWi|k. (8.4)

Now, by arrangement we have

σi|(r−1) ≤ − log 
 < σi|r ,

and so, since i ∈ G∗ ⊂ G3, as 
 → 0,

− log 


r
→ ẼS1. (8.5)

Dividing (8.4) through by log 
 and letting 
 ↓ 0, using (8.3) and (8.5) and Lemmas 8.4 and 8.6,

logµπ(B(π(i); 
))
log 


→ α

for i ∈ G2 ∩G3 ∩G4 ∩G5. Hence, π(G∗) ⊂ Fα , as required.

9. Moments of W

The results impose moment conditions onW and Y (which is also a ‘W ’). For applications,
these need to be traced back to conditions on the scaling law. Since EW = 1, it is automatic
that EWq < ∞ for 0 ≤ q ≤ 1. For the other cases, various suitable results are known. Typical
results can be found in [3], [16], [23], and [24]. It is worth saying that, by formulating using
point process language, several early relevant papers allowed P(N = ∞) > 0. We record
several such results. Recall that (2.3) is in force throughout to ensure that EW = 1, and
Assumption B(i) and (ii) play the same role for Y .

Lemma 9.1. (Proposition 4 of [16].) For q > 1, EWq is finite when

E

[(∑
pi

)q]
< ∞ and m(q, 0) = E

[∑
p
q
i

]
< 1. (9.1)

Lemma 9.2. (Theorem 2.4 of [24].) Assume that P(1 ≤ N < ∞) = 1. For q < 0, EWq is
finite when, for some ε > 0,

E[(maxpi)
q−ε] < ∞ and E[pq−ε1 I (N = 1)] < 1.
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Lemma 9.3. (Page 28 of [6].) It holds that EW logW is finite when

E

[(∑
pi

)(
log

(∑
pi

))2]
< ∞.

Simplifications of Lemmas 9.1 and 9.2 are worth recording.

Lemma 9.4. For q > 1, EWq is finite when pi ∈ (0, 1) for all i and

E

[(∑
pi

)q]
< ∞.

Lemma 9.5. For q < 0, EWq is finite when, for some ε > 0,

m(q − ε, 0) = E

[∑
p
q−ε
i

]
< ∞ and E[pq−ε1 I (N = 1)] < 1.

Lemmas 9.1–9.5 cover the moment conditions needed on branching process limits (Y andW )
in Theorem 3.1 except for (3.8). The following lemma brings this condition also into the range
of those lemmas.

Lemma 9.6. It holds that EY | logW | is finite whenever there is a δ > 0 for which E Y 1+δ and
EW−δ are both finite.

Proof. Take δ < 1. For any ε > 0, there is a C such that

Y | logW | ≤ CY(Wε +W−ε),

and Hölder’s inequality gives

EYW−ε ≤ (EY 1+δ)1/(1+δ)(EW−ε(1+δ)/δ)δ/(1+δ) ≤ (EY 1+δ)1/(1+δ)(EW−δ)δ/(1+δ)

for small enough ε. Since EWδ is always finite for δ ≤ 1, EYWε is bounded in the same way.

10. Simplifying conditions

Theorem 3.1 has a complex collection of conditions. Here we indicate some simpler
sufficient ones.

Theorem 10.1. Suppose that the open set condition and Assumption A both hold and that K
has a γ -boundary. Suppose also that m(q, β) is finite for all (q, β). Let α ∈ (DL,DU), with
q̃(α) and β(q̃(α)) as in Lemma 3.2(vi). Assume that (3.4) holds and, if q̃(α) > 1, assume that
(3.6) holds. Then

dimH (Fα) ≤ β∗(α) a.s.

Furthermore, if β∗(α) < 0 then Fα = ∅ a.s. When β∗(α) > 0, Assumption B holds for
(q̃(α), β(q̃(α))). Suppose also that (3.7) and (3.8) hold. Then

dimH (Fα) = β∗(α) a.s.

Proof. When m(q, β) is finite for all (q, β), (3.5) always holds, as do Assumption B(iii)
and (iv), andN is always finite. Furthermore,m(q, β(q)) = 1, α = P(q, β(q))/R(q, β(q)) is
finite, in (DL,DU), and satisfies β∗(α) = qα+β(q), and every α in (DL,DU) can be obtained
in this way. Thus, Assumption B(ii) also holds when (q̃(α), β(q̃(α))) give β∗(α) > 0.
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This still leaves the rather complicated moment conditions on W and Y and (3.6). To give
a simpler version that covers these, recall that N is the family size and let

σ∗ = max
i

{− log ri}, z∗ = max
i

{− logpi}, and z∗ = max
i

{logpi},
so that (−z∗) ≤ z∗.

Lemma 10.1. For 
 ≥ 1, suppose that, for some ε > 0, EN
+ε < ∞, and that σ∗, z∗, and z∗
all have moment generating functions that are finite for all positive arguments. Then

E

[(∑
i

p
q
i r
β
i

)
]
< ∞.

In particular, 
 = 1 gives that m(q, β) is finite for all (q, β).

Proof. Note that

E

[(∑
i

p
q
i r
β
i

)
]
≤ E[(Ne−σ∗βI (β<0)e−z∗qI (q<0)ez

∗qI (q>0))
],

and then several applications of Hölder’s inequality gives the result.

Lemma 10.2. For any q > 1, (3.6) holds with q̃(α) = q and any positive γ if σ∗ has a moment
generating functions that is finite for all positive arguments and, for some ε > 0, EWq+ε < ∞.

Proof. Hölder’s inequality shows that (3.6) holds with q̃(α) = q provided that E[(∑pi)
q+ε]

is finite for some ε > 0. By martingale properties,

E

[(∑
i

pi

)q+ε]
≤ E

[(∑
i∈Tn

pi

)q+ε]
≤ EWq+ε .

