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Abstract 

A simple method for computing the full spectrum of the linear (nonadi-
abatic) radial modes is implemented and tested on RR Lyrae models. The 
growthrates of the vibrational modes display unexpected, but physically cor­
rect undulations as a function of period, with the 8th through 10"1 overtones 
almost unstable. Caution must be exercised when only a small number of 
meshpoints is used, or when the meshpoints are not well distributed, as some 
of these overtones may become unstable, clearly an artifact of the differenc­
ing. The role that such unstable high overtones can play in hydrodynamic 
calculations is demonstrated. 

The lowest order vibrational modes are frequently computed with the Castor 
(1971) method. Unfortunately this approach fails for the higher vibrational modes 
as well as for the thermal modes. To overcome this difficulty here, we transform 
the linearized system of hydrodynamics into a standard eigenvalue problem of the 
form A z = a z, where A is a 3iV x 3N constant matrix and z € R3Ar is the vector 
of components {6Rk,6uk,6Tk}, k — 1, N. To achieve this form we have made use 
of the continuity equation to replace p dV/dt in the energy equation in terms of the 
velocity u. Standard procedures exist for finding the eigenvalues of such a general 
(non Hermitean) real matrix. 

As an application we have computed the spectrum of vibrational modes for a 
few RR Lyrae models, viz. 0.6M©, 60L© with Teff in the range 6800K to 7600K. 
The composition in all models is X=0.7 and Z=0.001. Because of the sensitivity of 
the growthrates to zoning we have used up to 1400 zones. The Figure displays the 
resultant relation between the frequencies fk and the relative growthrates % = 2Kk/fk 
for the lowest vibrational modes in the Tey/=7300 K model which is typical of all the 
RR Lyrae models. The surprising result is that the growthrates do not level off 
with increasing mode number, but that instead they show an undulatory behavior. 
The first excursion is in fact quite substantial with the result that the 8th through 
10"1 overtones are only very weakly damped. The undulations are a result of the 
phase relationship between 6p and 6p which varies with the spatial structure for the 
successive overtones. The first large decrease in driving (culminating with the 4"1 

overtone) is due to an adverse phase relationship which occurs in the He partial 
ionization region. For the higher modes the partial He ionization region no longer 
contributes any driving, which comes entirely from nonadiabatic effects in the partial 
H ionization region. This driving is particularly efficient for the 9th overtone. 
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264 Theoretical Breakthroughs 

The existence of marginally stable overtones suggests that it may be possible to 
detect these frequencies in RR Lyrae if they are stochastically excited (in a fashion 
similar to that of the solar p-modes). This raises the exciting prospect of being able 
to do astro-seismology on the classical variable stars. 

freq. 

l / [ d ] 

Figure: r/ VS frequency for an 
RR Lyr model with Teff= 7300 K 
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Our study reveals a strong sensitivity of the linear growthrates to the numerical 
mesh, especially for the higher vibrational modes. For unfortunate choices of the 
numerical mesh the decrease of stability around overtones 8 - 1 0 can give rise to 
unstable modes (r\ > 0) and to unphysical effects in the numerical hydrodynamic 
computations. 

In order to illustrate the phenomenon we have constructed models with Teff = 
7300K this time with a coarser grid of 120 zones, suitable for hydrodynamical compu­
tations. One model, e.g. has 30 equally spaced mass zones up to 11,000 K, followed 
by geometrically increasing zones up to 2 MK. Another model has again 30 mass 
zones up to 11,000 K, but with a geometric progression of the mass zone, followed by 
a geometrically increasing mesh as for the first model. In the two models the first 
5 overtones have almost the same properties as those of the finely resolved model. 
The spectrum of eigenvalues for the higher overtones also has a qualitatively similar 
behavior. However, it is interesting that the 9th overtone for the second model is 
actually vibrationally unstable, while it remains stable in the first model. 

Since only the first overtone is linearly unstable in the first model the latter 
exhibits only stable first overtone limit cycle pulsations. On the other hand the 
nonlinear behavior of the second model which is linearly unstable in two modes is 
different. When the model is destabilized with a more or less arbitrary kick the pul­
sations contain a strong admixture of the linearly unstable 9th overtone which persist 
for a long time and show up as wiggles with a frequency / 9 « 3.5/i. In addition, 
there are now at least two stable limit cycles (l3t overtone and 9th overtone) with a 
unstable mixed mode state. These results therefore suggest that some caution needs 
to be exercised when an initial model is constructed to ensure that the differencing 
does not introduce unphysical unstable overtones and unphysical attractors. 
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