Lemma 10.3. Suppose that EN1+ε < ∞ and that (−z∗) has a moment generating function
that is finite for all positive arguments. Suppose too that P(N ≥ 2) = 1. Then EWq < ∞ for
q < 0.

Proof. Since P(N ≥ 2) = 1, E[pq−ε1 I (N = 1)] = 0. Now Lemma 9.5 gives the result.

Lemma 10.4. Suppose that (q, β) are such that m(q, β) = E
∑
i p

q
i r
β
i = 1, m is finite in a

neighbourhood of (q, β),

−E
∑
i

p
q
i r
β
i (q logpi + β log ri) > 0, (10.1)

and

E

[(∑
i

p
q
i r
β
i

)1+ε]
< ∞. (10.2)

Then E Y (1+ε) < ∞.

Proof. Note that

E

[∑
i

(p
q
i r
β
i )

1+ε
]

= m(q(1 + ε), β(1 + ε)) < 1

for sufficiently small ε by calculus, using (10.1). Lemma 9.1 gives the result.

https://doi.org/10.1239/aap/1300198510 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1300198510


Multifractal spectra for random self-similar measures SGSA • 37

Lemma 10.5. For ε > 0, suppose that EN1+2ε < ∞, and that σ∗, z∗, and z∗ all have moment
generating functions that are finite for all positive arguments. Suppose that (q, β) are such
that m(q, β) = E

∑
i p

q
i r
β
i = 1 and (10.1) holds. Then E Y (1+ε) < ∞.

Proof. Lemma 10.1 applies to show that m is finite everywhere and that (10.2) holds. Now
Lemma 10.4 gives the result.

Proof of Corollary 3.1. This is an application of Theorem 3.1. It is easy to check that
Assumption A holds and, as noted after Definition 3.1, K has a d-boundary. By assumption,
each of

Ee
σ∗ = E
(

min
i
ri

)−

, Ee
z∗ = E

(
min
i
pi

)−

, Ee
z

∗ = E
(

max
i
pi

)

is finite for all 
 > 0 and EN1+ε < ∞. Hence, by Lemma 10.1,m is finite everywhere. Thus,
(3.5) and parts (iii) and (iv) of Assumption B hold when needed.

Turning to conditions on W , by Lemma 9.4, E,Wq is finite for all q > 1, and this implies
also that EWq is finite for 0 ≤ q ≤ 1. By Lemma 10.3, EWq is finite for all q < 0. Hence,
(3.4) holds. Lemma 10.2 shows that (3.6) also holds. For the conditions on Y , Lemma 10.5
shows that, for small positive η, EY 1+η < ∞, which implies that Assumption B(ii) and (3.7)
hold. Furthermore, Lemma 9.6 implies that (3.8) holds.

11. An example

In [14, Section 6.2] the description of an optimal path in a very heavy tailed last passage
percolation problem is formulated in terms of a random self-similar measure. This measure
was not covered by the results then available in the literature. The example is easy to cast
into the current notation. Let V and Ṽ be independent uniform random variables. Now
let N = 2, (p1, p2) = (Ṽ , 1 − Ṽ ), K = [0, 1], and (K1,K2) = ([0, V ], [V, 1]) so that
(r1, r2) = (V , 1 − V ). As computed in [14],

m(q, β) = 2

(1 + q)(1 + β)
for q > −1, β > −1,

so β(q) = (1 − q)/(1 + q) and

β∗(α) = αq̃(α)+ β(q̃(α)) with q̃(α) = −1 +
√

2

α
.

The example satisfies the open set condition and K has 0-boundary, since its boundary is
always covered by at most two disjoint balls. It is easy to see that Assumption A holds.

Since
∑
pi = 1, Lemma 9.1 implies that EWq < ∞ for all q > 1. Also, maxpi is uniform

on [0.5, 1] and so has finite moments of all orders and N = 2. Hence, Lemma 9.2 shows that
EWq < ∞ for all q < 0. Therefore, (3.4) holds.

Since min ri is uniform on [0, 0.5], E(min ri)δ is finite for δ > −1, and, as already noted,∑
pi = 1. Furthermore, when q̃(α) ∈ (1,∞), β(q̃(α)) ∈ (−1, 0). Hence, (3.6) holds when

q̃(α) > 1.
Fix α ∈ (0,∞) with β∗(α) = αq̃(α) + β(q̃(α)) > 0. A verification that, for some ε > 0,

EY 1+ε < ∞ is in [14] (where Y isW(q̃(α)) there). Alternatively,m is finite in a neighbourhood
of (q̃(α), β(q̃(α)), and reversing the argument for Lemma 8.1, β∗(α) > 0 implies that (10.1)
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holds for (q̃(α), β(q̃(α)). Furthermore, for any q > −1 and β > −1, and sufficiently small ε,

E

[(∑
p
q
i r
β
i

)1+ε]
≤ E

[(
2(maxpqi )(max rβi )

)1+ε]
≤ 21+εE[maxpq(1+ε)

i ]E[max rβ(1+ε)
i ]

< ∞.

Hence, (10.2) also holds and then Lemma 10.4 gives EY 1+ε < ∞ and, hence, (3.7). Earlier in
this proof it was established that, for any ε > 0, EW−ε < ∞ and so now Lemma 9.6 shows that
(3.8) holds. Thus, all the conditions in Theorem 3.1 hold. The multifractal spectrum for this
example was computed in [14], based on a preliminary version of this study. Unfortunately,
Lemma 6.6 there, which is supposed to be here, has turned out to have some conditions missing,
as can be seen by comparing it with Theorem 3.1. Happily, the omissions do not invalidate the
assertions made about the example.
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